bioRxiv preprint doi: https://doi.org/10.1101/071308; this version posted August 24, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Closing the loop: tracking and perturbing behaviour of
individuals in a group in real-time

Malte J. Rasch*, Aobo Shi, Zilong Ji

State Key Lab for Cognitive Neuroscience & Learning,
IDG McGovern Institute
Beijing Normal University

August 24, 2016

Abstract

Quantitative description and selective perturbation of individual animals in a
social group is prerequisite for understanding complex social behaviors. Tracking
behavioral patterns of individuals in groups is an active research field, however, reli-
able software tools for long-term or real-time tracking are still scarce. We developed
a new open-source platform, called xyTracker, for online tracking and recognition of
individual animals in groups. Featuring a convenient MATLAB-based interface and
a fast multi-threading C++ core, we achieved an > 30X speed-up over a popular
existing tracking method without loss in accuracy. Moreover, since memory usage
is low, many hours of high-resolution video files can be tracked in reasonable time,
making long-term observation of behavior possible. In a number of exemplary ex-
periments on zebra fish, we show the feasibility of long-term observations and how
to use the software to perform closed-loop experiments, where the tracked position
of individuals is fed-back in real-time to a stimulus presentation screen installed
below the fish-tank. Visual stimulation capabilities is incorporated into xyTracker
and can be based on any behavioral features of all members of the group, such as,
collective location, speed, or direction of movement, making interesting closed-loop
experiments for investigating group behavior in a virtual reality setting possible.

1 Introduction

Classical behavioral research of animals has been traditionally limited by the lack of
quantitative description of their complicated behavioral patterns, since raw observations
had to be collected by “hand”. Modern advances of machine learning and computer vision
allow to automate the description of behavior of many interacting animals on a much
more quantitative computational level (e.g. [5,[57,[29]). Accurate and automated tracking
of individual animals are at the core for quantitatively analyzing group behavior [21].
Automatic video tracking of individuals within a group of animals, such as a flock, shoal
or school has only just begun and already yielded promising insights about the dynamics
of groups of ducks [37], starlets [], ants [40], mice[49], and fish [19] [26], [36] [15].

For the quantitative investigation of group behavior and learning, automatic tracking
tools are still lacking. In particular, it would be desirable to perturb the behavior of
some members of a group locally, e.g. using a visual stimulus which can be seen only
by one individual of the group. Even better would be a visual stimulus presentation
that could be “controlled” by the behavior of a subset of the individual in the group,
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to establish closed-loop feedback (learning) experiments for investigation of collective
response patterns. This would extend both the associate learning paradigm done only
for single individuals [50] [6l 42], and previously conducted single-individual closed-loop
experiments, e.g. using a flight simulator of flies [14] or for investigating the ocular-
motor reflex of a single zebra fish larvae [10] [48]. Moreover, such a system would allow
for controlled experimental verification of model predictions how swarms collectively
response to local permutations [16].

Recently, considerably progress has been made in the area of multi-object tracking,
an active discipline in computer vision. However, this research in computer vision is
mainly focused on either tracking massive amounts of features with low importance on
maintaining the individuality of objects (for a recent review see [17]), or on the problem
of tracking humans in a cluttered environment (e.g. [59] 58], B83]). For behavioral research
in ecology, only a selected number of available tracking systems of general purpose exists
(for a recent review see [21]), and some solutions are specifically adopted for groups of
fish [45, [25] [55], 41]. When tracking humans, individuals are often easily distinguishable
and the challenge lies more in maintaining trajectories in a cluttered (3D) scene. On
the other hand, the main difficulty of tracking groups of animals, such as fish, in a
laboratory setting, is that individuals are often highly similar, so that close interaction or
crossings of tracks results in intermingling of traces and erroneous mixing of individuals.
Moreover, interactions happen frequently, are socially relevant [2 24], and involve non-
predictable, highly non-linear trajectories. Once two tracks are mixed, the error might
not be corrected in later times and, and in the long-term, the identity of all individuals
will be lost during tracking, that is, the identity of the individual tracked in the beginning
will be different from the identity tracked at the end of the observation period.

To solve this problem of the mixing of tracks, one approach is to extend the frame-
by-frame detection-based tracking of individuals by gathering information about their
appearance. In [45], the authors propose to first track all detected objects (with a
possible mixing of identity), then learn a classifier based on visual features of individuals
in time periods where individuals are well distributed in space, and then, based on
this classification, correct the wrong assignments of detection to tracks at times when
individuals are very close nearby (crossing). While this method is successful in avoiding
the accumulation of errors when tracking individual animals, a major drawback is that
the method requires at least two passes through the recorded video file: one for tracking,
the second for learning and classifier and classification of identities between crossing
points. Thus, this method cannot be applied for online detection and identification in
real-time.

We here present a new open-source software platform, xyTrackelﬂ which is able to
detect and follow individual animals in a group by online learning the identity of each
animal from appearance features. Our system tracks in real-time and includes a stimulus
presentation system for an affordable one-camera setup, which allows for closed-looped
collective response experiments.

In our system, if individual tracks crossed recently, current identities of the tracks are
compared to those before the crossing event and thus ensures that wrong assignments
after crossings are corrected immediately by switching tracks in retrospect. Our system
additionally implements a simple version of multiple hypothesis tracking [47} [30] to com-
pute globally optimal trajectories in an online manner. Moreover, our tracking solution
provides and easy way to present any kind of (visual) stimulus using the well-established
PsychoToolbox [31] based on the current position of individual animals tracked in real-
time with minimal lag (on the order of tens of milliseconds). While our software is
mainly developed and tested for groups of fish, it is essentially parameter fretﬂ as it

LxyTracker is available for download at https://www.github.com/maljoras/xyTracker.
2That is, almost all parameters will be estimated automatically and thus the system should work
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learns appearance features and other parameters on the fly and is thus able to track any
(cylindrical to oval-shaped) animals in a planar environment from above.

We implemented xyTracker in a performance optimized manner, by utilizing thread-
based video grabbing and object detection (using the OpenCV library), but neverthe-
less providing an user-friendly MATLAB interface. On a personal (quad-core) computer,
videos having about 3 megapixel frames can be handled in less than 20 ms per frame,
and a 7 minutes example video of behavior 5 fish is tracked in about 3.5 minutes. More-
over, since the MATLAB interface is class-based, modules and functionality of xyTracker,
such as the algorithm used for the classification or stimulus presentation, can be easily
extended or exchanged by overloading existing classes.

In this paper we describe our software platform and compare the detection and track-
ing rate to available methods (in particular [45]). We show a number of experiments for
validating the applicability of xyTracker for real-world behavioral studies and closed-
looped experiments using groups of fish as an example.

2 Methods

The problem of tracking n individuals over time can be described by finding the spatial
positions (e.g. pixel locations in a stationary video), xx(t), where ¢ is time (or frame
number) and k£ = 1...n the index of the n tracks. In our approach, this general problem
can be roughly dissected into two steps per video frame: (1) Detection of all objects in
the frame and (2) object-to-track assignment. For the first step, a frame is searched for
any potential object g;. In the second step, a number of features such as the object pixel
position, size and shape of each detection g; are extracted, and compared with previous
features of existing tracks. Based on this comparison, detections are assigned to existing
tracks.

Finally, when repeated for am frames, a trajectory is computed for each of the tracked
animals. To illustrate the tracking results of xyTracker, trajectories of 5 fish are plotted
together with extracted shape features in Fig. [I}

In the following, we describe the object detection method, features and distances, and
the detection-to-track assignments. Then, we describe the algorithms used for object
classification and correction of potential wrong assignments, which is done in addition to
the two steps above. For illustration of the tracking method in following, we use a video
of 5 medaka fish provided with in the publication of [45]. However, our system can be
applied to groups of any oval-shaped, lateral symmetric animal on a planar environment,
with a camera mounted above (see Discussion). Although xyTracker works out-of-the-
box for many problems, it is very flexible in setting parameters if necessary (see usage
section). During the methods, we will therefore mention the name of the corresponding
parameter options in the xyTracker implementation in footnotes.

2.1 Object detection

Let It(z,y) be the gray scale intensity in the video frame at time ¢ at pixel positions x and
y. Colors, which can be included for the classification of identity of the tracked animals
(see below), are not used during the object detection Ste;ﬂ For segmentation of moving
objects from a static background, a common method is to threshold the intensity of the

out-of-the-box in most cases.

3We found that for our videos a simple uniform gray-scale mapping of RGB values is enough (that is
taking the RGB color mean). However, xyTracker supports an object enhancing mapping of RGB values
into gray scale pictures based on a linear fisher discriminant projection (Option useScaledFormat). This
could be useful for similar colored fish that swim in front of a different colored background, which
intensity level is, however, similar to that of the animals.
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Figure 1: Example traces with shape features. Solid lines correspond to the mean position
of all center line points per frame. If the center line bends (during turns) the whole center line
is plotted in addition for each frame (red for rightward bends, black for leftward bends, a circle
indicates the head position). One observes how fish bend their body to turn around. Also note
that fish are either in a swimming or exploration state. The video is taken from [45].

pixels in comparison to a background model and look for spatially connected patches of
pixels above threshold. We found that the following simple method works very well in

practiceEI,
1 1, — b 0
Bla.y) = alli(@,y) = pu(z,9)) > (1)
0 otherwise
where 6 is a threshold and o = —1 or @ = 1 depending on whether light objects are

in front of a dark background or vice versaE[ The background average image pu(x,y) is
derived via leaky integration of the intensity image, p:(x,y) = pe—1(x,y)(1 — 1/Toekg) +
I;_1(2,y)/Tbekg, which is in practice computed only every nth frame to save computa-
tional timeﬂ The time constantﬂ Thekg determines the time scale of variability of the
background and is assumed to be much larger than the time scale of animals movements.
We found that 7,ee = 500 frames (about 20 seconds for our frame rate) is a reasonable
setting which is robust to mild forms immobility in case of fish. However, this time con-
stant depends on the application and might have to be adjustedﬁ, e.g. when animals do
note move for a long time because of freezing behaviors. The threshold 6 is automatically
determined during the first few tens of frames using the Otsu’s method (in the OpenCV

4The xyTracker also supports other method such as k-nearest neighbor background model from the
OpenCV toolbox (option useKNN). Although accuracy increased, it turned out to be a bottleneck in
computational speed.

