
1 

Canu:	
  scalable	
  and	
  accurate	
  long-­‐read	
  
assembly	
  via	
  adaptive	
  k-­‐mer	
  weighting	
  and	
  
repeat	
  separation	
  
 
Sergey Koren1*, Brian P. Walenz1*, Konstantin Berlin2, Jason R. Miller3, Adam M. Phillippy1† 

 

 

 
1 Genome Informatics Section, Computational and Statistical Genomics Branch, National Human 

Genome Research Institute, National Institutes of Health, Bethesda, MD USA 
2 Invincea Labs, Arlington, VA USA 
3 J. Craig Venter Institute, Rockville, MD USA 

 

 
* These authors contributed equally to this work 
† Corresponding author: adam.phillippy@nih.gov 

 

Keywords: de novo assembly, single-molecule sequencing, nanopore sequencing 

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


2 

Abstract	
  
Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled 

the automated reconstruction of reference-quality genomes. However, given the relatively high 

error rates of such technologies, efficient and accurate assembly of large repeats and closely 

related haplotypes remains challenging. We address these issues with Canu, a complete 

reworking of Celera Assembler that is specifically designed for noisy single-molecule sequences. 

Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and 

improves assembly continuity while simultaneously reducing runtime by an order of magnitude 

on large genomes. These advances result from new overlapping and assembly algorithms, 

including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse 

assembly graph construction that avoids collapsing diverged repeats and haplotypes. We 

demonstrate that Canu can reliably assemble complete microbial genomes and near-complete 

eukaryotic chromosomes using either PacBio or Oxford Nanopore technologies, and achieves a 

contig NG50 of greater than 21 Mbp on both human and Drosophila melanogaster PacBio 

datasets. For assembly structures that cannot be linearly represented, Canu provides graph-based 

assembly outputs for analysis or integration with complementary phasing and scaffolding 

techniques. Canu source code and pre-compiled binaries are freely available under a GPLv2 

license from https://github.com/marbl/canu.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


3 

 

Introduction	
  
The goal of genome assembly is to reconstruct a complete genome from many 

comparatively short sequencing reads. Overlapping reads that originate from the same region of 

the genome can be joined together to form contigs, but genomic repeats longer than the overlap 

length lead to ambiguous reconstructions and fragment the assembly (Phillippy et al. 2008; 

Nagarajan and Pop 2009). There are two strategies for overcoming this fundamental limitation—

increasing the effective read length, and separating non-exact repeats based on copy-specific 

variations. Recently, single-molecule sequencing has revolutionized assembly by producing 

reads longer than 10 kbp (Gordon et al. 2016), which has significantly reduced the number of 

unresolvable repeats (Koren et al. 2012) and enabled the complete assembly of microbial 

genomes (Chin et al. 2013; Koren et al. 2013; Koren and Phillippy 2014). These long reads also 

aid assembly phasing (Chin et al. 2016), where the conserved alleles in a diploid, polyploid, or 

meta- genome can be thought of as a special kind of repeat. However, in contrast to improved 

read length, single-molecule sequencing is less accurate than past technologies (Eid et al. 2009; 

Schneider and Dekker 2012), requiring sensitive alignment methods and limiting the 

discrimination of divergent alleles and non-exact repeats. Nevertheless, PacBio single-molecule 

real-time (SMRT) sequencing exhibits a largely unbiased and random error model (Ross et al. 

2013), enabling assemblies that exceed short-read data both in terms of quality and continuity 

(Chin et al. 2013; Koren et al. 2013). Oxford Nanopore strand sequencing can also produce 

highly continuous assemblies, but current biases in base calling prohibit an accurate consensus 

sequence without the addition of complementary data (Loman et al. 2015). 

The increased read length and error rate of single-molecule sequencing has challenged 

genome assembly programs originally designed for shorter, highly accurate reads. Several new 

approaches have been developed to address this, roughly categorized as hybrid, hierarchical, or 

direct (see (Koren and Phillippy 2014) for a review). Hybrid methods use single-molecule reads 

to reconstruct the long-range structure of the genome, but rely on complementary short reads for 

accurate base calls (Koren et al. 2012; Hackl et al. 2014; Lee et al. 2014; Salmela and Rivals 

2014; Ye et al. 2014; Antipov et al. 2016). Hierarchical methods do not require a secondary 

technology and instead use multiple rounds of read overlapping (alignment) and correction to 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


4 

improve the quality of the single-molecule reads prior to assembly (Chin et al. 2013; Koren et al. 

2013). Finally, direct methods attempt to assemble single-molecule reads from a single 

overlapping step without any prior correction (Li 2016; Tørresen et al. 2016). All three 

approaches are capable of producing an accurate final assembly. However, our goal is the 

complete reconstruction of entire genomes, so we focus here on the hierarchical strategy because 

it has produced the most continuous de novo assemblies to date (Berlin et al. 2015; Chakraborty 

et al. 2016). 

Canu is a new single-molecule sequence assembler that improves upon and supersedes 

the now unsupported Celera Assembler (Myers et al. 2000; Miller et al. 2008). Recently, we 

introduced the MinHash Alignment Process (MHAP) to overcome the computational bottleneck 

of overlapping noisy, single-molecule sequencing reads (Berlin et al. 2015). Combining this 

technique with PBcR (Koren et al. 2012) and Celera Assembler, we demonstrated near-complete 

eukaryotic assemblies from PacBio sequencing alone (Berlin et al. 2015). Building on this work, 

we developed Canu to (1) integrate our methods into a single, comprehensive assembler, (2) 

support both PacBio and Oxford Nanopore data, (3) lower runtime and coverage requirements, 

and (4) improve repeat and haplotype separation. As a result, Canu improves runtime by an order 

of magnitude for mammalian genomes and outperforms hybrid methods with as little as 20X 

single-molecule coverage. At higher coverage, reference-quality de novo assemblies are possible, 

including the complete assembly of euchromatic chromosomes from either PacBio or Nanopore 

sequencing. In addition, Canu’s improved graph construction algorithm separates closely related 

repeats and alleles based on a statistical model of read error, which will be important for future 

work on diploid, polypoloid, and metagenomic assembly. 

Results	
  

Architecture	
  
Canu represents a complete rebuild of the Celera Assembler, shrinking the code base by 

~70% and reworking the remaining components to improve usability and performance on single-

molecule sequence data. Compared to past releases of Celera Assembler, Canu adds several 

novel features including computational resource discovery, adaptive k-mer weighting, automated 

error rate estimation, sparse graph construction, and graphical fragment assembly (GFA) (Li 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


5 

2016) outputs. The Canu pipeline consists of three stages—correction, trimming, and assembly 

(Figure 1) —each of which can run independently or in series (e.g. only read correction, or 

assembly without correction, etc.). When running in a parallel environment, Canu will auto-

detect available resources and configure itself to maximize resource utilization. It is currently the 

most efficient single-molecule read assembler available for large genomes, requiring 

approximately 20,000 CPU hours to assemble a human genome, compared to ~60,000 required 

for Falcon (Chin et al. 2016) and >250,000 required for Celera Assembler v8.2 (Berlin et al. 

2015). In addition to these runtime improvements, the resulting assemblies are significantly more 

continuous than prior versions. Details of the improved assembly algorithms and results are 

given below. 

 
Figure 1. A full Canu run includes 
three stages: correction (green), 
trimming (red), and assembly (purple). 
Canu stages share an interface for binary 
on-disk stores (databases) as well as 
parallel store construction. In all stages, 
the first step constructs an indexed store 
of input sequences, generates a k-mer 
histogram, constructs an indexed store of 
all-vs-all overlaps, and collates summary 
statistics. The correction stage (green) 
selects the best overlaps to use for 
correction, estimates corrected read 
lengths, and generates corrected reads. 
The trimming stage (red) identifies 
unsupported regions in the input and 
trims or splits reads to their longest 
supported range. The assembly stage 
(purple) makes a final pass to identify 
sequencing errors; constructs the best 
overlap graph; and outputs contigs, an 
assembly graph, and summary statistics. 

 

 

 

contig
sequences

assembly
graph

read
layouts

Raw Reads

generate corrected
read consensus

choose overlaps
for correction

global
scores

estimate corrected
read lengths

read IDs
to correct

corrected
reads

Build read and
overlap

databases

output reads

trim reads

split reads

trimmed
reads

detect errors in reads

recompute overlap
alignments

errors
in reads

adjusted
error rates

construct contigs
(bogart)

generate contig
consensus

generate outputs

Build read and
overlap

databases

Build read and
overlap

databases

gkpStore

ovlStore

ovlStore

ovlStore

ovlStore

gkpStore

gkpStore

trim reads

C
or

re
ct

Tr
im

As
se

m
bl

e

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


6 

Adaptive	
  MinHash	
  k-­‐mer	
  weighting	
  
Optimal handling of repeats is a challenge, because in addition to fragmenting 

assemblies, repeats also cause computational bottlenecks during overlapping. Read overlapping 

typically proceeds in two stages, first building a list of read pairs that share some similarity, and 

then performing a more direct comparison of those read pairs (e.g. dynamic programming) 

(Sutton et al. 1995). Candidate overlaps are typically found in the first stage by identifying 

shared k-mers (length k substrings) between all pairs of reads. However, repeats reduce the 

entropy of the k-mer distribution, and the frequent occurrence of some k-mers significantly 

increases the number of candidate overlaps that must be processed by the more expensive second 

stage. A common solution is to mask low-complexity sequence or ignore highly repetitive k-

mers during indexing (Ning et al. 2001), as is done by many assemblers including Celera 

Assembler (Myers et al. 2000), Falcon (Chin et al. 2016), and Miniasm (Li 2016). However, 

depending on how many repeating k-mers are ignored, some fraction of correct overlaps will not 

be detected. 

