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Abstract10

The haplotypes of a beneficial allele carry information about its history that can shed light on its age and11

putative cause for its increase in frequency. Specifically, the signature of an allele’s age is contained in12

the pattern of local ancestry that mutation and recombination impose on its haplotypic background. We13

provide a method to exploit this pattern and infer the time to the common ancestor of a positively selected14

allele following a rapid increase in frequency. We do so using a hidden Markov model which leverages15

the length distribution of the shared ancestral haplotype, the accumulation of derived mutations on16

the ancestral background, and the surrounding background haplotype diversity. Using simulations, we17

demonstrate how the inclusion of information from both mutation and recombination events increases18

accuracy relative to approaches that only consider a single type of event. We also show the behavior of19

the estimator in cases where data do not conform to model assumptions, and provide some diagnostics20

for assessing and improving inference. Using the method, we analyze population-specific patterns in21

the 1000 Genomes Project data to provide a global perspective on the timing of adaptation for several22

variants which show evidence of recent selection and functional relevance to diet, skin pigmentation, and23

morphology in humans.24

Introduction25

A complete understanding adaptation depends on a description of the genetic mechanisms and selective26

history that underlies adaptive genetic variation [Radwan and Babik, 2012]. Once a genetic variant27

underlying a putatively adaptive trait has been identified, several questions remain: What is the molecular28

mechanism by which the variant affects organismal traits and fitness [Dalziel et al., 2009]?; what is the29

selective mechanism responsible for allelic differences in fitness?; Did the variant arise by mutation more30

than once [Elmer and Meyer, 2011]?; when did each unique instance of the variant arise and spread [Slatkin31

and Rannala, 2000]? Addressing these questions for numerous case studies of beneficial variants across32

multiple species will be necessary to gain full insight into general properties of adaptation. [Stinchcombe33

and Hoekstra, 2008]34

Here, our focus is on the the last of the questions given above; that is, when did a mutation arise35

and spread? Understanding these dates can give indirect evidence regarding the selective pressure that36

may underlie the adaptation; This is especially useful in cases where it is logistically infeasible to assess37

fitness consequences of a variant in the field directly [Barrett and Hoekstra, 2011]. In humans, for38

example, dispersal across the globe has resulted in the occupation of a wide variety of habitats, and in39

several cases, selection in response to specific ecological pressures appears to have taken place. There40

are well-documented cases of loci showing evidence of recent selection in addition to being functionally41

relevant to known phenotypes of interest [Jeong and Di Rienzo, 2014]. Nakagome et al. (2015) specify42
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time intervals defined by the human dispersal out-of-Africa and the spread of agriculture to show the43

relative concordance among allele ages for several loci associated with autoimmune protection and risk,44

skin pigmentation, hair and eye color, and lactase persistence.45

When a putative variant is identified as the selected site, the non-random association of surrounding46

variants on a chromosome can be used to understand its history. This combination of surrounding variants47

is called a haplotype, and the non-random association between any pair of variants is called linkage48

disequilibrium (LD). Due to recombination, LD between the focal mutation and its initial background of49

surrounding variants follows a per-generation rate of decay. New mutations also occur on this haplotype50

at an average rate per generation. The focal mutation’s frequency follows a trajectory determined by51

the stochastic outcome of survival, mating success and offspring number. If the allele’s selective benefit52

increases its frequency at a rate faster than the rate at which LD decays, the resulting signature is one53

of high LD and a reduction of polymorphism near the selected mutation [Smith and Haigh, 1974,Kaplan54

et al., 1989]. Many methods to exploit this pattern have been developed in an effort to identify loci55

under recent positive selection [Tajima, 1989, Fu and Li, 1993, Hudson et al., 1994, Kelly, 1997, Depaulis56

et al., 1998,Andolfatto et al., 1999,Fay and Wu, 2000,Sabeti et al., 2002,Kim and Stephan, 2002,Kim and57

Nielsen, 2004,Nielsen et al., 2005,Toomajian et al., 2006,Voight et al., 2006,Tang et al., 2007,Sabeti et al.,58

2007, Williamson et al., 2007, Pickrell et al., 2009, Chen et al., 2010, Grossman et al., 2013, Chen et al.,59

2015]. A parallel effort has focused on quantifying specific properties of the signature to infer the age of60

the selected allele [Serre et al., 1990, Kaplan et al., 1994, Risch et al., 1995, Goldstein et al., 1999, Guo61

and Xiong, 1997, Slatkin and Rannala, 1997, Stephens et al., 1998, Reich and Goldstein, 1999, Thomson62

et al., 2000,Slatkin, 2002,Tang et al., 2002,Innan and Nordborg, 2003,Przeworski, 2003,Toomajian et al.,63