5Controlled by setting the option detector.inverted in xyTracker.

6Option detector.nskip.

7Option detector.history.

8Otherwise immobile animals will become inseparable from the background with time.
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implementation) and then fixed for the remainder. The threshold can be adjusted within
the xyTracker if detections are too small or too noisy’}

From the black-and-white mask image, B(z,y), “blobs” are extracted via a graph-
theoretic approach for searching connected components, a common method in computer
vision [22], again using the OpenCV toolbox or the MATLAB equivalent. After applying
some morphological closing and opening operations to remove noise pixels, each extracted
blob is is principle regarded as a potential object, ¢;. The approximate body length, L,
and approximate body width W of detected animals are used to calculate some bounds
on the possible size of blobs. For example, if the area of a detection is smaller than a
fraction or larger than a multiplicity of the expected area LW, a detection is discarded.
Also the size of the identity features is based on these parameters (see below). Theym can
be also given explicitly during startup of xyTracker if known, or are otherwise estimated
automatically at the beginning.

2.1.1 General blob feature extraction

From each detected blob ¢;, a number of feature are extracted. First, an ellipse is fitted
to the shape of the blob, and the two half-axis lengths, orientation, and its center is used
as features. An enclosing rectangular bounding box, and the number of the pixels in the
blobs, and its area can also be used as features.

Moreover, using the bounding box, further features are extracted based on the pixel
values belonging to the detected object. Since animals have often bilateral geometry,
with mirror-axis parallel to the direction of movement (when viewed from above), we
describe the shape of the blob with a simple “center line”, that is the mid-line of an
cylinder-like body, that possibly bends (Fig. |2).

To extract this “center line”, we perform a series of transformation, first comput-
ing the distance transform d(z,y) of the extracted blob (Fig. ) Then we compute
the Laplacian of the distance transform (Fig. 2D) and then threshold it at 66% of the
minimum, which yields all pixels at the center of the body (Fig. 2E). Then, we project
these points onto the major axis of the previously fitted ellipse (see Fig. [2/ B, blue line).
We then choose ¢ = 1,...,n. equally distributed pixels from those on the center of the
body, and call them the center line points c(?) (see Fig. [2[ F, red dots). Finally, from the
distance transform, we can estimate the horizontal thickness for each of the center line
dots, §; = d(cgj), cz(,i)). We approximately determine the position of the head by compar-
ing the thickness, since the head region is usually thicker than the tail, in particular for
fish (assuming that the video camera is installed from above). If §; + 02 < §,,,—1 + Opn.—2
we reverse the order of the center pointﬂ

Since at least the front part of the body of an animal is usually rather straight and
rigid (pointing to the direction of movement), we use the orientation of the connecting
line between ¢; and c3 to rotate image patch to a reference positiorﬂ From this rotated
image, we extract an image with fixed dimension to be used as a feature for the identity
classification algorithm (see below).

Note that although extracting the center points and thicknesses yields good shape
descriptors in particular for fish and are additional useful features for detection-to-track
assignments, they are not essential for our tracking approach since it simultaneously
relies on other features.

90ption detector.adjustThresScale. Noisiness of the detections can be checked when displaying
the mask during the tracking (by setting the option display.BWImg)

190ptions bodylength and bodywidth

1 However, when calculating the center line distance below, we take the minimal distance between
center-line points in straight or reversed order, see Table

12This is particular useful for tracking fish. However, one could use other references for other animals
if needed. For instance, the orientation of the major axis of the fitted ellipse for oval shaped animals.
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Figure 2: Extraction of features from detections. A: Raw image with subtracted back-
ground I(z,y) — p(z,y). Bounding box of the detected blob (in B) plotted in red. B: Detected
blob ¢; from the thresholded image B(z,y) after morphological transformation (dilation and
erosion) that in this case removed noise and thin areas (like the tip of the tail) from the blobs.
A number of feature f;(g;) are extracted from the detection ¢;, for instance an elliptic regions
is fitted to the blob to extract its center, orientation, and axis lengths (blue line). C: Distance
transform d(z, y) of the image in B. The value of the transform is equal to the distance of pixels
to the background (black regions in B). D: Laplace filtered image from C. The peaks of the
distance transform (the points that are half-way between two boundaries) have lowest value. E:
Thresholding the image in D at the 66% of minimal value. Remaining pixels correspond to the
peak of the distance transform. F: Projecting the remaining pixels of E onto the orientation
of the ellipse (see B), and a nearest-neighbor interpolation of n. = 7 uniform spaced locations
(starting from first to last pixel), results in roughly uniform spaced center line points, ci, ..., c7,
(red), which serve as shape descriptors.

2.2 Detection-to-track assignment

Assume that in the current frame n, objects ¢;(t), ¢ = 1,...,n,, were detected, from
which a number of features f; are extracted, i.e. we write f;(g;(t)). Given the history
of the n, tracks, Tx(1),...,Tx(t — 1), for all k = 1,..., ny, which of the detected objects
should be assigned to which track?

To solve this assignment problem, i.e. finding suitable k& and i, so that we can safely
assign a detection to a track, Ty (t) := g;, we first define a cost function D; for each of
the features f;. Then the cost of assigning the ith detection to track k is given by

Culk,i) = S wiDy (ATt ~ D), fi(a:)). (2)
l

where w; a weighting factor for individual features. Note that for some tracking methods,
new tracks could also be established for unassigned detections, or lost tracks deleted, if
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Feature Symbol | Argument X Distance Dy (X, X")

Ellipse center position fi x = (z,y) [|x — x'||/dmax

Bounding box overlap fo b = (z,y,w,h) 1 — o(b,b’)/ min(w, w")/ min(h, h")
Center line position f3 {c1,...,¢n.} min(}"7¢ |Jes — cilf, 220 [|Cne—i — €})/dmax/Ne
Class probability fa {p1,-  ,Pny } \ 2oiti (P = pj)?

Ellipse size fs s = (a,b) l|s —s'||

Blob area fe Narea [|narea — Nareal|

Bounding box size fr b = (z,y,w,h) [|Ib —b||

Table 1: Features and distances used for assigning detections to tracks. In the above,
min(a,b) is equal to a if a < b otherwise b. dmax = Vmax/Fr is a maximal distance possibly
covered by a fish depending on the maximal velocity of the fish vmax and the frame rate Fr.
The function o(b, b’) is the overlapping area of two rectangles b and b’ (where b = (z,y,w, h)
indicates a rectangle with top left corner at (z,y) and width w and height h). Further, ns is the
number of fish, and p; the probability of a detection classified as fish identity j (see Methods).

assignments could not be made. However, we here consider the number of individuals
fixed per experiment and in principle always visible, and thus do not change the number
of tracks, once established.

In Eq. [2f we here directly compare a feature of the detection (such as the spatial
position) with the feature of the assigned detection of the previous frame. One could
also first compute a prediction of the e.g. position, for instance by using Kalman filters,
and compare the prediction with the actual location of the detection. However, we found
that in case of fish, animals often suddenly changed the direction of movement, so that
a linear prediction of the location is often worse than having no prediction at all (given
that the frame rate of the camera a reasonable high). In any case, xyTracker also supports
Kalman filter predictions with a constant velocity model which could be turned on when
tracking other animals moving on a straighter paﬂﬂ

In Table [II we summarized a list of features that could be used by xyTracker to
compute the cost matrix. The weights w; in Eq. 2] depend on the history of costs and
thus adapt in an online manner to the problem at hand. We set

W= e (3)

Bit) >

where ; are a pre-defined weighting of the different features, defined by the userE The
Bi(t) are running means of the distances of individual features, i.e.

Mﬁl@_l)‘k;le (fi(Te(t = 1)), filg:)) (4)

Ai(t) =
Tcost T gMbTeost ik

The time constant 7ot is set to 500 frames per default. Thus, the absolute values of the
distances (which have in principle different units) are automatically adjusted to around

1 for all featured™|
Once the cost matrix C; is computed, the detections-to-tracks assignment problem
is solved by the Hungarian matching algorithm ([32], Munke’s variant). However, to
avoid wrong assignments of blobs that correspond to noise, we additional include the
cost for non-assignments, c,on(t). Setting this value correctly is crucial for good tracking

13Option tracks.kalmanFilterPredcition

14We set in the results v = (10,2,5,1,0,0,0), compare to Table Options in xyTracker are of the
form cost.feature, e.g. cost.Location or cost.Overlap

15Note that this cost-weightening could be done using more sophisticated updates, e.g. Bayesian
methods or Kalman filters. However, we here choose a simple running mean for the sake of speed.
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results and we thus let this cost adapt automatically to the problem at hand. We set
Cnon(t) = Eassignment (t) 4 OnonCassignment (t)a where éassigmnent (t) and Cassignment (t) are the
running maximal and mean cost of past assignments (with time constant 7o, similar to
Eq. 7 respectively, thus an average over those elements of the cost matrix C;_; which
correspond to the assigned track-detection pairs (k, 7). onen i & parameteﬂ of xyTracker,
which can be adjusted if the automatic estimates do not yield in reasonable results.

Note that by setting a cost for non-assignments, some tracks might have been lost,
that is, they did not get assigned a detection in the previous round. In this case, the fea-
tures (such as the position) of the non-assigned tracks remain the same in the next frame.
Thus, for lost tracks, animals might have moved farther away in the meanwhile, so that
a correct assignment generally has increased cost. We thus first handle the matching of
detection to visible tracks, as described above. Then, in a second round, we match those
left-over detections to tracks that were invisible (that is, non-assigned) in the previous
framelﬂ For that, we increase the cost of non-assignment proportional to the number of
consecutive invisible frames, nNinvis, t0 €, (£) = Cnon(t) + NinvisCassignment (t). We found
that this works well in practice, since it forces assignments for long periods of lost tracks.
Note that we additionally test (and correct) for possible wrong assignments with a clas-
sifier that learns the identity of each animal (see below). Moreover, we also exclude
detections that would overlap too heavily with each other and discard assignments that
would result in a movement higher than a predefined maximal velocity.