Canu takes a more resilient approach to handling repeats that probabilistically reduces, 

but does not eliminate, the chance a repetitive k-mer will be selected for overlapping. This 

weighting is achieved via a MinHash overlapping strategy. Rather than comparing individual k-

mers to identify potential read overlaps, Canu uses the previously described MinHash Alignment 

Process (MHAP) to compare compressed sketches of entire reads (Berlin et al. 2015). Because 

each MinHash sketch contains a fixed-size subset of k-mers selected from a read, the probability 

of including particular k-mers in a sketch can be adjusted. For instance, a repetitive k-mer 

occurring many times throughout the genome should have a reduced weight, because it carries 

relatively little information regarding the origin of the read. In contrast, a relatively unique k-mer 

occurring multiple times in a single read should have an increased weight, because it represents a 

larger fraction of the read’s length. The combination of these terms represents the relative 

importance of a k-mer, and in natural language processing this is known as a tf-idf weight (term 

frequency, inverse document frequency). 

Application of tf-idf weighting to MinHash sketches is straightforward (Chum et al. 

2008). Applied to the read overlapping problem, the weighting is a multiplicative combination of 

the number of occurrences of a k-mer inside a read (the document) and the overall popularity of 

the k-mer among all reads (the corpus). For document similarity, the intuition is that a rare word 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


7 

that occurs multiple times in a single document is a good candidate to identify similar 

documents. For read overlapping, this statistic has the desirable property that repetitive k-mers 

receive low weights. By reducing the occurrence of repetitive k-mers within sketches, the 

distribution of indexed k-mers becomes more uniform. This reduces the number of 

uninformative, repetitive overlaps that are identified during sketch comparison, significantly 

improving both runtime and memory usage. Importantly, this is achieved via a probabilistic 

process so no repeat masking is required and true overlaps between repetitive reads will still be 

recovered. Alternative weighting schemes are also possible with this technique (e.g. to increase 

the probability of selecting haplotype-specific k-mers), but we focus our evaluation on the tf-idf 

statistic. 

We evaluated tf-idf weighting on a Bacillus anthracis genome sequenced with the Oxford 

Nanopore MinION (Supplementary Note 1, 2). The B. anthracis Sterne strain makes a useful test 

because it possesses a single plasmid often present in multiple copies relative to the main 

chromosome. In this case, the pXO1 plasmid presented at approximately 6-fold higher coverage 

than the chromosome (487X vs. 76X). This variable sequencing depth challenges traditional k-

mer filtering strategies based on a fixed, all-or-nothing threshold. Additionally, it is critically 

important to recover such plasmids during sequencing, because increased copy number has been 

previously associated with virulence in other species like Yersinia pestis (Wang et al. 2016). As 

expected, MHAP overlap sensitivity for the plasmid is low (26%) when repetitive k-mers are 

filtered via a fixed threshold. Similarly low sensitivity is seen from Minimap (Li 2016) and 

DALIGNER (Myers 2014), which both employ a k-mer count threshold by default (17% and 

60%, respectively, Supplementary Table S1). Manually increasing this threshold to include 

plasmid k-mers improves Minimap and DALIGNER sensitivity to 94% and 76%, respectively. 

However, Minimap suffers a drop in positive predictive value (PPV), reporting more false, 

repeat-induced overlaps. DALIGNER performs a dynamic programing check to confirm all 

candidate overlaps, so its PPV remains high, but it suffers both a memory (1.6-fold) and runtime 

(2-fold) penalty. In contrast, Canu’s adaptive tf-idf weighting scheme requires no parameter 

adjustment and achieves 89% sensitivity and maintains high PPV (99.5%) with no added runtime 

or memory penalty. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


8 

Best	
  overlap	
  graph	
  
Canu uses a variant of the greedy “best overlap graph” (BOG) algorithm from (Miller et 

al. 2008) for constructing a sparse overlap graph. Loading the full overlap graph into memory, as 

required by string graph formulations (Myers 2005), can be costly for large, complex genomes. 

In contrast, the greedy algorithm loads only the “best” (longest) overlaps for each read end into 

memory. This greedy approach is optimal when the read length is sufficiently long (Bresler et al. 

2013), and a best overlap graph can be built using just 64 GB of memory for a mammalian 

genome. However, the greedy algorithm can be misled by repeats that are longer than the overlap 

length and is therefore prone to mis-assemblies. Canu’s new “Bogart” algorithm addresses this 

problem by statistically filtering repeat-induced overlaps and retrospectively inspecting the graph 

for potential errors. 

In the original BOG method, the best overlaps were selected from a pool of all overlaps 

below a user-specified error rate threshold, where the overlap error rate is defined as the edit 

distance divided by the length of the overlap alignment. Thus, this threshold must be set low 

enough that repeats do not result in false overlaps, yet high enough to account for sequencing 

error and detect true overlaps. In the new Bogart method, the optimal overlap error rate 

parameter is automatically estimated from the data, both globally and locally. However, this 

presents a challenge for raw single-molecule data, which has a sequencing error rate between 

10–20% that blurs the distinction between noise and repeat-induced overlaps. Therefore, Canu 

performs multiple rounds of read and overlap error correction prior to graph construction. After 

these corrections, the residual read error is estimated from the distribution of all longest overlaps. 

This full overlap set is then filtered to include only those overlaps within some tolerance of the 

global median error rate (Figure 2a), and the longest overlaps are recomputed using only this 

subset. Compared to prior versions of BOG that used a 5% default overlap error rate, Bogart will 

typically discover an overlap error rate below 2% for corrected single-molecule data. This low 

threshold effectively removes most false overlaps, allowing the greedy method to construct a 

clean best overlap graph. From this graph, initial contigs are constructed from the maximal non-

branching paths. 

Despite careful correction and overlap filtering, exact or near exact repeats within the 

error rate tolerance can still add false edges to the graph, resulting in potential mis-assemblies 

that incorrectly join distant parts of the genome. To guard against this, each initial contig is 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


9 

inspected to identify and correct potential errors. First, the expected overlap error rate for each 

position of the contig is locally computed using the best overlaps (Figure 2b). Next, all non-best 

overlaps to reads outside the contig within some deviation of the expected error rate are 

collected. This excludes sufficiently diverged repeats and haplotypes, while the retaining 

overlaps that are compatible with the local error profile. These overlaps are used to annotate 

potential alternative branches within the contig and flagged for further inspection. If a branching 

region is spanned by at least one read (Figure 2c) (Ukkonen 1992) or there is no alternate overlap 

of similar quality (Figure 2d), it is confirmed as correct. Otherwise, the region is split into at least 

three new contigs and labeled as an unresolved repeat. 
Figure 2. An illustration of overlap error rate 
estimation, repeat identification, and splitting. A) A 
histogram of all best edge error rates with the auto-
selected threshold shown as a dashed line for the D. 
melanogaster PacBio dataset. All overlaps up to 4% 
error were computed. However, the peak error rate is 
at 0.25% error and Canu chose to use only overlaps 
below 1.6% error for graph construction on this 
dataset. B) The dashed line shows the global error 
rate threshold (1.6%), and the profile shows the locally 
computed error rate for the largest contig in this 
assembly. Only overlaps consistent with this local 
error rate are considered as potential alternate paths 
when supplementing the initial best overlap graph. By 
adjusting the error rate for each contig, Canu can 
separate diverged repeats without making an 
assumption of uniform read error across the assembly. 

C) The contig is shown as a black line with arrows on both sides, indicating Bogart extends a path in both 
the 5’ and 3’ directions until encountering no overlaps or a read that is already incorporated in another 
contig. Repeat regions annotated by conflicting reads, are shown above the contig. The reads align to 
part of the contig (the repeat) but indicate a different boundary sequence. A single read (blue line) spans 
the full repeat region, indicating the contig reconstruction is correct. D) Repeat regions annotated by 
conflicting reads as before. In this case, no single read spans the full repeat region, and the initial contig 
was built using the overlap between two blue reads. The contig is split if the overlap between the two blue 
reads is not significantly better than the overlap from either blue read to the conflicting red read. 

After construction and validation, Canu provides a representation of the final assembly 

graph in the Graphical Fragment Assembly (GFA) format (Li 2016). This representation is 

equivalent to a sparse read overlap graph, simplified to remove unambiguous paths and 

contained reads. Figure 3 shows the Canu assembly graph for Drosophila melanogaster 

sequenced using PacBio. Some chromosome arms are assembled into single contigs, but the 

graph reveals the structure of the more complex, unresolved repeats in the assembly. For 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


10 

example, chromosome 2L is assembled as a single component in the graph, but is broken 

towards the end due to a large array of transposable elements and the histone gene cluster, which 

spans over 500 kbp (Hoskins et al. 2015). These elements also correspond to unfinished gaps in 

the D. melanogaster reference. Canu’s graphical output localizes this complex structure to a 

specific chromosome arm and location. However, the size of the repeats precludes complete 

assembly. Combining the Canu assembly graph with supplementary long-range information, 

such as from optical (Hastie et al. 2013) or chromatin contact mapping (Burton et al. 2013; 

Kaplan and Dekker 2013), could help identify the correct path and resolve such structures. 

 
Figure 3: Canu GFA output localizes complex repeat regions, allowing for improved scaffolding. 
A) Bandage (Wick et al. 2015) plot of D. melanogaster compared to the karyotype (Stevens 1912; Metz 
1914) from FlyBase (Attrill et al. 2016). Nodes are contigs sized by length and edges indicated unused 
overlaps between contigs. The largest contigs are colored randomly and labeled with their chromosome 
based on alignment to the reference. B) The callout shows a subset of chromosome 2L from positions 
3.07 Mbp to 23.12 Mbp, reordered with the centromere at the top (indicated by a filled circle). Unique 
contigs are shaded black while repeat contigs are shaded red. While the 2L chromosome scaffold is 
composed of 10 individual contigs, they are all linked in the output graph. The two red regions correspond 
to reference gaps at positions 2L:21,485,538, which consists of 100–200 copies of the histone gene 
cluster spanning over 500 kbp and 2L:22,420,241 which is bordered by several TE repeats (Hoskins et al. 
2015). Even though Canu is unable to fully resolve these large repeat arrays, the graph indicates large-
scale continuity across chromosome 2L and could enable resolution with secondary technologies. 