2003,Meligkotsidou and Fearnhead, 2005,Tishkoff et al., 2007,Bryk et al., 2008,Coop et al., 2008,Slatkin,64

2008, Peter et al., 2012, Beleza et al., 2013b, Chen and Slatkin, 2013, Chen et al., 2015, Nakagome et al.,65

2015].66

One category of methods used to estimate allele age relies on a point estimate of the mean length of the67

selected haplotype, or a count of derived mutations within an arbitrary cutoff distance from the selected68

site [Thomson et al., 2000,Tang et al., 2002,Meligkotsidou and Fearnhead, 2005,Hudson, 2007,Coop et al.,69

2008]. These approaches ignore uncertainty in the extent of the selected haplotype on each chromosome,70

leading to inflated confidence in the point estimates.71

An alternative approach that is robust to uncertainty in the selected haplotype employs an Approx-72

imate Bayesian Computation (ABC) framework to identify the distribution of ages that are consistent73

with the observed data [Tavaré et al., 1997, Pritchard et al., 1999, Beaumont et al., 2002, Przeworski,74

2003, Voight et al., 2006, Tishkoff et al., 2007, Beleza et al., 2013b, Peter et al., 2012, Nakagome et al.,75

2015]. Rather than model the haplotype lengths explicitly, these approaches aim to capture relevant76

features of the data through the use of summary statistics. These approaches provide a measure of un-77

certainy induced by the randomness of recombination, mutation, and genealogical history and produce an78

approximate posterior distribution on allele age. Despite these advantages, ABC approaches suffer from79

an inability to capture all relevant features of the sample due to their reliance on summary statistics.80

As full-sequencing data become more readily available, defining the summary statistics which capture81

the complex LD among sites and the subtle differences between haplotypes will be increasingly challenging.82

For this reason, efficiently computable likelihood functions that leverage the full information in sequence83

data are increasingly favorable.84

Several approaches attempt to compute the full likelihood of the data using an importance sampling85

framework [Slatkin, 2001,Coop and Griffiths, 2004,Slatkin, 2008,Chen and Slatkin, 2013]. Conditioning86

on the current frequency of the selected allele, frequency trajectories and genealogies are simulated and87

given weight proportional to the probability of their occurrence under a population genetic model. While88

these approaches aim to account for uncertainty in the allele’s frequency trajectory and genealogy, they89

remain computationally infeasible for large samples or do not consider recombination across numerous90

loci.91
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In a related problem, early likelihood-based methods for disease mapping have modelled recombination92

around the ancestral haplotype, providing information for the time to the common ancestor (TMRCA)93

rather than time of mutation [Rannala and Reeve, 2001, Rannala and Reeve, 2003, McPeek and Strahs,94

1999, Morris et al., 2000, Morris et al., 2002]. These models allowed for the treatment of unknown95

genealogies and background haplotype diversity before access to large data sets made computation at96

the genome-wide scale too costly. Inference is performed under Markov chain Monte Carlo (MCMC) to97

sample over the unknown genealogy while ignoring LD on the background haplotypes, or approximating98

it using a first-order Markov chain. In a similar spirit, Chen and Slatkin (2015) revisit this class of models99

to estimate the strength of selection and time of mutation for an allele under positive selection using a100

hidden Markov model.101

Hidden Markov models have become a routine tool for inference in population genetics. The Markov102

assumption allows for fast computation and has proven an effective approximation for inferring the103

population-scaled recombination rate, the demographic history of population size changes, and the timing104

and magnitude of admixture events among genetically distinct populations [Li and Stephens, 2003,Li and105

Durbin, 2011,Price et al., 2009,Hinch et al., 2011,Wegmann et al., 2011]. The approach taken by Chen106

and Slatkin (2015) is a special case of two hidden states—the ancestral and background haplotypes. The107

ancestral haplotype represents the linked background that the focal allele arose on, while the background108

haplotypes represent some combination of alleles that recombine with the ancestral haplotype during its109

increase in frequency. Chen and Slatkin (2015) compute maximum-likelihood estimates for the length110

of the ancestral haplotype on each chromosome carrying the selected allele. Inference for the time of111

mutation is performed on these fixed estimates assuming they are known. The authors condition the112

probability of an ancestry switch event on a logistic frequency trajectory for the selected allele and113

assume independence among haplotypes leading to the common ancestor. The likelihood for background114