2.3 Recognition of individual animals

The aim of using an identity recognition system in addition to the usual tracking de-
scribed above is that if two tracks come in close proximity with each other, it is possible
that detections are wrongly assigned to tracks, since the cost of assignment becomes sim-
ilar. Thus, the tracking can be divided into two situations. If animals are far apart from
each otheﬁ tracking can be done mostly distance-based and is very reliablﬁ However,
if two animals come very close and interact with each other, a situation of behavioral
relevance, wrong assignment rates increase considerably. Moreover, as pointed out by
[45], once tracks are wrongly assigned, the identity of the animals are mixed and errors
accumulate, severely compromising the value of the behavioral observation of individuals
in groups. In [45], after collecting and tracking the positions, a second pass through
the video is done for learning and “sorting” the identity between periods of “crossings”.
While an effective approach, we here develop an online tracking system, thus cannot
afford to pass through the whole video several times.

Therefore, each frame we test whether two (or more) animals are close to each other,
i.e. crossing. xyTracker waits for a number of predefined frames after the crossing event
to accumulate appearance information, and then judges, based on the accumulated ev-
idences, whether the identities of the tracks after crossing corresponds to those before
the crossing event. If a permutation happened, the identities are switched accordingly
and trajectories are corrected in retrospect (up to the crossing event). In this approach,
although shortly after the crossing the assigned identities might be wrong, the wrong
assignments will be corrected on-the-fly, so that errors do not accumulate. In this way,
xyTracker needs only one pass through the video, so that online-tracking and feedback
experiments are possible (see results). We labels this identity handling “switch-based”

160ption tracks.costOfNonAssignment

1"Note that we currently assume that animals never remain invisible for a long time. If this was
the case, xyTracker will produce noise detections for the lost tracks and tracking results generally will
deteriorate. Only in a future version, xyTracker might support the deletion an creation of tracks.

18We define “far” relative to the length of the body L.

19We assume that the frame rate of the video is high enough so that bounding boxes typically overlap
between frames
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Figure 3: Extracting features for identity recognition of individual animals. A: Raw
image patches of 5 individual fish for 7 consecutive frames (example video taken from [45]).
Rectangles indicate bounding boxes of detected blobs. B: Detected blobs corresponding to the
patches in A. Red lines indicate the center line features from Fig.[2] Red dots show point c1, that
is the head position. C: Patches are rotated according to the orientation of the frontal portion
of the body centered at the head (red point in B). Rectangle regions indicate the location of the
extracted identity feature in D. D: Identity features extracted from C. Note that features are
largely invariant in respect to rotation, translation, and bending of the fish.

approach (SWB). Moreover, apart from this explicit switching method, xyTracker simul-
taneously implements a more implicit approach using multiple hypothesis tracking to
maintain the correct identity for each track based on unique appearance information
of the tracked animals. This directed-acyclic graph-based (DAG) approach is further
explained below. Tracking is done simultaneously with both approaches xyTracker and
tracking results of both approaches can be accessed after tracking is ﬁnisheﬂ

2.3.1 Features for identity classification

Similar to [45], our tracking system includes a module to recognize individual fish. Thus,
we have to extract features to be used for training the fish recognition system (described
below), that should be not only unique for each individual animal but also invariant in
geometrical transformation. In the situation of a camera viewing a planar scene from
above, useful identity features should in particular be invariant to translation and rotation

20Option useDagResults sets DAG to default.
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of the body axis.

In the recognition approach by [45], the authors constructed a 2-dimensional his-
togram of intensity values versus pair-wise distances within the detected blob. Although
the authors show reasonable good identification results using this histogram feature, there
are several drawbacks with this approach.

First, the histogram computation has to be done for each frame and detected fish and
is relatively costly (in the order of n2, when n is the number of pixels of the blob). Second,
although invariant against rotation and translation, the histogram is not invariant against
object shape deformations. Since e.g. fish bend their tails regularly to move forward,
the histogram method thus seems not well suited. Finally, recent success in object
classification performance is rooted in the approach to directly take the image intensity
values as inputs to a learning algorithms (and learn useful features from the data),
without pre-extracting arbitrarily selected features beforehand. It is thus likely that
the 2-D histogram neglects some useful information about the identity, which would be
present in the raw pictures of the animals.

We here thus simply use the (gray or color) image patch of (the upper portion of)
the animal as identity features (see Fig. 3. For that, we use the center line information
(or simpler, the orientation of fitted ellipse) to explicitly rotate the extracted detection
to an invariant orientation and use the parameters L and W to extract a fixed par@ of
the (upper) body.

Taking only the frontal portion in case of fish has the advantage that the movement
of the tail becomes irrelevant. For distinguishing the individual fish, it seems that the
frontal body part is already very informative (see Results). Note that extracting the
identity features in this unsupervised manner allows the identification of any kind of
animals. Thus our approach is not restricted to the tracking of fish, similar to the
approach by [45].

The image patches are then used by the identity recognition module of the xyTracker.
Since we explicitly rotate the image patches, our identity features are ensured to be
translation and rotation invariant (see Fig. [3D). Thus, we found that a simple classifica-
tion system is enough for recognition based on this features. Currently, a combination
of principle components and Linear Fisher Discriminant analysis is used to reduce the
dimensions of the image patches and a Gaussian model for representing the appearance
of each identity (see below). However, in principle, a more powerful recognition systems
could be used within the xyTracker framework@

Note that xyTracker assumes that (1) the camera is recording the environment from
above, and that (2) the size of the animals does not change severely (i.e. an approximate
planar environment, for instance, the water should not be too deep in case of tracking
fish). For experimental setups for tracking animals in 2-D, these assumptions are often
valid. If the assumptions were not valid, extracted identity features are more variable
within an individual but still could be used in our framework. It might, however, require
a more powerful (non-linear) classification system, that can handle such variability (see
Discussion).

2.3.2 Identity classifier

Our recognition system consists of a classifier, that, when given an identity feature (a
local image patch of the detected object, as described above) returns a probability for
that feature to belong to one of the n; animal identities present in the setup. The classifier
maintains internally a model for each identity appearance and is updated continuously

21The size of the part from the head to tail can be adjusted if necessary and is only intended to cut
off the movement in the tails of fish and might not be needed when tracking other animals
22E.g. a convolutional net by implementing or overloading the FishBatchClassifier class
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to learn a better (or changed) model over time. In principle, the classifier is modulaﬁ
in xyTracker and could thus be changed or extended if needed.

We found that a simple Gaussian mixture model performed well in practice (see Result
section). At the start of the video or recording session, we wait for the first prolonged
periods (in practice about 150 frame@, where no crossing events were detecte(ﬂ We
then use the batch of identity features (see Fig.|3) extracted from each frame to initialize
the classifier. The initial batch of identity features per track is used to determind®|npca
PCA components on the pooled sample. After dimensional reduction, we further reduce
the dimension by selecting nrrp Component@ with largest fisher discriminant between
the classes ([39]). In the current implementation, the extracted components are fixed at
the beginning for the remainder of the video or recording session and identity features
are projected onto the same components. From this projected sample, we compute and
update an nppp-dimensional Gaussian (sample mean and variances) for each of the ny
individuals.

2.3.3 Testing the identity

In each frame, for each detection, we compute the identity probability vector py =
(p1,--.,pn,) for each track k by calculating the probability according to the Gaussian
for each class. Further, we define for each detection a weight wg(t) according to

Er(t)
wi(t) = e~ 20 (5)

where £ is some positive value indicating the noisiness of the identity feature. We
use currently the standard deviation of the center line points, indicating the degree of
bending of the body or the deviation from an oval shape and thus a potential noise
source. Moreover, we set w to zero if it is smaller thar@ e=2/2. We further explicitly
set w to zero, when head and tail were mixed up (judged by the velocity direction) and
at times when the the assignment cost was too high (with threshold OgostCassignment). We
let A(t) = ”T—:l)\(t -1+ %f(t% adjust automatically on the time scal Th-

When averaging the prediction over several frames, we use the corresponding weights
wi(t) and compute a weighted mean (pg) of the probability vectors.

2.3.4 Online learning of the classifier

The classifier learns automatically and continuously in on online manner. Similar to [45],
we use periods, when no fish is crossing to update the current appearance model in a
batch-like fashion simultaneously for all tracks. The adequate number of frames with
well separated tracks (“unique” identity frames) needed to trigger the updating depends
on the expected average number of track crossingﬂ Moreover, when single tracks are
not involved in a crossing over a longer period|§|7 appearance features of single identities
are independently updated.

231t derives from the class xy.core.BatchClassifier.

240ption classifier.timeToInit

25However, even if some crossings occur, initialization will start after several hundred frames anyway.
Thus xyTracker works best when animals do no cluster together and move freely in the beginning.

26Option classifier.npca

270ption classifier.nlfd

28Property reasonableThres in the xy.core.ClassProbHistory class.

29Property taulambda in the xy.core.ClassProbHistory class.

30This parameter is currently set by hand and not estimated based on the application context.
In our videos, a value of 70 frames worked well. This parameter can be set by adjusting the
classifier.timeForUniqueUpdate option.

310ption classifier.timeForSingleUpdate
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During updating, we discard individual samples if they are too noisy (if w = 0).
Currently, we use the batch of identity features to update the mean and variance of each
Gaussian with time constan@ Telass (set to 5000 frames by default). Before updating
after well separated tracks (“unique” frames update), however, we first use the batch
sample to predict the identity for each tracks, yielding a square probability matrix P.
We use Hungarian matching with cost 1 — P to match the samples to the identities. We
only update the classifier, if the matching result is consistent with the previous identities
of the tracks. If not identical, some undetected mismatching might have occurred during
the recent past. If unsure (depending on a forced update probability paramete@, the
classifier is nevertheless updated ignoring the prediction, or, if surﬂ the assignment
is changed according to the prediction of the classifier and the identity of the tracks is
re-assigned in retrospect. When identity switch of the tracks is predicted, this means
most likely that an undetected mixing of tracks occurred in the recent past. We search
for this switching point from the last crossing point, and look for the points where tracks
are either nearby, have a sudden switch in class probability, or are transiently invisible
(loosing tracks temporarily is a source of miss-assignments). We use a consensus point
between these methods to start the swapping of the identities until the current frame. If
more than one track are mixed up (in a permutation of order larger than 2), we use the
identities predicted by the DAG approach (see below) rather than simply swapping the
identity of two tracks.