TE repeats

Histone 
Gene Cluster

Chromosome 2L

2 3

X Y

4

X X
2L

3L

2L

2L

2L

3R

2R3R

4

X
X

X

A)
B)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


11 

Low-­‐coverage	
  hierarchical	
  assembly	
  
Canu substantially lowers the coverage requirements for single-molecule de novo 

assembly. Previously, at least 50X coverage was recommended for hierarchical assembly 

methods (Berlin et al. 2015; Chakraborty et al. 2016). However, as sequencing lengths and 

algorithms have improved, so have the minimum input requirements. To quantify performance 

and determine when a hybrid method may be preferred, we randomly subsampled 10–150X of 

PacBio P5-C3 coverage from Arabidopsis thaliana Ler-0 (Kim et al. 2014) and compared Canu 

assemblies to both Illumina-only and hybrid assemblies using SPAdes (Antipov et al. 2016). At 

20X single-molecule coverage, the Canu assembly is more continuous than the hybrid SPAdes 

assembly of 20X PacBio combined with 100X Illumina. Although making efficient use of low 

coverage PacBio data, the hybrid method plateaus after 30X, and the continuity of the Canu 20X 

assembly is comparable to the best hybrid assembly given 150X of PacBio (Figure 4, 

Supplementary Note 3, Supplementary Table S2, Supplementary Figure S1). In contrast, Canu 

continues to improve with increasing PacBio coverage, reaching its maximum assembly 

continuity around 50X. The amount of improvement is a function of the repeat content and 

sequence length. PacBio sequence lengths follow a log-normal distribution (Ono et al. 2013), and 

additional coverage increases the probability of spanning a long repeat. Thus, we would expect 

continued improvement with higher coverage for larger, more complex genomes. Thus, we 

recommend the hierarchical method whenever single-molecule coverage exceeds 20X. However, 

as shown earlier, consensus accuracy from low coverage single-molecule data is limited (Pacific 

Biosciences  2015), and polishing (Walker et al. 2014) with short reads is recommended after 

assembly (Supplementary Table S2). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


12 

 

Figure 4: A comparison of assembly continuity between Canu and SPAdes. Each set of contigs is 
sorted from longest to shortest and plotted versus a cumulative percentage of the genome covered. 
Assemblies with larger contigs appear in the top of the plot. The ideal assembly corresponds to the green 
reference line. The commonly used NG50 metric corresponds to the vertical dashed line. Canu quickly 
gains continuity with increasing coverage, approaching the limit with 50X PacBio on this genome. In 
contrast, while making a large gain from Illumina-only to 10X PacBio, SPAdes continuity plateaus by 30X, 
and the Canu 20X assembly is comparable to the hybrid SPAdes assembly using 150X PacBio. 

Assembly	
  evaluation	
  
We evaluated Canu on a variety of microbial and eukaryotic genomes, and compared 

with Falcon (Chin et al. 2016), Miniasm (Li 2016), and hybrid SPAdes (Antipov et al. 2016) 

using both PacBio and Oxford Nanopore sequencing data (Supplementary Note 2, 4-6). 

Continuity was measured using maximum and NG50 contig size, where NG50 is the longest 

contig such that contigs of this length or greater sum to at least the haploid genome size. 

Accuracy was computed via alignment to the nearest available reference genome using 

MUMmer (Kurtz et al. 2004), and reported using the GAGE (Salzberg et al. 2012) metrics, 

which evaluate both base (single nucleotide) and structural (inversions, relocations, and 

10 Mbp

5 Mbp

1 Mbp

500 kbp

100 kbp

50 kbp

10 kbp

NG0                                 NG20                               NG40                                NG60                                NG80                                 NG100

Arabidopsis thaliana Ler-0 PacBio P5-C3

Reference

Canu 150X

Canu 50X

Canu 20X

SPAdes ILMN+150X

SPAdes ILMN+10X
SPAdes ILMN

Canu 10X

NG fraction

C
on

tig
 s

iz
e

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


13 

translocations) errors. An ideal assembly has high continuity, low errors, and high base accuracy, 

with 99.99% (Phred QV40 (Ewing and Green 1998)) commonly defined as the minimum quality 

for a “finished” sequence (Felsenfeld et al. 1999; Schmutz et al. 2004). 

PacBio	
  sequence	
  assembly	
  
We assembled bacterial and eukaryotic genomes recently released (Kim et al. 2014) and 

available from PacBio DevNet (PacBio DevNet  2014). Table 1 shows that Canu produces the 

most continuous assembly on three of the four eukaryotic genomes tested, while maintaining 

high accuracy (Supplementary Figure S2-S6). In the one case that Miniasm produces a higher 

NG50 (Caenorhabditis elegans), both Falcon and Miniasm introduce large-scale structural 

rearrangements not present in the Canu assembly (Supplementary Figure S5). For assembly 

runtime, Miniasm (Li 2016) is an order of magnitude faster than Canu and Falcon 

(Supplementary Table S3-S6). However, in contrast to Canu and Falcon, Miniasm does not 

perform a gapped alignment for either overlapping or consensus generation. Instead, Miniasm 

generates a string graph (Myers 2005) directly from approximate read overlaps and labels the 

edges of this graph with the raw read sequences. Thus, the average identity of the resulting 

assembly is equal to the identity of the input sequences, and the approximate overlap positions 

can leave large insertions and deletions in the assembly. As a result, the Miniasm assemblies 

have both low base accuracy (<90%) and a higher frequency of large insertions and deletions, 

which can be difficult to remove during polishing. Therefore, Miniasm requires four rounds of 

Quiver polishing (Chin et al. 2013) before the assembly quality converges (Supplementary Table 

S7-S10), whereas Canu requires only a single polishing round and is ultimately fastest to 

generate a high-quality assembly (Table 1). 

Canu shows good scaling to mammalian genomes, completing a polished human 

assembly threefold faster than Falcon and many times faster than the prior version of Celera 

Assembler (Supplementary Tables S3-4). Canu runtime improvements come from recent 

optimizations to the initial overlapping and read correction process (Methods), which have 

traditionally been the slowest step in hierarchical assembly. Read correction is now the fastest 

step of the Canu pipeline. As a result, Canu is often able to generate a complete assembly in less 

time than Falcon requires for its initial DALIGNER (Myers 2014) overlapping stage 

(Supplementary Table S3-4). On the human genome, where the upfront cost of building MHAP 

sketches is most effectively amortized, Canu’s initial overlapping step is also faster than 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


14 

Minimap (Supplementary Table S3, S5), but Miniasm failed to assemble this dataset due to its 

in-memory string graph construction, which exceeded 1 TB of memory. Canu’s greedy algorithm 

required less than 36 GB for the same dataset. 

 
Table 1: Canu is fastest to a polished assembly with high genome completeness and continuity 
for PacBio sequencing data 
Genome Asm/Polish Max (Mbp) NG50 (Mbp) % Ref  # Errors Time (CPU h) % Idy 

E. coli Canu+Quiver 4.68 4.68 100% 0 12.25 >99.99% 

 Falcon+Quiver 4.64 4.64 100% 2 25.14 >99.99% 

 Miniasm+Quiver 4.64 4.64 99.99% 2 31.93 >99.99% 

 SPAdes 4.64 4.64 100% 0 4.09 >99.99% 

D. melanogaster Canu+Quiver 25.78 21.31 97.47% 1,025 1,396.52 99.98% 

 Falcon+Quiver 23.08 9.84 96.12% 1,054 2,305.92 99.98% 

 Miniasm+Quiver 15.85 5.84 96.51% 752 1,484.33 99.98% 

A. thaliana Canu+Quiver 15.95 8.31 82.94% 220 925.31 99.07% 

 Falcon+Quiver 15.94 8.17 82.72% 222 1,132.25 99.07% 

 Miniasm+Quiver 11.61 5.07 82.88% 205 976.43 99.07% 

C. elegans Canu+Quiver 5.34 2.35 99.70% 139 410.07 99.97% 

 Falcon+Quiver 4.99 1.88 98.82% 138 397.40 99.97% 

 Miniasm+Quiver 5.85 2.96 99.44% 141 526.16 99.97% 

CHM1 Canu+Quiver 80.08 21.95 86.84% 1,105 22,749.71 99.81% 

 Falcon+Quiver 52.34 9.46 86.58% 1,082 68,789.00 99.81% 

 Miniasm+Quiver N/A N/A N/A N/A N/A N/A 
Genome: the genome being assembled. Asm/Polish: software tools used to generate an initial and polished assembly. Max: the 
maximum contig size, in Mbp. NG50: N such that 50% of the genome is contained in contigs of length >=N where the genome size 
is set to the reference length (excluding alternates in Ref38). % Ref: the percentage of the reference covered by assembly 
alignments; # Errors: GAGE structural differences compared to the reference. Time: total time to generate a finished assembly, 
including time to polish consensus with Quiver (Chin et al. 2013). % Idy: identity to the reference of the final polished assembly. 
Multiple rounds of Quiver were run until the identity converged. This translated to a single round for Falcon and Canu and four 
rounds for Miniasm. Miniasm on CHM1 required over 1.5 TB of memory and could not complete. SPAdes results on E. coli are 
without Quiver, making it faster than polished assemblies. However, the initial SPAdes assembly has similar quality to Canu (QV45 
vs QV47 respectively) in equivalent runtimes (4.09 SPAdes vs. 4.26 Canu CPU hours) (Supplementary Table S7, S10). Quiver 
polishing of the Canu assembly exceeds QV58, beating the best SPAdes polished assembly. Based on SPAdes benchmarking on 
A. thaliana above, it was excluded from eukaryotic runs. A. thaliana and CHM1 differ from the reference, leading to lower identity 
and reference coverage for all assemblers. 
 