haplotypes is approximated using a first-order Markov chain to account for non-independence among115

linked sites.116

Our approach differs in several ways from that of Chen and Slatkin (2015). First, our method117

implements an MCMC which samples over the unknown ancestral haplotype to generate a sample of the118

posterior distribution for the TMRCA instead of the time since mutation. Rather than directly estimate119

the recombination breakpoints, we integrate over uncertainty among all possible recombination events120

for each haplotype in the sample. Our model does not assume any particular frequency trajectory, but121

makes the simplification that all recombination events result in a switch from the ancestral haplotype122

to the background haplotypes. To incorporate information from derived mutations as well as LD decay,123

we model differences from the ancestral haplotype as mutation events having occurred since the common124

ancestor. Rather than use a first-order Markov chain, our emission probabilities account for the LD125

structure among background haplotypes using the Li and Stephens (2003) haplotype copying model and126

a reference panel of haplotypes without the selected allele [Li and Stephens, 2003] (Figure 1b,c). The127

copying model provides an approximation to the coalescent with recombination by modelling the sequence128

of variants following the recombination event as an imperfect mosaic of haplotypes in the reference panel.129

Below, we use simulation to show the sensitivity of our model to these simplified assumptions for varying130

strengths of selection, final allele frequencies, and sampling regimes for the choice of reference panel. An131

R package is available to implement this method on github (https://github.com/joelhsmth/startmrca).132

Materials and Methods133

Model description134

In general, the TMRCA for a sample of haplotypes carrying the advantageous allele (hereafter referred to135

as t) will be more recent than the time of mutation [Kaplan et al., 1989]. We aim to estimate t in the case136

where a selectively advantageous mutation occured in an ancestor of our sample t1 generations ago (Fig137
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1a). Viewed backwards in time, the selected variant decreases in frequency at a rate proportional to the138

selection strength. For a rapid drop in allele frequency, the coalescent rate among haplotypes carrying139

the selected variant is amplified. The same effect would be observed for population growth from a small140

initial size forward in time [Hudson et al., 1990, Slatkin and Hudson, 1991]. As a result, the genealogy141

of a sample having undergone selection and/or population growth becomes more “star-shaped” (Fig 1a).142

This offers some convenience, as it becomes more appropriate to invoke an assumption of independence143

among lineages when selection is strong.144

  local panel diverged panel
beneficial mutation

time t

ancestral haplotypereference panel
observed haplotype

selected site

(A) (B)

(C)t1

Fig 1. Visual descriptions of the model. a) An idealized illustration of the effect of a selectively
favored mutation’s frequency trajectory (black line) on the shape of a genealogy at the selected locus.
The orange lineages are chromosomes with the selected allele. The blue lineages indicate chromosomes
that do not have the selected allele. Note the discrepancy between the time to the common ancester of
chromosomes with the selected allele, t, and the time at which the mutation arose, t1. b) The copying
model follows the ancestral haplotype (orange) moving away from the selected site until recombination
events within the reference panel lead to a mosaic of non-selected haplotypes surrounding the ancestral
haplotype. c) A demographic history with two choices for the reference panel: local and diverged. After
the ancestral population at the top of the figure splits into two sister populations, a beneficial mutation
arises and begins increasing in frequency. The orange and blue colors indicate frequency of the selected
and non-selected alleles, respectively.

We assume no crossover interference between recombination events within a haplotype, and therefore145

treat each side flanking the focal allele separately. We define one side of the selected site, within a146

window of some predetermined length, to have L segregating sites, such that an individual’s sequence147

will be indexed from site s = {1, ..., L}, where s=1 refers to the selected site (a notation reference is148

provided in Table 1). To simplify notation, this description will be written for a window on one side149

flanking the selected site. Note that the opposing side of the selected site is modelled in an identical150

fashion after redefining L.151
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Table 1. Notation used to describe the model

n Number of haplotypes with the selected allele
m Number of haplotypes without the selected allele
L Number of SNPs flanking the selected site (one side considered at a time)
X n× L matrix of haplotypes with the selected allele
H m× L matrix of haplotypes without the selected allele
Xij Allele in haplotype i at SNP j, where i ∈ {1, ..., n}, and j ∈ {1, ..., L}
Hzj Allele in haplotype z at SNP j, where z ∈ {1, ...,m}, and j ∈ {1, ..., L}
Aj Ancestral allele at site j
Zj The reference panel haplotype from which Xi copies at site j
t Time to the most recent common ancestor (TMRCA)
Wi The location of the first recombination event off of the ancestral haplotype
r Recombination rate per basepair per generation
µ Mutation rate per basepair per generation
θ Haplotype miscopying rate, or population-scaled mutation rate (4Nµ)
ρ Haplotype switching rate, or population-scaled recombination rate (4Nr)
dw Physical distance of site w from the selected site, where w ∈ {1, ..., L}
cj Number of basepairs between sites j and j + 1
αiw Likelihood of haplotype i for sites 1, ..., w
βiw Likelihood of haplotype i for sites (w + 1), ..., L