2.3.5 Explicit handling of tracks after crossing events

Since most identity switches occur during crossing events, when animals are in close
proximity and possibly temporally occluded. xyTracker thus includes a system to explic-
itly tests the identity shortly after a crossing event occurs and correcting the tracks in
retrospect, when the identity was indeed switched. Since the identity corresponding to
the tracks that crossed are (assumed to be) known before the crossing, only the subset
of fish that actually crossed have to be tested for correct assignments. This reduces the
number of tests and also the requirements for accuracy: only crossed tracks have to be
told apart, not all available tracks

We consider two tracks potentially crossed in frame ¢, if their bounding boxes overlap
or their position is closer than the length of the body L times a crossing radius scal@ A
A potential crossing is considered a crossing event if either one track is invisiblﬂ at time
t or the assignment cost of one of the tracks is higher than a threshold 0costCassignment -
The parameter 0., can be adjusteﬂ .

When a subset of tracks crossed, we progress as follows to avoid mislabeling of the

320ption classifier.tau

33 prorced, Option classifier.forcedUpdateProbThres. In detail, we re-assigned the tracks according
to the results of the classifier prediction, when the maximal class probability of the permuted tracks
is smaller than pgorcedPmax, where pmax is a running average (with time constant tracks.costtau) of
the highest class probability in each frame, while the mean of the class probabilities has to be higher
than pidentityPmax (Pidentity corresponds to option tracks.probThresForIdentity). Alternatively, to
allow for accurate learning, it is also updated if pmean — Pother < Pdiffothers Where pmean is the running
average of the mean probability per frame and pogher is the running average of the maximal “other”
class probability, that is, if the tracks would be assigned to any other identity and pgiffother & parameter
(option classifier.minOtherProbDiff). In this way it is ensured that meaningful identities have been
learned before using the appearance model to reassign the identity of the tracks.

34option classifier.allSwitchProbThres. In detail, if the average (positive) difference probability of
the predicted identities minus the original identities is larger than pajswitchPmax (Pallswitch corresponds
to option classifier.allSwitchProbThres), then the reassignment of tracks is considered in the same
way as is handled after crossings (see below).

350ption tracks. crossBoxLengthScale

36The position of a invisible track is the position when it was last visible.

37Option classifier.crossCostThresScale
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Figure 4: Handling of tracks crossings. A: Two or more animals often interact with
each other, coming in close proximity. If tracks are crossing (red) the identity (either blue are
green) might be erroneously switched after the crossing (grey tracks). B,C: To prevent this
from happening, xyTracker uses appearance to predict the identity of assigned objects. The
identity features are accumulated based on an online shortest-path algorithm (DAG approach).
Note that identity of tracks after crossing can be decided based on the accumulated edge cost
(grey level of the tracks). Alternatively, xyTracker also explicitly predicts the identities based
on features extracted form frames shortly after the crossing (gray area; SWB approach). D:
Appearance is compared to the learned appearance model. Identity feature are tested against
the Gaussian mixture model (GMM) for each animal participating in the crossing (note that the
GMM is learned online at times when no crossing is detected). E: In this manner, the identity of
each track can be established and the tracks are re-assigned in retrospect if switching happened
during crossing.

identities after crossing (see Fig. . Once a crossing event is detected (Fig. , red
bounding box), the identity of the tracks which participate in the crossings are remem-
bered. If in the next frames, tracks are still nearby, the crossing zone is enlarged, or, if
other tracks get involved, the number of crossed tracks is enlarged (red zone in Fig. )
After waiting a fixed number of frames after the last crossing evenﬂ the identity fea-
tures from the tracks involved in a crossing event are taken (light gray zone in Fig. ),
and tested against all identities involved in the crossing (see Fig. [[C). If p; are the
probabilities if identities would be not permuted and the p,(;) the probabilities of the
predicted permutation o (i) (using the Hungarian method), we reassign the tracks ac-
cording to the permutation if the improvement in probability is larger than a threshold,
max; Py(i) — Pi > PreassignPmax; Where ppay is a running average of the maximal clas-
sification probability across detections in a frame and preassign a parameter{ﬂ If class
probabilities are consistent with the assumed identity of the tracks for all participating

380ption classifier.timeAfterCrossing
390ption classifier .reassignProbThres
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tracks (or below the reassign threshold), the tracks “exit” the crossing event (see Fig.[dD)
in case when Di < PfishPmax OL Pi > PfishPmax and <pz> > PhandlePmean; where Pmean is the
running mean of the classification probability across objects in a frame. Otherwise the
crossing event is extended into the next frame, since not enough evidence was available
(e.g. in this case the grey area in Fig. would be enlarged).

If a switching occurred after crossing, identities of the tracks are permuted and tra-
jectories are adjusted in retrospect up to a consensus point in history, analogous to
the reassignment before updating the classifier as described above. Thus, in case the
identities of the tracks need to be reassigned, note that xyTracker reports the wrong
identity until it switched the fish tracks. While this is of no consequences for offline
video tracking, it might compromise the stimulus presentation during online closed-loop
experiments, since the identity information is reported wrongly for a short while. How-
ever, in practice, if animals are not too heavily interacting, this time of uncertainty is
rather short (e.g. about 5 frames after a crossing) and can be adjustec@ In any case,
since the identity of the tracks will be corrected, identity errors do not accumulate.

2.3.6 Identity tracking by the calculating the shortest-path on the directed-
acyclic track hypothesis graph

A powerful and popular method for tracking multiple objects in computer vision is the
multiple hypothesis tracking (MHT) approach [47], which can be combined well with
appearance information [30], like our identity features. In this approach, multiple hy-
pothesis of tracks are kept simultaneously and an optimization is applied to find the
most probable tracks per identity afterwards (see also review [12]). Thus, since multi-
ple hypothesis about possible trajectories are kept simultaneously and disentangled over
time, this approach is more powerful and general than the described explicit switching
approach above. A problem of the original MHT approach is, however, that the number
of possible hypothesis grows exponentially in time and thus unlikely hypotheses need
to be discarded during tracking [20, 12} B0]. In track-oriented MHT, each track (aka
individual animal in our setup) is maintained per frame [I2]. Since for the tracking of
animals in 2D in an experimental setup, the number of animals tracked is typically small
(below 100) track-oriented MHT is nevertheless very efficient in our implementation.

Related to the approaches of [3, 46} [56], we developed a fast greedy online version
for tracked-oriented MHT to handle the track identities in combination of the online-
learned appearance model. Here, we use a number of simplifying assumption. First,
we can assume that the number of animals in the experimental setup remains the same
throughout the experiments (although individual animals are allowed to be “lost” for
a number of frames). Second, our appearance model is dense, that is, in each frame a
noisy but relative informative identity feature is extracted. This is achieved by extracting
identity features as described above. Further, we combine the MHT approach with the
detection-based approach described above. That is, only assigned detections per frame,
or predicted positions of lost tracks, are included in the MHT approach. We thus follow
a detect-then-track approach for determining the identities with our MHT method [56].
We proceed as follows.

Let ¢;(t) be the n; detections that would be assigned to existing tracks as described
above. We use these to form n; graphs of n;, hypotheses, one graph for each identity k,
in a similar manner as proposed by [46]. In the frame ¢, assume for the track hypothesis
Tk; that the assigned detection in step t — 1 would be Ty;(t — 1) := ¢;(t — 1). Then
all possible n;, new hypothesis involving this track would be formed by assuming any of
the current n; detections g;(t) would extend the existing track and form a new one of
length t. When defining a distance (or likelihood) between the detection at ¢t — 1 and

400ption classifier.t imeAfterCrossing
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Figure 5: Multiple hypotheses tracking (MHT) using online shortest-path computation. For
each identity k a directed-acyclic graph is built. Each node represents a detection which was
assigned to an existing track. Cost of edge transition is given by the cost Dy, which includes
a term for spatial distance and the appearance determined by the classifier from the identity
feature (see Eq. . The shortest-path is computed by updating the cumulative cost matrix Ij;
and choosing the minimal path (red) involving detection g;(t) according to Eq.[6] (in the scheme
shown only for ¢q1(t)). The shortest-path involving a given node at ¢ can be back-traced (by
following the red arrows backwards).

those at ¢, i.e. D(qi(t—1),¢;(t)), that can be attached to an edge, the track hypotheses
form a directed graph which number of nodes grow exponentially in ¢. Finding the best
hypothesis can then be cast into a constrained optimization problem finding the path
with least cost, the shortest path [I§]. The main constraint in this optimization problem
is usually that each detection has to be uniquely assigned to one track for each frame,
resulting in a linear programming problem [3] [46].

However, we found that simply computing the shortest-path for each identity indi-
vidually, without constraint, already yields very good results in practice and can be done
naturally in a very fast online manner (without the need for overlapping windows with
limited time horizon for the linear programming approach [46]). This is because only a
small number of fish are crossing simultaneously at a given time while others are spatially
well separated, and because dense appearance information is available using our identity
feature extraction.