Canu also represents a dramatic improvement over the latest version of Celera Assembler 

(Berlin et al. 2015). Our previous PacBio P5-C3 human (CHM1) assembly required >250,000 

CPU hours with Celera Assembler, resulting in a contig NG50 of 4 Mbp (Berlin et al. 2015). The 

re-assembly of this same dataset with Canu required <25,000 CPU hours and the NG50 

increased to over 7 Mbp. Improvements to PacBio chemistries are also resulting in impressive 

assembly gains. An updated assembly using the more recent PacBio P6-C4 chemistry requires 

the same runtime, yet increases the NG50 5-fold to over 20 Mbp. This de novo Canu assembly 

has comparable assembly size, contig counts, and continuity to the human reference assemblies 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


15 

before NCBI Build 34 (ca. 2003), which is the release immediately prior to the “finished” human 

genome (International Human Genome Sequencing 2004). The contig sizes of this Canu human 

assembly are also comparable to the scaffold sizes generated by Celera (Istrail et al. 2004), 

which used Sanger sequencing with a range of insert sizes and BACs. 

Nanopore	
  sequence	
  assembly	
  
Currently, the Oxford Nanopore MinION can read either one or both strands of a double-

stranded DNA molecule. The “1D” mode sequences only the template strand, whereas the “2D” 

mode sequences both the template and complement strands via a hairpin adapter. This technique 

is similar to PacBio circular consensus sequencing (CCS) (Travers et al. 2010). Because the 2D 

mode provides two independent observations of each base, the per-read accuracy is improved 

(e.g. from 70% to 86% for R7.3 chemistry (Figure 5a)). To date, all assembly evaluations have 

focused on the more accurate 2D sequences (Loman et al. 2015; Judge et al. 2016; Sovic et al. 

2016). While more accurate, the library preparation for 2D sequencing is more complex, reduces 

the effective throughput of the instrument (each molecule must be read twice), and currently 

produces shorter sequences (Oxford Nanopore Technologies  2016b). Thus, we designed Canu to 

assemble both 2D and the noisier 1D sequences, which benefit from increased read length and 

throughput, both key factors for genome assembly. 

Table 2 shows Canu assemblies of seven recent 2D Nanopore sequencing runs (Loman et 

al. 2015; Quick and Loman 2015). Consistent with independent evaluations (Judge et al. 2016; 

Sovic et al. 2016), Canu produces highly continuous assemblies from Nanopore data alone, and 

the continuity of Canu assemblies was equal to or better than all assemblers tested. Miniasm was 

again extremely fast and produced structurally correct and contiguous assemblies 

(Supplementary Fig S7-S13, Supplementary Table S11-S13), except for B. anthracis, where it 

failed to assemble the high-copy plasmid pXO1 due to its stringent k-mer filtering. As with 

PacBio, the initial Minimap assemblies also have low base accuracy. For Nanopore data, 

Minimap assemblies were less than 90% accurate, whereas Canu assemblies typically exceeded 

99%. Consensus polishing using the Nanopore signal data with Nanopolish (Loman et al. 2015) 

further improved the accuracy of all assemblies to as high as 99.85%, but polishing the lower 

quality Miniasm assemblies to comparable accuracy was 750% slower (Supplementary Table 

S11–S13). 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


16 

Table 2: Canu consistently assembles complete genomes from only Oxford Nanopore sequencing 
data 
Genome Asm/Polish # Contigs Max (Mbp) % Ref  # Errors Time (CPU h) % Idy 

E. coli MAP005 Canu+Nanopolish (1) 4.64 99.98% 2 376.87 99.43% 

 Falcon+Nanopolish 105 0.42 23% 2 106.2 99.41% 

 Miniasm+Nanopolish 3 3.40 99.96% 0 2,344.02 99.36% 

E. coli MAP006-1 Canu+Nanopolish (1) 4.63 99.80% 0 167.04 99.81% 

 Falcon+Nanopolish (1) 4.63 99.86% 0 207.45 99.78% 

 Miniasm+Nanopolish (1) 4.66 99.97% 2 1,801.02 99.72% 

E. coli MAP006-2 Canu+Nanopolish (1) 4.64 99.91% 2 168.69 99.78% 

 Falcon+Nanopolish (1) 4.64 99.94% 2 196.16 99.76% 

 Miniasm+Nanopolish (1) 4.65 99.70% 4 1,482.95 99.69% 

E. coli MAP006-PCR-1 Canu+Nanopolish (1) 4.64 99.95% 0 164.08 99.84% 

 Falcon+Nanopolish (1) 4.63 99.80% 2 168.37 99.82% 

 Miniasm+Nanopolish 3 2.15 99.96% 0 1,338.28 99.77% 

E. coli MAP006-PCR-2 Canu+Nanopolish (1) 4.64 99.99% 2 206.09 99.85% 

 Falcon+Nanopolish (1) 4.64 100.00% 2 212.89 99.84% 

 Miniasm+Nanopolish (1) 4.65 99.98% 0 1,669.83 99.81% 

B. anthracis Canu+Nanopolish (2) 5.20 99.77% 0 894.40 99.14% 

 Falcon+Nanopolish 31 0.47 86.29% 0 795.93 99.17% 

 Miniasm+Nanopolish 4 5.22 97.21% 0 5,094.90 99.05% 

Y. pestis CO92 Canu+Nanopolish (4) 4.67 99.97% 11 254.25 99.76% 

 Falcon+Nanopolish (4) 4.68 99.97% 12 295.01 99.72% 

 Miniasm+Nanopolish 9 2.69 99.91% 11 2,000.16 99.65% 
Columns defined as in Table 1. Since the maximum contig size is usually the NG50 size of these bacterial genomes, the # of contigs 
over 2 kbp in length is included to indicate assembly completeness. Genomes where the number of contigs matches the number of 
organelles in the reference are marked with parentheses, indicating they are complete. Multiple rounds of Nanopolish were run until 
QV converged. This was one round for Falcon and Canu and three rounds for Miniasm. Nanopolish suffers a large performance 
penalty on high-error inputs, leading to significantly longer runtimes on initial Miniasm inputs. The B. anthracis and Y. pestis genome 
were not the same strain used for validation, leading to higher error counts and lower identity. In the case of Y. pestis, all 
assemblers agreed on three large inversions with respect to the reference (Supplementary Fig S13). 

 

Generating a finished-quality (>99.99%) consensus sequence from Nanopore reads 

required polishing with complementary short-read data. We repeated the above evaluation, but 

substituted Pilon (Walker et al. 2014) for Nanopolish (Loman et al. 2015), and included 

comparisons to hybrid SPAdes (Table 3). Pilon aligns Illumina reads against an assembled 

sequence and corrects base errors and small insertions and deletions (Indels). As with 

Nanopolish, this process was iterated until consensus quality converged, except for hybrid 

SPAdes, which did not require additional polishing. Combined assembly and polishing times for 

all assemblers were comparable. Canu, Falcon, and SPAdes routinely exceeded 99.99% polished 

base accuracy, but Miniasm was unable to exceeded 99.9% after many rounds of polishing 

(Supplementary Table S14). The residual Miniasm errors were large (average >500 bp) 

expansions or collapses in the draft assembly (Supplementary Figure S14), which are difficult to 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


17 

correct using short-read sequences. Hybrid SPAdes was typically most accurate, both in terms of 

base and structural accuracy. However, on the repetitive Y. pestis genome, it was significantly 

less contiguous than hierarchical methods, and on the newer high-quality Nanopore datasets, the 

polished Canu accuracy exceeded SPAdes (Supplementary Table S15-S18, Supplementary Fig 

S15-S21). 

 
Table 3. Canu exceeds hybrid methods in continuity while matching identity when polished with 
Illumina data 
Genome Asm/Polish # Contigs Max (Mbp) % Ref  # Errors Time (CPU h) % Idy 

E. coli MAP005 Canu+Pilon (1) 4.65 99.99% 2 10.98 99.99% 

 Falcon+Pilon 105 0.42 23.04% 2 4.36 99.95% 

 Miniasm+Pilon 3 3.40 90.62% 42 3.15 97.39% 

 SPAdes (1) 4.64 100.00% 0 3.61 >99.99% 

E. coli MAP006-1 Canu+Pilon (1) 4.63 99.82% 0 5.89 >99.99% 

 Falcon+Pilon (1) 4.63 99.86% 0 7.3 >99.99% 

 Miniasm+Pilon (1) 4.66 96.97% 21 3.14 99.61% 

 SPAdes (1) 4.64 100.00% 0 3.65 >99.99% 

E. coli MAP006-2 Canu+Pilon (1) 4.64 99.94% 2 3.92 >99.99% 

 Falcon+Pilon (1) 4.64 99.94% 2 3.93 99.99% 

 Miniasm+Pilon (1) 4.64 97.98% 26 2.73 99.63% 

 SPAdes (1) 4.64 100.0% 0 3.56 >99.99% 

E. coli MAP006-PCR-1 Canu+Pilon (1) 4.64 99.95% 0 4.15 >99.99% 

 Falcon+Pilon (1) 4.63 99.80% 2 3.55 >99.99% 

 Miniasm+Pilon 3 2.16 98.41% 12 2.15 99.67% 

 SPAdes 2 3.95 100.00% 0 3.56 >99.99% 

E. coli MAP006-PCR-2 Canu+Pilon (1) 4.64 100.00% 2 6.16 >99.99% 

 Falcon+Pilon (1) 4.64 100.00% 2 9.22 >99.99% 

 Miniasm+Pilon (1) 4.65 98.57% 20 2.69 99.67% 

 SPAdes (1) 4.64 100.00% 0 4.00 >99.99% 

B. anthracis Canu+Pilon (2) 5.21 99.77% 1 65.01 99.85% 

 Falcon+Pilon 31 0.48 86.31% 0 14.95 99.89% 

 Miniasm+Pilon 4 5.25 79.36% 44 4.9 92.28% 

 SPAdes 6 4.13 100.00% 0 8.47 99.99% 

Y. pestis CO92 Canu+Pilon (4) 4.66 99.83% 23 17.92 99.89% 

 Falcon+Pilon (4) 4.64 99.65% 26 10.63 99.87% 

 Miniasm+Pilon 9 2.70 93.76% 42 8.68 98.79% 

 SPAdes 29 0.37 95.99% 15 17.08 99.96% 
Columns defined as in Table 1. Hybrid assembly using Oxford Nanopore and Illumina data was tested across the assemblers from 
Table 2 with the addition of SPAdes. Polishing on all assemblies, except SPAdes, was done with three rounds of Pilon and total 
times reported. As in Table 2, Canu is most consistent at producing closed genomes for Oxford Nanopore data. SPAdes runtime is 
comparabled to polished Canu runtimes with both exceeding 99.99% identity on the majority of genomes. SPAdes has higher 
identity on the older MAP005 data, B. anthracis, and Y. pestis. However, Canu polished identities exceed SPAdes identities on the 
remaining datasets. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


18 

Nanopore	
  1D	
  sequence	
  assembly	
  
We evaluated the performance of Canu on noisy 1D data using only the template 

sequences from the Escherichia coli MAP006-1 dataset (Quick and Loman 2015), which 

averaged a raw 1D accuracy of just 70% (Figure 5a). To deal with this high error, we exploited 

the modularity of Canu to run ten rounds of correction, with the output of each round fed as input 

to the next (Supplementary Note 11). The corrected reads were then assembled into ten contigs 

with an NG50 of 619 kbp and a maximum contig size of 1.22 Mbp covering 89% of the 

reference at 85.52% identity versus a single circular chromosome for 2D data (Figure 5b-c). In 

contrast, the Miniasm assembly of this data covered less than 10% of the reference at 76.76% 

identity (Supplementary Figure S22). Polishing the Canu assembly with Nanopolish converged 

on a 1D consensus accuracy of 98% identity, and short-read polishing with Pilon improved the 

assembly to 93.83% coverage and 99.72% identity. Thus, despite their high error, we conclude 

that 1D sequences as low as 70% identity can be assembled, albeit at reduced consensus quality. 

However, more recent Nanopore sequencing chemistries are producing 1D reads with 85% 

accuracy (Quick and Loman 2016), for which only a single round of correction is necessary. 

 
Figure 5: Canu can assemble both 1D and 
2D nanopore E. coli reads. A) A comparison 
of error rates for 1D and 2D read error rates 
versus the reference. Template 1D and 2D 
reads from the MAP006-1 E. coli dataset 
(Quick and Loman 2015) were aligned 
independently to compute an identity for all 
reads with an alignment over 90% of their 
length (95% of the 2D sequences and 86% of 
the 1D reads had an alignment over 90% of 
their length). The 2D sequences averaged 
86% identity and the 1D reads averaged 70% 
identity. B) Bandage plot of the Canu best 
overlap graph for the 2D data. The genome is 
in a single circle representing the full 
chromosome. C) The corresponding plot for 
1D data. While highly contiguous, there are 
multiple components due to missed overlaps 
and unresolved repeats (due to the higher 
sequencing error rate). 

 

1D 2D

E. coli K12 MAP006-1A)

B)

C)

# 
re

ad
s

0 
   

   
   

   
   

   
   

   
 5

00
   

   
  

   
   

   
   

 1
00

0 
   

   
   

   
   

   
   

15
00

Error rate (%)
0                   20                   40                   60                    80                  100

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


19 

Few eukaryotic Nanopore datasets are currently available due to the low throughput of 

the initial MinION instruments. However, as previously demonstrated using PacBio data, Canu 

easily scales to mammalian-sized genomes, and as Nanopore throughput improves it is expected 

that highly continuous eukaryotic assemblies will be possible. For an early test, we assembled 

the Saccharomyces cerevisiae genome from available R6 and R7 MinION data (Goodwin et al. 

2015). This older dataset contains only 20X coverage of 2D reads and an average identity of 

70% (Figure 6a), significantly lower than produced by newer chemistries (Quick and Loman 

2015). Despite this, Canu was able to assemble the dataset using the same iterative correction 

strategy as for 1D reads (Figure 6b, Supplementary Note 12, Supplementary Figure S23). The 

resulting assembly comprises 41 contigs, with a majority of chromosomes in one or two contigs 

and an NG50 of 469 kbp covering 95.22% of the reference at 94.33% identity. Illumina polishing 

with Pilon improved the assembly to 96.86% coverage at 99.83% identity. Prior to Canu, this 

dataset could only be assembled via a hybrid approach. Newer Nanopore chemistries are not 

expected to require an iterative correction strategy, and improved instrument throughput will 

enable fully assembled yeast chromosomes (Istace et al. 2016). 

 
Figure 6: A highly continuous S. cerevisae assembly from noisy 1D and 2D MinION reads. A) A 
histogram of read error rates (1D and 2D) versus the reference. Alignment identity was computed only for 
reads with an alignment over 90% of their length. The majority of reads were below 75% identity with an 
overall average of 70%. B) Assembled Canu contigs were aligned to the reference and all alignments 
over 1 kbp in length and >90% identity were then plotted. Alternating shades indicate adjacent 
alignments, so each transition from gray to black represents a contig boundary or alignment breakpoint. 
White regions indicate regions missing from the assembly. The majority of chromosomes are in less than 
3 contigs, indicating structural agreement with the reference. 

B)S. cerevisae S288c Read Identity

1D 2D

I       II      III       IV    V     VI     VII    VIII      IX     X     XI      XII   XIII  XIV    XV   XVI

A)

Error rate (%)

# 
re

ad
s

0                     20                    40                    60                    80                  100

0 
   

   
   

   
   

  1
00

0 
   

   
   

   
  2

00
0 

   
   

   
   

  3
00

0 
   

   
   

   
   

40
00

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


20 

Discussion	
  
Canu is able to generate highly continuous assemblies from both PacBio and Nanopore 

sequencing, but signal-level polishing is required to maximize the final consensus accuracy. 

Such algorithms use statistical models of the sequencing process to predict base calls directly 

from the raw instrument data, which is a richer source of information than FASTQ Phred quality 

values. Currently, a PacBio base accuracy of 99.999% (QV50) is achievable with Quiver 

polishing (Chin et al. 2013; Koren et al. 2013), but Nanopore is limited to at most 99.9% (QV30) 

with Nanopolish (Loman et al. 2015) due to systematic sequencing errors (Goodwin et al. 2015). 

Both tools are technology specific and must be trained on each new chemistry, so future 

improvements are possible. Alternatively, complementary short-read sequencing can be used for 

consensus polishing with Pilon. On recent Nanopore sequencing data, Illumina-polished Canu 

assemblies can reach QV50 and exceed the base accuracy of hybrid SPAdes assemblies. Thus, 

the combination of Nanopore and Illumina sequencing provides a new alternative for the 

generation of finished microbial genomes. 

 Canu assembly followed by either single-molecule or short-read polishing is an efficient 

method for generating high-quality assemblies. Our results indicate that while Miniasm (Li 

2016) can rapidly produce continuous and structurally accurate assemblies, the multiple rounds 

of polishing needed to produce an accurate consensus sequence becomes a computational 

bottleneck. Additionally, Canu is the only tool capable of assembling low-accuracy 1D Nanopore 

data, while scaling to gigabase-sized genomes—an important application given the pending 

release of high-throughput Nanopore sequencers (Oxford Nanopore Technologies  2016a). 

Combined with Canu’s adaptive k-mer weighting strategy, the assembly of repetitive 

heterochromatic sequence may be possible with high-coverage, long-read nanopore sequencing. 

 Although Canu is designed to effectively separate divergent repeats and haplotypes, 

further improvements are possible. Currently, only abundance is considered for k-mer weighting, 

which avoids the consideration of false, repetitive overlaps. However, this same scheme could be 

used to improve the discrimination of minor repeat and haplotype variants by preferring 

haplotype-specific k-mers during sketch construction. This would increase the power of Canu’s 

statistical overlap filter, which prevents the merging of diverged repeats and haplotypes. 

However, although these regions are kept separate in the assembly graph, no effort is currently 

made to resolve more complex repeat structures or phase multiple bubbles into larger haplotype 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


21 

blocks. This is an area of future development. For repeat structures, the current algorithm can 

resolve any repeat copy spanned by a single read, but this is sub-optimal. For example, given a 

two-copy repeat, an unspanned copy can be correctly resolved so long as the other copy is 

spanned. For haplotype reconstruction, it would be possible to apply an approach like Falcon-

Unzip (Chin et al. 2016) to the Canu assembly graph to generate phased contigs based on linked 

variants identified within the single-molecule reads. Alternatively, secondary information from 

technologies like 10x Genomics (Zheng et al. 2016) or Hi-C (Selvaraj et al. 2013) could be used 

to guide walks through the Canu graph. Ultimately, the integration of multiple technologies 

could lead to complete, de novo phased assemblies that span entire mammalian chromosomes 

from telomere to telomere. 

Methods	
  

Architecture	
  
Canu is a modular assembly infrastructure comprised of three primary stages—

correction, trimming, and assembly (Figure 1)—that can be run on a single computer or multi-

node compute cluster. For multi-node runs, recommended for large genomes, Canu supports Sun 

Grid Engine (SGE), Simple Linux Utility for Resource Management (SLURM), Load Sharing 

Facility (LSF), and Portable Batch System (PBS)/Torque job schedulers. Users without access to 

an institutional compute cluster can run large Canu assemblies via a cloud-computing provider 

using toolkits such as StarCluster (http://star.mit.edu/cluster/). 

As a Canu job progresses, summary statistics are updated in a set of plaintext and HTML 

reports. The primary data interchange between stages is FASTA or FASTQ inputs, but for 

efficiency each stage reads input into an indexed database, after which the original input is no 

longer needed. Each of the three stages begins by identifying overlaps between all pairs of input 

reads. Although the overlapping strategy varies for each stage, each counts k-mers in the reads, 

finds overlaps between the reads, and creates an indexed store of those overlaps. By default the 

correction stage uses MHAP (Berlin et al. 2015) and the remaining stages use overlapInCore 

(Myers et al. 2000). From the input reads, the correction stage generates corrected reads; the 

trimming stage trims unsupported bases and detects hairpin adapters, chimeric sequences, and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


22 

other anomalies; and the assembly stage constructs an assembly graph and contigs. The 

individual stages can be run independently or in series. 