We derive our method by realizing that the hypothesis graph for each identity & is a
directed acyclic graph (DAG) in topological sorted order (see [I§] for details on the theory
of graphs; see also Fig. . Moreover, since there are no edges between nodes within a
time frame, the value for a possible shortest path involving a particular detection can
be calculated for each detection in a frame independently (see Fig. |5 for an illustration).
Therefore, if assumed that the number of detections and identities per frame are fixed to
np, computing the shortest path reduces to updating each ¢ a cumulative cost matrix Ij;.
We need to evaluate for each of the n; possible shortest paths for identity k of length
t— 1, with T]ﬂ(t — 1) = ql(t — 1)

Inj + miin Ii + Di (T (t — 1), g;(2)) (6)

and save the selected i* for each Ty;(t). Intuitively, the shortest-path involving the
current detection g;(t) is that path, which edge transition cost from any of the previous
detections g;(t — 1), plus the accumulated previous edge transition costs until arriving
at ¢;(t — 1), is minimal [I8]. In this manner, each time step ¢, exactly nf shortest-path
hypothesis are computed and kept, that is, n;, shortest paths up to t for each of the n,
identities.
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Note that for each of the k identities, our algorithm computes the globally shortest
path in respect to the edge cost. However, in principle, parts of the tracks for two
identities might be overlapping, that is, some detections might be assigned simultaneously
to multiple identities. To avoid that a particular identity follows long stretches of a track
of another, we let the cost matrix Dj(g;, q;) (governing the edge cost) depend on the
appearance of the identity k:

Di(9ir 45) = |1xi = x5/ L — pi + p(1 = pij) (7)

where py; is the probability of the detection ¢; belonging to the identity class k, deter-
mined by the classifier and the identity feature described above. The weigh@ p varies
the influence of the accumulated spatial distance relative to the accumulated identity
probability on the edge cost. The term p; is the minimum spatial distance between the
previous and all current detections, p; = min, ||x; — x,||/L, so that a distance penalty
is added to the cost, if not the nearest detection is taken. When tracks are “lost”, that
is, no matched detection can be found matching to a track at time ¢, we simply reuse
the detections from the previous time Steﬂ Note that Eq. |§|, by subtracting the min-
imal distance, mainly accumulates the class probability for a particular identity on a
track. When tracks are nearby, hypotheses follow both tracks until the next crossing
point, where only the path along which the appearance cues did more likely resembled
the identity will win and the other track be forgotten.

The globally shortest-path for each identity is only determined when tracking is fin-
ished. To access the current estimate of the identities for each detection, to be used for
online stimulus presentation (see below), we compute a Hungarian assignment on the
matrix Iy, which yields a unique assignment per individual (without overlapping). Note
that we initialize Iy; at the beginning with Iy, = (1 — dx;) h, where h is a high cost value,
to ensure that the starting node for each shortest path is from unique individuals. The
end-node for each track is determined by the identity prediction from the Hungarian
method. In the implementation, the positions for the globally shortest paths are in ret-
rospect determined by back-tracing the references for each edges. Therefore, our DAG
method is very fast, since it computes the globally optimal shortest-paths in O(ntn?c)
time.

In xyTracker both, the switch-based (SWB) and the DAG-based tracking are com-
puted simultaneously@ and resulting tracks can be chosen after tracking has finished for
further analysi@ In practice, both methods are advantageous over the other for some
applications. In general, if appearance features are very informative about the iden-
tity the DAG approach is advantageous. This is mainly because the consensus crossing
points is difficult to be determined in retrospect for the SWB approach, in particular,
when more than 2 tracks are crossing multiple times. Then there might by multiple
instances of track Switchinﬁ

If appearance cues are less informative and/or tracks are crossing often, for instance
when many small animals (e.g. > 20) are tracked simultaneously, the tracking is generally

410ption dag.probScale

42In fact we optional (option tracks.centerLinePrediction) shift the location (usually the center
of the center line points) along the center line points according to the current track velocity (which
is estimated in a leaky average fashion (option classifier.clpMovAvgTau)). One could also include a
predicted location, e.g. using Kalman filter (option tracks.kalmanFilterPredcition), but we found
that this yields inferior results if the frame rate is reasonable high.

43 This can be done without additional noticeable computational cost because of the mutli-threading
structure of the code.

44G8et default method by option tracks.useDagResults. See also methods getDagTrackingResults or
getSwitchBasedTrackingResults

45We use the DAG method in some case to compute the shortest path only for the recent history to
disentangle the identities in retrospect for the SWB method.
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more challenging. In this case, the DAG approach might result in many overlapping
trajectories, and thus the SWB approach should be preferred, since it yields more stable
identities for each track.

In case when appearance is well discernible, we found that not having unique detec-
tions to track assignments in the DAG approach is in fact advantageous in some cases.
For instance, during occlusion in crossing events, one detection indeed belongs to two
tracks rather than one (e.g. fish shapes overlap and only one blob with the shape of
a cross is detected). Long overlapping sequences are avoided in practice by accumulat-
ing the probability of the appearance along the path, making long overlapping tracks
unlikely.

For closed-loop experiments, the DAG approach with added Hungarian switches iden-
tities too often shortly after crossing events. This might be problematic for some exper-
iments and thus we chosd™| the more stable identities and occasionally switches of the
SWB approach for our closed-loop experiments (see Results).

2.4 Stimulus presentation

Since xyTracker tracks in real-time in an online manner, it can be used for virtual real-
ity experiments. In this case, the video frame is grabbed directly from the camera and
immediately processed by xyTracker. After a frame is processed (object detection and as-
signments to tracks), a (visual) stimulus presenter is called to update a visual stimulation
screen (or any other type of stimuli such as electric shocks). xyTracker connects to the
PsychToolbox in MATLAB for stimulus presentation (with OpenGL), a toolbox which is
widely used in cognitive research [31I]. The base stimulus presenter can be overloaded
and extended to easily implement any types of stimulation protocoﬂ .

Note that the stimulus can depend on the actual position, speed, direction of move-
ment or any other extracted feature of the collective motion of the group, opening up
new directions for studying group behavior (see Results for an example closed-loop ex-
periment).

2.5 Implementation

xyTracker is freely available for academic researd@ xy Tracker is implemented with MAT-
LAB (2014b, MathWorks, Natick, USA) relying on and C++-core (using the OpenCV
1ibrary|f|) for performance reasons. Since xyTracker is object-based, it is thus modular
and easily extensible. We implemented three different versions depending on the avail-
able libraries and operating system m (1) a platform independent version using only
MATLAB functions (and toolboxes) (2) (some what) platform independent using Mex-
OpenCV interfacﬂ (3) on a Linux system using performance enhanced multi-threading
C++/Mex core which interfaces to a MATLAB front-end. Performance and feature se@
of the three versions differ. For tracking 5 medaka fish for the initial 100 seconds of a
reference video (available from [45]) the different versions needed 217, 110, and 46 sec-
ondﬁ respectively, on the same quad-core personal computer (HP Z230). Note that

46DAG-based identity prediction for the stimulus presenter can be chosen by setting the option
stimulus.usePredIdentityId

47Base class xy.stimulus.Presenter. See e.g. xy.stimulus.PresenterFlash for an example how to
overload the base class.

48xyTracker is available for download at https://www.github.com/maljoras/xyTracker!

Onttp://opencv.org/

50Version 3: set option useMex to 1. Version 2: set option useMex to 0 and useOpenCV 1. Version 3:
set both options to 0.

5Thttps://github.com/kyamagu/mexopencv

52For instance, only version 3 currently supports the “center line” computations.

53This can be tested by calling fish.Tracker.runTest (100)
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version 3 tracks significantly below real-time (100 s) and should thus be used for all
performance relevant applications. For the complete ca. 8 min video, xyTracker needed
about 3 min and 25 seconds to track the fish identities (the purely MATLAB-based ver-
sion 1 is expected to be about 4-5 times slower). However, even the slowest version
of xyTracker yields a large speed-up in comparison to available tracking solutions with
identity detection. For instance, the idTracker software [45] needed for the same video on
the same computer 1 h 54 min 36 s (including 4 min 26 s start-up time, where the video
was loaded into memory; employing distributed computing with 4 MATLAB workers, one
for each core) with high memory usage, since the whole video needed to fit into memory.
Thus, xyTracker delivers a > 30x run-time speed-up to comparable tracking software
without significant loss of accuracy (see Results).

Moreover, xyTracker’s memory usage is low, since the frames are read in sequential
manner and identity features for individual animals are only stored as long as needed
(they are removed from memory when the classifier was updated). For example, we tested
it on a > 8h color video with about 3 megapixels per frame and color with 40 Hz frame
rate (1196000 frames; compressed video file size 6 GB, about 9 TB if uncompressed)
without encountering any memory issue on a personal computer (see Results;Fig. . It
took around 7.5 h to track this video of 3 zebra fish with xyTracker on the same personal
computer as above. Note that such a long video would have been impossible to directly
track with the idTracker software in reasonable timed®4

Furthermore, xyTracker supports grabbing and simultaneous saving (and background
video encoding with h264/5 codecs) from a video camerﬂ Up to now, xyTracker
only supports grabbing from PtGrey cameras via the FlyCapture2 SDKIfL although
adding support for other cameras through OpenCV’s VideoCapture functionality would
be straightforward. Video encoding is based on the multi-threaded FFMPEG libraryﬁ
and done on separate threads and thus, given enough available cores, does not interfere
with the tracking process (we tested it on a HP Z820 Workstation with 16 cores (dual
Xeon(R) CPU E5-2690) and found that tracking and encoding can be done simultane-
ously in real-time). While grabbing, the xyTracker will skip frames automatically and
thus works on a variable frame rate, if tracking cannot be fast enough to perform in
real-time on all frameﬂ Therefore, the stimulus presentation will not lag more than
the total time to process a single frame.

2.6 Matlab interface usage

For installation information, we refer to the code documentatiorﬂ xy Tracker includes
a simple run test for checking the code integrityig_vl After successful installation and
compilation the test can be called from the command Windowﬁ by typing

>> xy.Tracker.runTest ()

For each application (tracked video file or real-time experiment) a new instance of a xyTracker
object has to be generated, e.g. by typing (for tracking the video vidFile with 5 animals)

540ne possible workaround of the memory problem would be to divide the video into many small
parts, track the parts, and recognize the same individuals across parts. However, we have not tried this,
since given the > 30x speed up advantage of xyTracker, the tracking would need at least 9 days on this
video with idTracker.