For distributed jobs, local compute resources are polled to build a list of available hosts 

and their specifications. Next, based on the estimated genome size, Canu will choose an 

appropriate range of parameters for each algorithm (e.g. number of compute threads to use for 

computing overlaps). Finally, Canu will automatically choose specific parameters from each 

allowed range so that usage of available resources is maximized. As an example, for a 

mammalian sized genome, Canu will choose between 1 to 8 compute threads and 4 to 16 GB 

memory for each overlapping job. On a grid with ten hosts, each with 18 cores and 32 GB of 

memory, Canu will maximize usage of all 180 cores by selecting 6 threads and 10 GB of 

memory per job. This process is repeated for each step, and allows automated deployment across 

varied cluster and host configurations, simplifying usage and maximizing resource utilization. 

MinHash	
  Overlapping	
  
Canu uses an updated version of the MinHash Alignment Process (MHAP) for computing 

all-versus-all overlaps from noisy, single-molecule sequences (Berlin et al. 2015). MHAP has 

been further optimized for both speed and accuracy since the initial version. As described below, 

the most substantial algorithmic changes involve the sketching and filtering strategies. MHAP 

uses a two-stage overlap filter, where the first stage identifies read pairs that are likely to share 

an overlap and the second stage estimates the extent and quality of the overlap. For the first 

stage, MHAP now implements tf-idf weighting to prefer informative, non-repetitive k-mers. This 

increases sensitivity to true overlaps, while reducing the number of false, repetitive overlaps 

considered. For the second stage, MHAP now implements a “bottom sketch” strategy similar to 

Mash (Ondov et al. 2016), which significantly decreases memory usage and runtime. The Mash 

distance formula is also used to estimate the error rate (quality) of the identified overlaps directly 

from the sketches, without the need for a gapped alignment (Ondov et al. 2016). Engineering 

improvements include a switch to the FastUtil (fastutil  2016) hash table implementation, which 

resulted in a 3-fold speedup, and an increase in the maximum k-mer size from 16 to 128 to 

support greater specificity on low-error datasets. Overall, the new MHAP version is 10-fold 

faster, on average, and over 40-fold faster on mammalian genomes that the original version, 

while maintaining similar accuracy. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


23 

There have been several tf-idf formulations proposed for document and image retrieval 

(Manning et al. 2008), but for our purposes we use: 

𝑤! = 𝑡𝑓!𝑖𝑑𝑓! 

(1) 

For each read, 𝑡𝑓! is the number of occurrences of k-mer q in the read, and 𝑖𝑑𝑓! is the inverse 

document frequency function for q, which logarithmically scales the inverse overall frequency of 

q observed across all reads. Specifically, for all k-mers in the input read set, let 𝑓!"# be the 

maximum observed frequency, 𝑓!"# be the minimum observed frequency, and 𝑓! be the 

frequency of a specific k-mer q. By default, only 0.000005 of the most abundant k-mers are 

recorded, and all others are assigned 𝑓!"#. We define 𝑖𝑑𝑓! as: 

𝑖𝑑𝑓! = 𝑇 log(
𝑓!"#
𝑓!

− 𝑎)  

(2) 

The parameter 𝑎 ∈ 0,1  controls how strongly less common k-mers are preferred in relation to 

the more common ones, and T linearly transforms the values between 1 and 𝑤!"#, the maximum 

allowed weight. For a general positive floating point number, (Chum et al. 2008) provided a 

formula for directly computing the w-weighted hash value for MinHash ranking. However, this 

formula requires computing 𝑠 ∙ 𝐿 logarithms to generate a sketch, which is computationally 

expensive (where s is the sketch size and L is the read length). Instead, we discretize the tf-idf to 

a limited range using rounding, which requires at most 𝑠 ∙ 𝐿 ∙ 𝑤!"# random number 

computations, which is comparatively faster. We use 𝑤!"# = 3 and 𝑎 = 0.9 by default as a 

compromise between speed and performance. 

Recall that MinHash selects which k-mers will be included in the sketch on the basis of 

their hash value. In the original MHAP implementation, a set Γ of s hash functions is defined for 

a sketch S of size s. Each sketch entry Si is defined as the minimum-valued k-mer after applying 

the hash function Γi to all k-mers in the read. The resulting set of s minimum-valued k-mers, or 

min-mers, comprise the sketch. Given a discrete tf-idf weight wq for each k-mer, we now modify 

the MinHash computation by applying wq hash functions {𝛤!,!,… ,𝛤!,!!} per entry, rather than the 

single Γi as before. For each sketch entry Si, the min-mer is then chosen as the minimum hash 

value computed across all functions. Because highly weighted k-mers are hashed more times, 

this increases the chance that they will be chosen as a min-mer. In order to properly match the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


24 

same k-mers with different weights, we index k-mers using their fixed MurmurHash3 hash 

values (Appleby 2014), and the weighted values are only used to determine inclusion in the read 

sketches. The tf-idf approach replaces the previous approach, based on traditional all-or-nothing 

filtering of repetitive k-mers. We evaluated multiple scoring approaches including tf-idf, idf only 

(down-weighting common words), and no weighting on several bacterial and eukaryotic 

genomes. Both tf-idf and idf outperformed unweighted comparisons in terms of the resulting 

assembly continuity and accuracy, and were comparable to each other. We therefore utilize tf-idf 

by default due to its common use in the natural language field and other MinHash applications 

(Chum et al. 2008). 

The updated MHAP version also implements bottom sketching for the second-stage filter 

(Ondov et al. 2016). In contrast to the first-stage filter, which uses multiple hash functions 

(Broder et al. 2000), bottom sketching uses a single hash function, from which the s minimum 

values are retained as the sketch (Broder 1997). The former approach has the advantage that the 

Jaccard similarity can be computed for 1 versus N reads by a series of s hash table lookups. In 

bottom sketching, each comparison requires an O(s) merge operation, but as a benefit, any 

substring of the original string can be sketched by simply eliminating the min-mers from the 

original sketch that do not occur in the substring. For the bottom sketch, we now store a constant 

number of k-mers per read (default 1,500), and directly estimate the overlap error rate from these 

sketches using the Mash distance. The overlapping region is estimated as previously (Berlin et al. 

2015), but also using the bottom sketch k-mers. 

Parallel	
  Overlap	
  Sort	
  and	
  Index	
  
The downstream algorithms require efficient access to all overlaps for a single read, so 

the overlaps are organized using an indexed on-disk structure where all overlaps for a single read 

are listed sequentially. Canu parallelizes overlap computation into multiple jobs, each generating 

a compressed file of binary encoded overlaps and a file recording the number of overlaps for 

each read in that file. These files are combined into the master structure using a parallel bucket 

sort (Supplementary Figure S24). Since each read will have a different number of overlaps, and 

all overlaps for a given read must be in the same bucket in order for the bucket to be sorted, the 

number of overlaps per read is used to compute the ranges of reads assigned to each bucket. The 

size of a bucket is chosen such that each contains the same number of overlaps, and no bucket is 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


25 

larger than some specified maximum size. In parallel, each file of compressed overlaps is 

rewritten to a set of uniquely named buckets, and overlaps are duplicated and added to the 

appropriate bucket (e.g. read A overlaps B and read B overlaps A). Note that as each input file 

creates its own set of buckets, no synchronization is needed between jobs. When all overlaps are 

copied into buckets, each bucket is loaded into memory, sorted, and output to a uniquely named 

file. Each bucket holds all of (and only) the overlaps for the range of assigned reads. Finally, an 

index describing the file and offset location for each read is created. 

Read	
  Correction	
  
Canu uses all-versus-all overlap information to correct individual reads. However, simply 

computing a consensus representation for each read using all overlaps could result in masking 

copy-specific repeat variants. Therefore, Canu uses two filtering steps to determine which 

overlaps should be selected to correct each individual read. The first is a global filter where each 

read chooses where it will supply correction evidence, and the second is a local filter where each 

read accepts or rejects the evidence supplied by other reads. This strategy attempts to overcome 

biases due to sequence quality and repeats. For example, reads with higher than average 

sequencing quality would tend to dominate the correction, regardless of if they were from the 

correct repeat copy. To prevent this, each read is only allowed to contribute to the correction of 

C other reads, where C is the expected read depth. The global filter scores each overlap 

(overlap_length * identity), and keeps only the C best overlaps for each read. This same concept 

was used in (Koren et al. 2012). From this list, the local filter then selects the 2C best overlaps to 

each read for use in correction. The second filter is primarily a computational optimization. 

Before computing the corrected sequence, the all-pair overlaps are used to predict the 

expected length of each read after correction (i.e. accounting for reads with partial or no 

overlaps). From these estimates, the longest reads up to a user-specified coverage depth are 

processed for correction. Corrected reads are generated using a modified implementation of the 

“falcon_sense” algorithm (Chin et al. 2016), which parallelizes the pairwise alignment step and 

removes and maximum read length limits. For a given read to be corrected, overlapping reads are 

aligned to it using Myers’ ND algorithm (Myers 1986). A directed acyclic graph (DAG) is 

created from the alignments, and the highest weight path is followed to generate a corrected 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


26 

sequence (Chin et al. 2016). Edges with weight less than four are omitted, which will split the 

original read when there is insufficient evidence for correction. 

Overlap	
  Based	
  Trimming	
  
After correction, reads are trimmed by re-computing overlaps for the corrected reads and 

removing sequence that is not supported by other reads. The prior correction stage also trims 

low-coverage regions, but these initial overlaps are constructed without constructing a gapped 

alignment, which can result in imprecise trim points. When overlapping the corrected reads for 

trimming, a gapped alignment is computed for each overlap, and the trim points can be identified 

more precisely. Overlap-based trimming (OBT) was first described by Miller et al. (Miller et al. 

2008) and Prüfer et al. (Prüfer et al. 2012), which focused on trimming Sanger, 454 and Illumina 

reads. Long reads with uniform error allow the algorithm to be simplified. Each read is trimmed 

to the largest portion covered to at least depth C by overlaps of at most E error and minimum 

length L. The parameters are technology specific and set to empirically derived defaults. 

Once reads are trimmed, a second pass is made to detect any technology specific flaws, 

e.g. undetected hairpin adapters and chimeras (Eid et al. 2009; Jain et al. 2015). A hairpin 

adapter is detected by identifying when multiple reads have both forward and reverse overlaps 

around a common (short) sequence and there are few reads spanning this region. A chimeric 

junction is similarly detected by identifying a region with few, if any, spanning reads. In both 

cases, the original read is trimmed to the largest supported region. 

Overlap	
  Error	
  Adjustment	
  
After trimming and before graph construction, Canu recomputes overlaps and makes a 

final attempt at detecting sequencing errors. This algorithm was first used in Holt et al. (Holt et 

al. 2002). The intuition is to improve separation between true sequencing differences (e.g. 

diverged repeats or haplotype) and false differences due to random sequencing error. Each read 

is corrected by a majority vote of its overlapping alignments, preserving differing bases only if 

there is sufficient support from other reads for this variation. The read sequence itself is not 

changed (doing so would invalidate the computed overlaps), but the reported error rate for each 

overlap is adjusted based on the alignment that would be generated had the sequencing errors 

been resolved. The algorithm requires two passes through the overlaps, the first pass detects 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


27 

probable sequencing errors in reads and the second pass applies those changes temporarily to 

reads to re-compute alignments and update the computed error rates. 

Graph	
  Construction	
  
The Bogart module builds an assembly graph using a variant of the “best overlap graph” 

strategy from (Miller et al. 2008). Overlaps are described as containment, if all bases in one read 

are aligned to another read, or dovetail, if involving only the ends of both reads. By definition, at 

least two read ends must be present in the alignment. A “best” overlap is the longest dovetail 

overlap to a given read end. Each read has two best overlaps, one on the 5’ end and one on the 3’ 

end. In the original method, best overlaps were picked from all overlaps up to a user supplied 

overlap error rate cutoff. In Bogart, best overlaps are picked after several filtering steps remove 

abnormally high-error overlaps, potential chimeric reads, and reads whose overlaps indicate a 

possible sequence anomaly. This results in a cleaner and more accurate graph construction. 

After correction, trimming, and overlap error adjustment, all computed overlaps are used 

to pick an initial set of best edges. This set of best edges is used to compute the median and 

median absolute deviation (MAD) of the overlap error rate. This distribution represents the 

residual read error left after all prior corrections, and a low average overlap error rate cutoff 

indicates good sequencing data and successful correction. A maximum overlap error rate cutoff 

is automatically computed from this distribution as six MADs away from the median, and 

overlaps with an error greater than this cutoff are not used during graph construction. This cutoff, 

which is typically less than 2% for good PacBio data, determines the ability of the algorithm to 

separate closely related repeats and haplotypes. 

In addition to filtering poor overlaps, Bogart filters suspicious reads that may have 

evaded proper trimming and correction. First, reads that are not fully covered by overlaps below 

the overlap error rate cutoff are flagged as potentially chimeric and excluded from graph 

construction. Second, best overlaps are usually mutual, i.e. the best overlap from A is to B and 

the best overlap from B is to A. For a pair of reads, non-mutual best overlaps are often caused by 

Indels, making the overlap length slightly longer or shorter compared to the mutual best overlap. 

Thus, reads with a large overlap size difference are also excluded (Supplementary Figure S25).  

The resulting set of reads and best overlaps define the best overlap graph. Initial contigs 

are then constructed from the best overlap graph as in (Miller et al. 2008), and an error rate 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


28 

profile is generated for each contig from the average error rate of overlaps used to build it. This 

error profile is recomputed after each phase of the algorithm, and is used to determine if external 

reads have valid overlaps to the contig. 

Bogart next attempts to include contained (Fasulo et al. 2002) and previously filtered 

reads into the contigs. All overlaps to these read are used to compute a set of potential contig 

placements, scored by the average overlap error rate. If this average error rate exceeds the pre-

computed error profile for the contig region the read is likely from a diverged repeat or a 

heterozygous variant, and the placement is rejected. The placement with the lowest average error 

is accepted, and the read is placed. This strategy differs from the original strategy from (Miller et 

al. 2008) that placed contained reads based on the highest quality containment overlap, which 

could incorrectly place a read when the true location had no container read. Reads that remain 

unplaced after this phase are output as “unassembled.” 

An assembly bubble occurs when there is more than one reconstruction of a specific 

locus caused by haplotype differences (Fasulo et al. 2002; Zerbino and Birney 2008; Koren et al. 

2011; Nijkamp et al. 2013; Chin et al. 2016). Small differences, tens of base pairs in size, are 

typically not detectable from overlaps alone because the difference is insignificant compared to 

the size of the overlap. Larger differences can result in two, mostly redundant, contigs covering 

the same locus. The more common haplotype is often reconstructed in a large contig spanning 

the locus, and the less common haplotype as just the variant region (the bubble). Currently, 

contigs with fewer than a minimum threshold of reads, or with more than 75% of the reads with 

an overlap to some other contig, are considered potential bubbles. Reads in these contigs are then 

placed, using the mechanism for placing unplaced reads as above, into all other contigs where 

possible using heuristics. Improved mechanisms for resolving bubbles within the assembly 

graph, and ultimately producing a fully phased assembly, is an area of ongoing research and left 

for future work. 

Despite careful filtering, the greedy construction algorithm remains prone to error and the 

graph will be missing edges compared to a full string graph representation, so a final step is 

required to add missing edges and break incorrectly assembled contigs. Using the all-pairs 

overlap information, every assembled contig is annotated with compatible read placements, 

again using the read placement mechanism and all reads from non-bubble contigs. Only overlaps 

that meet the global and local contig error rate thresholds are considered. The resulting annotated 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


29 

regions indicate alternative branch points in the full overlap graph, and a correct contig 

reconstruction is confirmed by the presence of spanning reads or overlaps. Unresolved regions 

are marked as repeats, the contig is split, and additional edges are added to form the final 

assembly graph. 

Contig	
  Consensus	
  
Canu generates a consensus sequence for each contig using a modified version of the 

“pbdagcon” algorithm (Chin et al. 2013). Briefly, a template sequence is constructed for each 

contig by splicing reads together from approximate positions based on the best overlap path. This 

template is accurate within individual reads, as they have previously been error-corrected, but 

may have Indel errors at read boundaries due to inaccuracy in the overlap positions. To correct 

this, all reads in the contig are aligned to the template sequence in parallel using Myers’ ND 

algorithm (Myers 1986) and added to a DAG. The DAG is then used to call a consensus 

sequence as in (Chin et al. 2013). 

Data	
  Access	
  
The Bacillus anthracis Sterne sequencing data can be accesed through BioProject PRJXXXX 

and the Yersinia pestis CO92 sequencing data can be accessed through PRJXXXX. All other 

sequencing is publically available and listed in Supplementary Note 2. 

Acknowledgements	
  
We thank Celera and Pacific Biosciences for open source software that was critical for the 

development of Canu, and also John Urban and all other Canu users who provided early testing 

and feedback on the software. This research was supported in part by the Intramural Research 

Program of the National Human Genome Research Institute, National Institutes of Health, and 

utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). 

References	
  
 

Antipov D, Korobeynikov A, McLean JS, Pevzner PA. 2016. hybridSPAdes: an algorithm for 
hybrid assembly of short and long reads. Bioinformatics 32: 1009-1015. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


30 

Appleby A MurmurHash3  http://code.google.com/p/smhasher/wiki/MurmurHash3 (2014). 
Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ, Marygold SJ, FlyBase C. 

2016. FlyBase: establishing a Gene Group resource for Drosophila melanogaster. Nucleic 
Acids Res 44: D786-792. 

Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015. Assembling large 
genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotech 33: 
623-630. 

Bresler G, Bresler M, Tse D. 2013. Optimal assembly for high throughput shotgun sequencing. 
BMC Bioinformatics 14 Suppl 5: S18. 

Broder AZ. 1997. On the resemblance and containment of documents. Compression and 
Complexity of Sequences 1997 Proceedings: 21-29. 

Broder AZ, Charikar M, Frieze AM, Mitzenmacher M. 2000. Min-wise independent 
permutations. Journal of Computer and System Sciences 60: 630-659. 

Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. 2013. Chromosome-scale 
scaffolding of de novo genome assemblies based on chromatin interactions. Nature 
biotechnology 31: 1119-1125. 

Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. 2016. Contiguous and accurate de 
novo assembly of metazoan genomes with modest long read coverage. biorxiv. 

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, 
Huddleston J, Eichler EE et al. 2013. Nonhybrid, finished microbial genome assemblies 
from long-read SMRT sequencing data. Nature methods 10: 563-569. 

Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O'Malley R, 
Figueroa-Balderas R, Morales-Cruz A et al. 2016. Phased Diploid Genome Assembly 
with Single Molecule Real-Time Sequencing. biorxiv. 

Chum O, Philbin J, Zisserman A. 2008. Near Duplicate Image Detection: min-Hash and tf-idf 
Weighting. BMVC 810: 812-815. 

Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B et al. 
2009. Real-time DNA sequencing from single polymerase molecules. Science 323: 133-
138. 

Ewing B, Green P. 1998. Base-calling of automated sequencer traces using phred. II. Error 
probabilities. Genome Res 8: 186-194. 

fastutil: Fast & compact type-specific collections for Java™.  http://fastutil.di.unimi.it (2016). 
Fasulo D, Halpern A, Dew I, Mobarry C. 2002. Efficiently detecting polymorphisms during the 

fragment assembly process. Bioinformatics 18 Suppl 1: S294-302. 
Felsenfeld A, Peterson J, Schloss J, Guyer M. 1999. Assessing the quality of the DNA sequence 

from the Human Genome Project. Genome Res 9: 1-4. 
Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR. 2015. 

Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a 
eukaryotic genome. Genome Res 25: 1750-1756. 