55for now only version (3) supports grabbing, although adding this feature to the other versions would
be straightforward, when using a OpenCV / MATLAB vision toolbox compatible camera

56nttps://wuw.ptgrey.com/

5"https://ffmpeg.org/

58The exact time point when the frame was grabbed is nevertheless known and used by the tracking
system. The frame rate of the background video recording is independent from the tracking frame rate.

59see https://www.github.com/maljoras/xyTracker

60The run test will generate Fig.

611t is recommended to start MATLAB with the switch -nodesktop
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>> T = xy.Tracker (vidFile,’nindiv’,5);
A number of options can be given, e.g. in the following way

>> opts.blob.colorfeature = true;
>> opts.useMex = 1;
>> T = xy.Tracker(vidFile, ’nindiv’,5,opts)

Note that options can be giverﬁ either as “optionName,value” pair or as a structure, or
bot}m For a list of possible options and documentation one can simply call (without arguments)

>> xy.Tracker()

After instantiating a xyTracker object, T in the above commands, tracking and displaying
can be done by a number of methods. For instance,

>> T.setDisplay(1)
>> T.track();

>> T.save();

>> T.plot();

>> T.playVideo();

will start to track the whole video file (with online progress display), save the whole object
T to a file (for later reference) and T.plot() will plot the traces and some analysis results, like
a probability map. T.playVideo() overlays the tracking results with the video for verification.

After tracking, the resulting traces and features can be further analyzed. The results struc-
ture will have fields for each feature (i.e. location and orientation) and can be access by

>> res = T.getTrackingResults();
>> plot(res.t,res.tracks.location(:,:,1)) % plots the x-locations over time

Please consult the documentation and the code for more information.

2.7 Experimental setup

Zebra fish used in our behavioral study were obtained from a local pet shop and were kept
together in a filled 45 ¢cm cubic glass tank with heater (around 22°C) and water filter (Tetra,
Spectrum Brands, Madison, US). We custom built two setup for video recording. The first,
without visual stimulus, was used for open water tasks. It consists of a 45 cm cubic glass tank,
fitted with non-transparent greenish plates to avoid reflections (FR-4). For video recording, we
used a Point Grey Grasshopper camera (GS3-U3-41C6C, Richmond, Canada) with high speed
CMOSIS (Antwerp, Belgium) CMV4000 2048x2048 pixel 1 inch color CMOS sensor connected
via USB3 to a HP Z820 Workstation (dual Intel Xeon CPU E5-2690, 2x8 cores, 128 GB RAM
memory) running Linux (Fedora 21). We used a 16 mm lens (Shenzhong Zhongxin Technology,
Shenzhen, China) installed about 70 cm above the water level and with an attached CPL filter
(NiSi, Zhuhai, China) to reduce water reflection. Ambient lightening was provided by LED
lights.

The second setup was used for visual stimulation. Note that for visual stimulus presentation
from below it is necessary to track animals using infra-red cameras and appropriate visible
light cut-off filter to avoid that the visual stimulus impairs the tracking. The stimulation setup
consisted of an acrylic water tank (28x36 cm, height 20 cm) which was placed on a 17 inch
TFT monitor (M-PJ-170, Yinghao Electric Technology, Zhuhai, China, industrial housing, 4:3,
1280x1024, 400 cd/m?). The monitor covered the whole tank except for a small border (less
than 1 cm). The inner sides of the tank were fitted with matte semi-transparent foil to reduce

620r set later with T.setOpts(opts), or directly accessing the T.opts property. Note, however, that
some options (mostly those with no additional “.” in their name) can only be given at the beginning
during instantiation of the xyTracker object, since they are needed for initialization. In particular,
the number of tracked animals, i.e. nindiv, should be given if known, otherwise it will be estimated
automatically.

63The structure has to be the last element with fields corresponding to the name of the options.
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reflections. For recording with this setup, we used another Point Grey Grasshopper camera with
1/1.8 inch CCD (ICX687, Sony, Japan) and 1928x1448 resolution (GS3-U3-2854C). We removed
the IR-cutoff filter of the camera and fitted an IR-pass filter (720 nm, GreenL, Shangyu, China)
and a CPL filter (NiSi, Zhuhai, China) on a 12 mm lens. The distance to the water level was
similarly about 70 cm. We used 3 custom-made 850 nm LED-light machine vision bulbs for
illumination (MVIR0460, Herowei, Hongkong, China).

Visual stimulation were delivered using the PsychToolbox for MATLAB by custom written
scripts during tracking with xyTracker.

2.8 Comparison of classification methods

For validation whether identity information is present in our identity features and to compare
our simple online classification method (GMM) to state-of-the-art classifiers, we performed the
following comparisons.

Using the example video of [45] as a benchmark, we extracted the identity features of the
5 fish for each frame. We validated that xyTracker performed similar to the our ground truth
provided by the idTracker method (see Results). We extracted image patches for individual fish
(identity features) by using xyTracker as described above. After discarding frames where a fish
were not successfully detected, the data set consisted of N = 12042 frames with 5 small image
patches of size 19 x 57 pixels showing the individual fish. For training a classifier the first 10000
frames were used as train set, the rest for testing. Before separating the test and train set, we
did not randomize the order of the frames to avoid that a classifier could exploit temporally
correlation in the feature appearance (feature in nearby frames typically look very similar due to
the high frame rate). We used linear classification (linear regression plus threshold activation),
logistic regression, multi-linear perceptron (MLP) (e.g. [LI] for a review), and convolutional
networks (CNN) [34] for classification of the identity of the 5 fish. Pixel values were rescaled to
the range 0 to 1 and mean subtracted. We use the python toolbox THEANO [9] to implement
the training.

The MLP model had two hidden layers (800 and 500 units, respectively) and one readout
layer. The 5 class labels were obtained by soft maximization of the read out activations. Follow-
ing [43], we use threshold-linear activation functions. The CNN is similar to [34] and consisted
of two convolution-pooling layers (20 and 50 kernels, respectively, kernel size 5 x 5, pooling size
2 x 2) followed by two hidden layers (800 and 300 units, respectively). In contrast to [34], the
convolution layers were fully connected. To increase the competition between features in the
convolutional layers, we normalized each pixel in the feature maps by the activations of the same
pixel location in the 5 adjacent feature maps [28]. We used a threshold linear activation function
and adaptive gradient [23] to optimize back-propagation to learn the weights (batch size is 100,
initial learning rate 0.001, decreasing to 0.0001, maximum epochs 200). Computations were
performed on a NVIDIA Tesla K40m GPU and took about 3 min, 10 min, and 20 min to train
logistic regression, MLP, and CNN, respectively.

3 Results

We developed a new tracking system, xyTracker, for monitoring group behavior in a 2D en-
vironment. Our approach comprises a fast online tracking method together with an identity
recognition system (see Methods for a detailed description). For classification of the identities,
local image patches of animals are extracted and explicitly rotated according to the main body
axis (thus ensuring translation and rotation invariance of the features), so that simple classifiers
can be used to learn the appearance of each individual in an online manner to distinguish highly
similar individuals in the group. Thus our tracking platform is not only fast (> 30x speedup
to comparable software), it also ensures that identities of the tracked animals are not mixed up
over time. Moreover, because tracking and identity learning is done on-line and in real-time,
stimulus can be presented in closed-loop experiments based on the current position of any of
the tracked animals.

In the following, we first validate our software against a comparable approach, and then
perform a number of experiments to exemplify the long-term stability of the tracking, the visual
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stimulation capabilities, and a simple closed-loop experiment.

3.1 Validation of tracking method

We validated our xyTracker software with an available tracking method that also accounts for
the identity of individual animals [45] (in the following called idTracker). For a fair comparison,
we use the video of 5 medaka fish provided with the publication of [45] for comparison of our
approadﬁ Using this video as a benchmark, we tracked the fish with both methods, and
compared the distance of the resulting tracks. Tracking the 5 fish in the ca. 8 min long video
with xyTracker was completed in about 3.5 minutes on a personal computer. On the other hand,
tracking the same video with idTracker took almost 2 h. xyTracker thus was about > 30x faster
than idTracker (see Methods for details). Note that for both methods the naming of the fish
were arbitrary. We thus adjusted the naming of the fish between both methods by matching
the trajectories minimizing the average distance across the video.

We found that xyTracker accurately tracked fish by identity. In Fig. [f]A the mean distance
of the tracks of the 5 fish between the two methods are plotted. Note that the distance is very
small for most of the time (considerably below 1 body length), indicating that both methods
extracted the the same tracks with the same identity. Assuming that idTracker found the correct
tracks without switching (as was indeed confirmed by hand in [45] for this video file), our
validation suggests that xyTracker successful tracks fish by identity. We found that the frequency
of temporary lost tracks is very similar between the two methods (see Fig.[]B) indicating similar
detection quality on this video.

The main advantage of idTracker over straight-forward tracking methods, is that occasional
mixing of identities do not accumulate over time. This is also true for xyTracker. In the video,
at around 200 to 250 seconds, the frequency of crossing of fish is very high (see Fig. Ep) During
the same time, tracks of both methods differ occasionally(compare to Fig. |§|A)7 possibly because
many tracks are lost during this time and wrongly reassigned (compare to Fig. ) However,
for the remaining part of the video, both methods again yield identical tracks (i.e. the average
distance is very low, Fig. @A), indicating that identity information was successfully recovered
by xyTracker.

Our method provides a probability for each frame that the currently detected animal belongs
to the identity class of the track. Comparing this probability with the “other” probabilities,
e.g. by computing the maximal probability when the current animal would be assigned to a
different identity, is a good measure of how specific and accurate the identity classifier performs.
In Fig. [D the running average of both probabilities is plotted. The difference between both
probabilities is high for the majority of the time, indicating that the individual fish could be
distinguished well based on appearance alone. Moreover, during the heavy crossing period, the
difference reduces, indicating that during this time the assignment of track identities has lower
confidence.

3.2 Validation of the identity features

In xyTracker, identity is tested using appearance features extracted from the individual animals
during tracking. In [45], authors proposed to used a 2D-histogram, which is invariant against
rotation and translation of the animals. Rotational invariance is in particular crucial for setups
where the camera is mounted from above and animals are free to move in every direction on a
planar environment, such as fish in a tank of shallow water. We here propose to use directly
the detected image content of each animal instead of computing a histogram of the detections.
To ensure rotational invariance, necessary for a simple classifier to recognize individual animals
accurately, we simply rotate the detected images along their elongated body axis, which is
extracted for each animal during tracking (Fig. see Methods for details). In the following
we asked, how much information could be extracted from these features, if one would be free
to choose any powerful classifier? Is there enough information to classifier the identities purely
based on this feature for any moment in time?

640n our videos, the idTracker method performed very poorly, because the lightening condition were
more challenging.
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Figure 6: Validation of the accuracy xyTracker with idTracker software A: Average dis-
tance between resulting tracks of the two methods. Note that occasional difference get corrected
immediately. Note further that distance reduce to nearly zero after a misalignment due to heavy
crossing in the region of 200 s-250 s. B: Detection quality of both methods are very similar.
Both methods cannot detect blobs in particular when fish are crossing (they form a single blob
instead of two). C: Number of fish crossing, according to the xyTracker. Note that many fish are
mutually crossing in the 200 s-250 s region, challenging both tracking methods. D: Evaluation
of the performance of the identity classifier. Average probability of the selected identity for
each track (green line) is compared to the maximal probability when another identity would
have been selected instead (“Other”, yellow line). The more both probabilities differ, the more
specific the appearance model is learned and the high the confidence in the assignments of the
identities to the tracks.

To test how accurately individual fish can be recognized in the example video (from [45] as
in Fig. |§[) by using solely the identity features, we first extracted the identity features from the
5 fish and labeled the images based on the detected identities with xyTracker. We then tested
whether the five identity classes could be labeled correctly by using conventional supervised
machine learning approaches (see Methods for details).

We found that classification of the 5 fish using the identity feature could be done with high
accuracy (> 80%) even using simple methods like linear regression when they are rotated accord-
ing to the body axis (see Table . State-of-the art methods, like convolutional networks [34],
reached an accuracy of 97.1%. This result shows that the extracted identity features indeed
provide enough information about the individual identities of the fish. We found further that
when images patches are not rotated to a reference orientation, simple classification methods,
including the GMM approach of xyTracker performed poorly (see Table |2} “not rotated”). Only
the powerful CNN method was able to learn the rotation invariance from the data.

xy Tracker uses a simple online learning scheme to form an appearance model for each animal
identity. In particular, we fit a Gaussian probability distribution to a number of components
of the identity feature (see Methods for details). This simple model has the advantage to be
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Method Image feature type | Accuracy [%)]
GMM rotated 82.0
GMM (5 frames) rotated 89.9
Linear regression rotated 84.5
Logistic regression rotated 88.0
Multilinear perceptron rotated 92.0
Convolutional network rotated 97.1
Logistic regression not rotated 52.6
Multilinear perceptron not rotated 58.3
Convolutional network not rotated 94.6

Table 2: Supervised classification of identity features. Fraction of correct classification
of the 5 fish for different methods. When the image patches are explicitly rotated to a reference
orientation (based on the shape of the detected blob; as described in Fig. 3]), even very simply
classifiers, such as Gaussian mixture models (GMM), performs well. However, if the raw patches
are used (not explicitly rotated; “not rotated”), only the powerful CNN methods learns the
rotation invariance from the data.

very fast and easy to train (only the mean and variance of a Gaussian per identity needs to
be updated). Surprisingly, this simple method already reaches 82% accuracy on the test set,
indicating that, when image patches are oriented to a reference orientation, this simple models is
a good compromise between accuracy and speed. In xyTracker, the identity classification method
is used to ensure tracks’ correct identity after crossing events, where the majority of wrong
assignments and mixing of identities occurs. Moreover, xyTracker combines identity features
of a number of consecutive frames to yield an further improved accuracy. For instance, when
combining estimation of 5 consecutive frames, the accuracy of the GMM method increases to
89.9% (see Table|2). Since xyTracker usually accumulates evidence along an even longer tracked
path, multiple frames will be combined before critical decisions at crossing points of two tracks
have to be done. We thus conclude that the identity feature and classification method used in
xy Tracker is appropriate.

3.3 Territorial domains

We observed that zebra fish, given visual reference cues in the aquarium such as stones, tend
to establish their own territorial domain after several hours, as was reported previously [51 53]
52, [45]. Investigating this behavior is a good practical benchmark for a tracking software like
xy Tracker, since the individual identities of the fish have to be maintained over a long period. If
the resulting trajectories would not show such a segregation of identities in space, it would mean
that identities were not maintained and an accumulation of track mismatch errors occurred over
time.

We thus recorded a > 8h video (having in total 1196000 color frames with a resolution of
1778 x 1760 pixels) of three behaving adult zebra fish (see Fig. @A) To establish a visual reference
for domain behavior, we placed a number of small stones in the middle of the aquariu
Tracking the zebra fish in the recorded video is challenging for a number of reasons: (a) The
video size is very large, about 6 GB compressed (9 TB uncompressed), thus requiring low
memory usage. (b) The recorded time is long, thus the identity of animals has to be maintained
for a long period of time. (c) Fish are small compared to the environment and relative contrast
against the background is relatively low. (d) The background is cluttered with small stones,
where the color of the stones is similar to the color of the fish. (e) The background changes over
time because the stones tend to move, caused by the movement of the fish. (f) In this video, fish
tend to interact heavily with each other, with fast bouts of swimming, driving each other out of
their own territory (example of a short hunt between fish 2 and 3 is shown in Fig. [7] A). Thus,
a further challenge is that such dynamic interactions between fish tend to disturb the surface of
the water, which momentarily changes the background and thus causes a number of wrong blob

65Gize 45 cmx45 cm, water depth about 10 cm
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Figure 7: Emergence of territorial behavior. A: Environment used for this experiment.
Some movable round stones are placed in the middle of the tank. Three zebra fish (rectangular
bounding box) interact frequently showing aggressive and fast escape behavior (tracks for a few
seconds are shown in solid lines). B: Frequency of high velocity bursts (> 20 pixels/frame) of
at least 3 consecutive frames, in which two fish participate. Colors of fish identities as in A,
dashed lines of two colors indicate interacting fish according to the legend. Note that the two
smaller fish, 1 and 3, interact much more often at the beginning presumably to fight for territory.
C: Emergence of domains. Accumulated locations for each fish in false color. Whitish regions
indicate regions that were visited equally often by all fish. Time spans are indicated in titles
(0-1h,1-2h,2-3h,3-4h). Note that the stones in the middle affect a little the detected position of
the fish, resulting in a more noisy location pattern of the green fish as compared to the others.
D: Overall domains. A spatial region belongs to a particular fish if it occupies it for the most
amount of time across the whole video. Black regions are never occupied (out side of the water
level).

detection that should be ignored by the tracking software or otherwise may lead to lost tracks
(see Methods for a detail description of the tracking process).

We found that xyTracker performed very well in this challenging circumstances (see Fig. .
The inferred tracks of the individuals showed emergence of territories for each individual fish,
which we confirmed to be correct by visual inspection of the video. In Fig. Ep the distribution
of locations is calculated for sections of 1 hour for the first 4 hours. Note that over time a clear
segregation of the 3 fish in space is seen. Overall, three clear domains emerged (Fig. ) Inter-
estingly, fish 1 which was noticeable bigger, occupied the middle and largest region, relatively
unchallenged, whereas fish 2 and fish 3 (of similar smaller size), initially contested fiercely for
territories. This could be seen from the frequency of interaction (see Fig. EB) and was confirmed
by visually inspecting the video. Taken together, xyTracker successfully tracked the individual
fish under this challenging conditions and, importantly, did not confuse the identity of the fish as
conventional tracking methods would be prone to. Note it would not have been possible to use
idTracker successfully for this video because it would not cope with the challenging conditions
described above.
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Figure 8: Group decision experiment: Avoidance of visual stimulus given from
below. A: Experimental setup. The camera is installed above and tracks the fish illuminated
by infrared bulbs. A video screen is install below the transparent tank. A cutoff filter is used to
cut-off the visible light, so that the tracking is not hindered by the visual stimulus presentation.
B: X-position over time of two groups of fish. Dark regions indicate stimulus presentation times.
Stimulus is a half full-field white background that switches between left and right sides. C:
Histogram of locations of fish, depending on the group size during stimulus presentation times.
Note that fish prefer dark background over white backgrounds (white stimulus is indicated by
gray). D: Choices of dark areas versus white background depend on the group size. The more
individuals the higher is the fraction of time spend on the dark side.

3.4 Light avoidance task

We developed xyTracker specifically for reliable real-time tracking of group behavior and simul-
taneous visual stimulus presentation. For that we custom built an experimental setup where a
LCD stimulus screen was placed below a transparent fish tank, while tracking was done using
a camera mounted above the tank (Fig. for an illustration). Since the camera observed fish
from above, we tracked using infrared lightening and attached a visible light cutoff-filter to the
camera so that the tracking was not distracted by the visual stimuli presentation (see Methods
for a detailed description of the setup).

To test whether visual stimuli presented on the screen from below affected fish behavior, we
performed a simple light avoidance task. We asked how fish would react, when one half of the
video screen showed an uniform white background, and the other half remained black. After
selecting naive fish, we let them first adapt to the environment with visual stimulus turned off
(at leas@ for 30 min. After 30 min blank screen, we alternately displayed a white background

66most groups were put into the experimental setup the day before the experiment started and thus
adapted at least 12h.
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on one half of the screen (either left or right) and reversed the position (either right or left) every
30 seconds. The stimulus changed 5 times and was then followed by a 150 seconds blank screen.
This block repeated 5 times. To compare the behavior for different group sizes, we recorded and
tracked individual fish for group sizes of 1 fish (3 experiments), 2 fish (3 experiments), 3 fish
(5 experiments), and 5 fish (3 experiments), all with naive zebra fish.