Gordon D, Huddleston J, Chaisson MJ, Hill CM, Kronenberg ZN, Munson KM, Malig M, Raja 
A, Fiddes I, Hillier LW et al. 2016. Long-read sequence assembly of the gorilla genome. 
Science 352: aae0344. 

Hackl T, Hedrich R, Schultz J, Forster F. 2014. proovread: large-scale high-accuracy PacBio 
correction through iterative short read consensus. Bioinformatics 30: 3004-3011. 

Hastie AR, Dong L, Smith A, Finklestein J, Lam ET, Huo N, Cao H, Kwok PY, Deal KR, 
Dvorak J et al. 2013. Rapid genome mapping in nanochannel arrays for highly complete 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


31 

and accurate de novo sequence assembly of the complex Aegilops tauschii genome. PLoS 
One 8: e55864. 

Holt RA Subramanian GM Halpern A Sutton GG Charlab R Nusskern DR Wincker P Clark AG 
Ribeiro JM Wides R et al. 2002. The genome sequence of the malaria mosquito 
Anopheles gambiae. Science 298: 129-149. 

Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE, Booth BW, Pfeiffer BD, 
George RA, Svirskas R et al. 2015. The Release 6 reference sequence of the Drosophila 
melanogaster genome. Genome Res 25: 445-458. 

International Human Genome Sequencing C. 2004. Finishing the euchromatic sequence of the 
human genome. Nature 431: 931-945. 

Istace B, Friedrich A, d'Agata L, Faye S, Payen E, Beluche O, Caradec C, Davidas S, Cruaud C, 
Liti G et al. 2016. de novo assembly and population genomic survey of natural yeast 
isolates with the Oxford Nanopore MinION sequencer. biorxiv. 

Istrail S, Sutton GG, Florea L, Halpern AL, Mobarry CM, Lippert R, Walenz B, Shatkay H, Dew 
I, Miller JR et al. 2004. Whole-genome shotgun assembly and comparison of human 
genome assemblies. Proc Natl Acad Sci U S A 101: 1916-1921. 

Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M. 2015. Improved data analysis for 
the MinION nanopore sequencer. Nature methods 12: 351-356. 

Judge K, Hunt M, Reuter S, Tracey A, Quail MA, Parkhill J, Peacock SJ. 2016. Comparison of 
bacterial genome assembly software for MinION data. biorxiv. 

Kaplan N, Dekker J. 2013. High-throughput genome scaffolding from in vivo DNA interaction 
frequency. Nature biotechnology 31: 1143-1147. 

Kim KE, Peluso P, Babayan P, Yeadon PJ, Yu C, Fisher WW, Chin C-S, Rapicavoli NA, Rank 
DR, Li J et al. 2014. Long-read, whole-genome shotgun sequence data for five model 
organisms. Scientific Data 1. 

Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, McVey SD, Radune D, Bergman NH, 
Phillippy AM. 2013. Reducing assembly complexity of microbial genomes with single-
molecule sequencing. Genome Biol 14: R101. 

Koren S, Phillippy AM. 2014. One chromosome, one contig: complete microbial genomes from 
long-read sequencing and assembly. Curr Opin Microbiol 23C: 110-120. 

Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, 
McCombie WR, Jarvis ED et al. 2012. Hybrid error correction and de novo assembly of 
single-molecule sequencing reads. Nature biotechnology 30: 693-700. 

Koren S, Treangen TJ, Pop M. 2011. Bambus 2: Scaffolding Metagenomes. Bioinformatics 27: 
2964-2971. 

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. 
Versatile and open software for comparing large genomes. Genome biology 5: R12-R12. 

Lee H, Gurtowski J, Yoo S, Marcus S, McCombie WR, Schatz M. 2014. Error correction and 
assembly complexity of single molecule sequencing reads. biorxiv doi:10.1101/006395. 

Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly for noisy long 
sequences. Bioinformatics 32: 2103-2110. 

Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome assembled de novo using 
only nanopore sequencing data. Nature methods 12: 733-735. 

Manning CD, Raghavan P, Schütze H. 2008. Scoring, term weighting and the vector space 
model. Introduction to Information Retrieval 100: 2-4. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


32 

Metz CW. 1914. Chromosome studies in the Diptera. Journal of Experimental Zoology 17: 45-
59. 

Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry 
C, Sutton G. 2008. Aggressive assembly of pyrosequencing reads with mates. 
Bioinformatics 24: 2818-2824. 

Myers EW. 1986. An O(ND) difference algorithm and its variations. Algorithmica 1: 251-266. 
Myers EW. 2005. The fragment assembly string graph. Bioinformatics (Oxford, England) 21 

Suppl 2: ii79-85. 
Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry 

CM, Reinert KH, Remington KA et al. 2000. A whole-genome assembly of Drosophila. 
Science 287: 2196-2204. 

Myers G. 2014. Efficient Local Alignment Discovery amongst Noisy Long Reads. Algorithms in 
Bioinformatics 8701: 52-67. 

Nagarajan N, Pop M. 2009. Parametric complexity of sequence assembly: theory and 
applications to next generation sequencing. J Comput Biol 16: 897-908. 

Nijkamp JF, Pop M, Reinders MJT, de Ridder D. 2013. Exploring variation-aware contig graphs 
for (comparative) metagenomics using MaryGold. Bioinformatics 29: 2826-2834. 

Ning Z, Cox AJ, Mullikin JC. 2001. SSAHA: a fast search method for large DNA databases. 
Genome Res 11: 1725-1729. 

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. 
Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 
17: 132. 

Ono Y, Asai K, Hamada M. 2013. PBSIM: PacBio reads simulator--toward accurate genome 
assembly. Bioinformatics 29: 119-121. 

Oxford Nanopore Technologies PromethION: small benchtop system for high throughput real-
time biological analyses and allowing large sample numbers.  
https://www.nanoporetech.com/products-services/promethion (2016a). 

Oxford Nanopore Technologies Rapid Sequencing.  
https://cws.nanoporetech.com/rapidsequencing (2016b). 

Pacific Biosciences DevNet Datasets 
https://github.com/PacificBiosciences/DevNet/wiki/Datasets (2014). 

Pacific Biosciences Quiver Frequently Asked Questions.  
https://github.com/PacificBiosciences/GenomicConsensus/blob/master/doc/QuiverFAQ.r
st (2015). 

Phillippy AM, Schatz MC, Pop M. 2008. Genome assembly forensics: finding the elusive mis-
assembly. Genome biology 9: R55-R55. 

Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, Koren S, Sutton G, Kodira C, 
Winer R. 2012. The bonobo genome compared with the chimpanzee and human 
genomes. Nature. 

Quick J, Loman NJ First SQK MAP 006 experiment. http://lab.loman.net/2015/09/24/first-sqk-
map-006-experiment/ (2015). 

Quick J, Loman NJ Nanopore R9 rapid run data release. 
http://lab.loman.net/2016/07/30/nanopore-r9-data-release/ (2016). 

Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. 
2013. Characterizing and measuring bias in sequence data. Genome Biol 14: R51. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/


33 

Salmela L, Rivals E. 2014. LoRDEC: accurate and efficient long read error correction. 
Bioinformatics 30: 3506-3514. 

Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ, Schatz MC, 
Delcher AL, Roberts M. 2012. GAGE: A critical evaluation of genome assemblies and 
assembly algorithms. Genome Research 22: 557-567. 

Schmutz J, Wheeler J, Grimwood J, Dickson M, Yang J, Caoile C, Bajorek E, Black S, Chan 
YM, Denys M et al. 2004. Quality assessment of the human genome sequence. Nature 
429: 365-368. 

Schneider GF, Dekker C. 2012. DNA sequencing with nanopores. Nature biotechnology 30: 326-
328. 

Selvaraj S, J RD, Bansal V, Ren B. 2013. Whole-genome haplotype reconstruction using 
proximity-ligation and shotgun sequencing. Nature biotechnology 31: 1111-1118. 

Sovic I, Krizanovic K, Skala K, Sikic M. 2016. Evaluation of hybrid and non-hybrid methods for 
de novo assembly of nanopore reads. Bioinformatics doi:10.1093/bioinformatics/btw237. 

Stevens NM. 1912. The chromosomes in Drosophila ampelophila. Proceedings of the 7th 
International Zoological Congress, Boston: 380-381. 

Sutton GG, White O, Adams MD, Kerlavage AR. 1995. TIGR Assembler: A New Tool for 
Assembling Large Shotgun Sequencing Projects. Genome Science and Technology 1: 9-
19. 

Tørresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, Walenz BP, Knight J, Ekholm 
JM, Peluso P et al. 2016. An improved genome assembly uncovers a prolific tandem 
repeat structure in Atlantic cod. biorxiv. 

Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW. 2010. A flexible and efficient template 
format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38: e159. 

Ukkonen E. 1992. Approximate string-matching with q-grams and maximal matches. 
Theoretical Computer Science 92: 191-211. 

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, 
Wortman J, Young SK et al. 2014. Pilon: an integrated tool for comprehensive microbial 
variant detection and genome assembly improvement. PLoS One 9: e112963. 

Wang H, Avican K, Fahlgren A, Erttmann SF, Nuss AM, Dersch P, Fallman M, Edgren T, Wolf-
Watz H. 2016. Increased plasmid copy number is essential for Yersinia T3SS function 
and virulence. Science 353: 492-495. 

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo 
genome assemblies. Bioinformatics 31: 3350-3352. 

Ye C, Hill C, Ruan J, (Sam)Ma Z. 2014. DBG2OLC: Efficient assembly of large genomes using 
the compressed overlap graph. arXiv preprint arXiv:14102801. 

Zerbino DR, Birney E. 2008. Velvet: Algorithms for de novo short read assembly using de 
Bruijn graphs. Genome Research 18: 821-829. 

Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, Kyriazopoulou-
Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM et al. 2016. Haplotyping 
germline and cancer genomes with high-throughput linked-read sequencing. Nature 
biotechnology 34: 303-311. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/071282doi: bioRxiv preprint 

https://doi.org/10.1101/071282
http://creativecommons.org/licenses/by/4.0/