The results are presented in Fig. We found that zebra fish exhibit a strong avoidance
behavior, usually leaving the region with light background quickly, similar to previously reported
studies (done in fixed colored tanks) [38,[13]. Fish tend to rapidly swim into the dark region of the
tank (see Fig. B for example traces). This behavior was similar to the recently reported learning
paradigm where fish had to learn the exit of a maze which was not illuminated from below [6].
Accordingly, during the stimulation the probability of localization was strongly biased towards
the dark side Fig. [8| C. Interestingly, this light avoidance effect increased with the size of the
group, so that larger groups (3 or 5 fish) showed stronger preference than small groups (Fig.[§|D).
This group size effect, however, might be mainly due to the increased frequency of “freezing”
when zebra fish are in groups of two or alone.

3.5 Closed-loop experiment

xy Tracker was specifically designed to perform closed-loop experiments in behaving groups, where
the presented stimulus depends on the collective behavior or on the particular location of indi-
vidual members of the group.

To exemplify this type of experiments, we used the same setup as described in Fig. [§| A, but
now let the stimulus depend on the actual location of individual fish. In particular, when the
stimulation time was triggered of individual fish, we projected an image of a fish onto the screen
at a position nearby the individuals. This “fish projections”, which we extracted using xy Tracker,
followed the position of a fish for a short amount of time. Moreover, based on the position, where
a fish was located during the trigger event of the stimulus, the size of the projection was chosen:
in one region, not stimulus was given (size 0), the second region, the projected image was of
similar size as the fish, and the third regions, projected images tended to the twice as large as
the fish (see example in Fig. [9] A).

In detail, the position of individual fish was used and the extracted blob image (such as
shown in e.g. in Fig. ) was projected onto the screen at randomly shifted positions relative to
the actual fish position (on average 45 px offset; gamma distributed with Coefficient of Variation
(CV) set to 0.5; orientation of the shift relative to the body center was uniformly distributed).
The projections started at random times (on average 2 seconds, gamma distributed with CV
set to 0.1) and lasted on average 500 ms (interval gamma distributed (CV) 0.1). Projections
for individual fish had different colors. The size of the projections were scaled for each stimulus
presentation time, where the size distribution depended on the region where the fish was at the
time when the individual stimulus projection started (see inset in Fig. |§| A): In region 1 and the
border regions (red dotted line), the size was set to 0, that is, no projections were shown. In
region 2 average sizes were smaller than in region 3 (one average 1 body lengths (pixels) and 2
body lengths, respectively; gamma distributed with CV set to 0.5). At the border of the tank
(5% of the length or width), no stimulus was presented, furthermore, size were set to 0 if the
velocity was lower than a threshold.

We found that fish projections induced behavioral changes in individual fish, in particular,
fish tried to escape from their following virtual projections (see example in Fig. |§|A) As a result
of this escape, the fish velocity distribution was biased to regions 2 and 3, where the projections
occurred randomly, and were slower in region 1 and in the border regions, where no projections
occurred (see Fig. [0 B).

We thus conclude that it is possible to track and stimulate individual fish in a closed-loop
fashion using xyTracker.

4 Discussion

We presented a new software platform for tracking of groups of behaving animals. Our system
has a number of advancements and extensions over existing methods targeting the same applica-
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Figure 9: Closed-loop experiment. A: Stimulus presentation depends on the actual position
of the tracked fish in real-time and last for about 500 ms. Solid lines indicate trajectories of
fish for the past seconds. Rectangles indicate the bounding box of the fish projections which
are generated based on the shapes of the fish during tracking. The gray scale of the bounding
box outline indicates time: fish projections thus “follow” the fish. In the 3 regions, projections
randomly occur with different size distributions. In region 1 and the borders (dotted red line)
projections to not occur, so that fish can swim into these regions to avoid the projections. B:
Difference probability maps for individual fish. For each position the fraction of time the velocity
was larger than the median velocity minus the fraction of time it was lower was computed. Note
that the velocity was generally higher in region 2 and 3 where the stimulus projections occurred.
Moreover, fish learned to “relax” at the border region, where the probability of stimulation was
zero. Thus the behavior of fish was clearly affected by the individual visual stimulation.

tion scope, in particular idTracker [45]. First, tracking occurs in an on-line manner, needing only
a single pass through the video file or enabling tracking in real-time for closed-loop experiment.
Second, we used a performance optimized implementation to achieve a > 30x speed-up using
small amounts of memory, so that long and high-resolution videos with sizes of many gigabytes
can still be tracked in an efficient manner. Third, our implementation is object-oriented and
provides a convenient and extensible MATLAB-interface. Forth, most parameters are self-tuned
to the problem at hand, so that tracking will work out-of-the-box for most applications. In
particular, the identity features used for recognizing the individuals are learned in an unsuper-
vised and on-line manner (without need to specify features by hand), and are based simply on
rotated image patches of the animals. Thus, these features contain all locally available image
content, and therefore can be used and are informative for the tracking of any animal or moving
object. In case of fish (or other elongated animals), our method further provides an more accu-
rate estimate of the position than other comparable methods, because our approach includes a
simple shape model, namely the mid line of the body. Thus, the position information of tracked
animals is not only based on the center of a bounding box (which could even lie outside of the
body, when the body bends during turns), but the exact position of specified part of the body,
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e.g. the head.

Many current multiple object tracking systems are developed specifically for the application
to track humans [59, 58] [33]. The application of tracking humans in cluttered environment as
specific challenges. Our application, the tracking of animals in a 2D arena, is more constrained.
For instance, we assume that the environment, the camera, and the number of animals are fixed
and (mostly) visible during the time of the experiment. One particular challenge in our situation
is that, the appearance of individuals in an social group of animals, such as fish, are often
highly similar. Moreover, when observed from above, their detected shape changes dramatically,
because of body movement, bending and, direction of movement changes (rotations). Thus, a
simple classifier for distinguishing the identity of individuals is easily distracted by the rotation
and body deformations. The approach of [45] is to compute the histogram of two pixels’ intensity
with given distance between the two pixels in the detected shape. While this feature is rotation
invariant and informative about the identity, it is rather costly to compute (proportional to n?
where n is the number of pixels in the detection), does not account for deformations, and might
neglect some useful information about the appearance available in the local image patch. We here
solve the problem of rotation invariance in a very straightforward way: exploiting the elongated
shape of animals and their asymmetry in the direction of movement (head front, tail back),
we rotate the image patches to a reference orientation. The advantage of this direct rotation
method is that all visual information for identity classification is still available. We found that
even simple classification models could distinguish fish successfully using these rotated identity
features.

The only limitation of the explicit rotation approach is the accuracy of the estimation of
reference orientation. This reference rotation axis is inferred from the shape of the animals,
thus in case of roughly circular objects, or animals with complicated symmetry, this reference
axis might be difficult to estimate. However, we found that rotational invariance, and thus
the explicit rotation, is not necessary for more powerful classifiers, such as CNN, which could
be integrated into our object-based software platform in futur@ Alternatively, our system
could be extended to estimate the references axis from the movement direction instead of the
geometric shape of the animals. This is not easily possible in the current implementation of
xy Tracker, because currently the rotation of the image patches is done independently from the
tracking for increasing the speed and the modularity of the software code.

In computer vision approaches to tracking humans in cluttered environments, some meth-
ods also acquire an appearance model to improve the tracking results. A general framework to
combine the tracking-by-detection with an appearance model is to use the multiple hypothesis
tracking (MHT) approach [47) [30]. At each time step, MHT considers all possible association
of detected objects with current tracks and builds a tree of all tracks. The method then per-
forms an optimization to find the most likely tracks in the tree and thus can also distinguish
and disentangle crossing events. We here developed a greedy version of MHT, based on a fast
online computation of the shortest path through the track-tree. While very efficient, our ap-
proach does a shortest-path calculation without the constraint that detected objects belong
only to one unique individual. If this constraint would be taken into account, the fast online
computation would not be possible anymore, as it would need to be solved with a linear pro-
gramming approach [3] 46]. However, for a smaller number of animals, the computational effort
would probably still tractable, and thus integrating this constraint into xyTracker would be a
worthwhile extension for the future.

Currently, our MHT approach might result in briefly overlapping trajectories for different
animals. These overlaps tend to be short and negligible if enough appearance information is
available. However, when the appearance information is more limited, e.g. when the available
pixels per animals is small or lightening is challenging, so that individual animals become indis-
tinguishable, our MHT method might result in a considerable number of overlapped tracks. We
found that in this case, our explicit switching method outperforms the MHT approach. Under
good conditions, however, the MHT approach usually performs better, mainly because all tracks
are saved so that the switching of the track does not need to be inferred from the history, as in
our explicit switching approach. In any case, since our software simultaneously calculates both
approaches, resulting tracks can be compared and the one or the other can be used for further

6"However, to learn these more powerful classifiers more data will be needed.
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analysis. Moreover, xyTracker provides class probabilities for each frame that can be used to
access the confidence about the current track identities.

Since our method switches track assignments in retrospect, assignments, in particular shortly
after crossing events, might be momentarily wrong. While this post-hoc change is a drawback for
online experiments, in practice, a momentarily wrong assignment is usually limited to a short
period after crossings where animals are in close proximity anyway. Also, a track switching
in retrospect might be unavoidable and acceptable if it is then ensured that the identity of
the tracks are corrected in the following. We showed exemplary how to build a closed-loop
experiment to perturb the behavior of individual fish by locally targeted presentation of small
visual stimuli. Thus, in our setup, one could replicate experiments where a robotic fish was
employed [7], using instead projected images of fish. xyTracker is based on the PsychToolbox for
stimulus generation and thus easily integrates with OpenGL features for a wide range of stimulus
capabilities. In principle, also any other stimulus generation system could be integrated, e.g.
for generating more advanced virtual reality environments, which than could be used to test
models of collective response to perturbations in experiments [16].

In conclusion, for tracking animals for behavioral studies of social groups it is essential to
ensure the identity of individual animals for a long period of time. We showed that our system
can stably follow individual fish for hours. Furthermore, we showed how xyTracker’s online
tracking capabilities can be used to perform challenging closed-loop group learning experiments.
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