Let X denote an n×L data matrix for a sample of n chromosomes with the selected variant. Xij is the152

observed allelic type in chromosome i at variant site j, and is assumed to be biallelic where Xij ∈ {1, 0}.153

Let H denote an m× L matrix comprising m chromosomes that do not have the selected variant where154

Hij ∈ {1, 0}. Let A denote the ancestral haplotype as a vector of length L where Aj is the allelic type on155

the ancestral selected haplotype at segregating site j and Aj ∈ {1, 0}. We assume independence among156

lineages leading to the most recent common ancestor of the selected haplotype. This is equivalent to157

assuming a star-shaped genealogy which, as noted above, is a reasonable assumption for sites linked to a158

favorable variant under strong selection. We can then write the likelihood as159

Pr (X | t, A,H) =

n∏
i

Pr (Xi | t, A,H). (1)

In each individual haplotype, Xi, we assume the ancestral haplotype extends from the selected allele until160

a recombination event switches ancestry to a different genetic background. Let W ∈ {1, ..., L} indicate161

that location of the first recombination event occurs between sites W and W + 1 (W = L indicates no162

recombination up to site L). We can then condition the probability of the data on the interval where the163

first recombination event occurs and sum over all possible intervals to express the likelihood as164

Pr (Xi | t, A,H) =
L∑

w=1

Pr (Xi | t, A,H,Wi = w) Pr (Wi = w | t). (2)

Assuming haplotype lengths are independent and identically distributed draws from an exponential dis-165

tribution, the transition probabilities for a recombination event off of the ancestral haplotype are166

Pr (Wi = w | t) =

{
e−rtdw(1− e−rt(dw+1−dw)) if w = {1, ..., (L− 1)};
e−rtdL if w = L

(3)
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where dw is the distance, in base pairs, of site w from the selected site and r is the local recombination167

rate per base pair, per generation. The data for each individual, Xi, can be divided into two parts: one168

indicating the portion of an individual’s sequence residing on the ancestral haplotype (before recombining169

between sites w and w + 1), Xi(j≤w), and that portion residing off of the ancestral haplotype after a170

recombination event, Xi(j>w). We denote a seperate likelihood for each portion171

αiw = Pr(Xi(j≤w) | t, A,W = w) (4)

βiw = Pr(Xi(j>w) | H(j>w),W = w) (5)

Because the focal allele is on the selected haplotype, α1 = 1. Conversely, we assume a recombination172

event occurs at some point beyond locus L such that βL = 1. We model α by assuming the waiting173

time to mutation at each site on the ancestral haplotype is exponentially distributed with no reversal174

mutations and express the likelihood as175

αiw = Pr(Xi(j≤w) | t, A,W = w) = e−tµ(dw−w)
w∏
j=2

Pr(Xij = a | t, A) (6)

Pr (Xij = a | t, A) =

{
e−tµ if a = Aj ;
1− e−tµ if a 6= Aj

(7)

The term, e−tµ(dw−w), on the right side of Eq (6) captures the lack of mutation at invariant sites between176

each segregating site. Assuming tµ is small, Eq (6) is equivalent to assuming a Poisson number of177

mutations (with mean tµ) occurring on the ancestral haplotype.178

For βw, the probability of observing a particular sequence after recombining off of the ancestral179

haplotype is dependent on standing variation in background haplotype diversity. The Li and Stephens180

(2003) haplotype copying model allows for fast computation of an approximation to the probability of181

observing a sample of chromosomes related by a genealogy with recombination. Given a sample of m182

haplotypes, H ∈ {h1, ..., hm}, a population scaled recombination rate ρ and mutation rate θ, an observed183

sequence of alleles is modelled as an imperfect copy of any one haplotype in the reference panel at each184

SNP. Let Zj denote which haplotype Xi copies at site j, and cj denote the number of base pairs between185

sites i and j. Zj follows a Markov process with transition probabilities186

Pr (Zj+1 = z′ | Zj = z) =

{
e−ρjcj/m + (1− e−ρjcj/m)(1/m) if z′ = z;
(1− e−ρjcj/m)(1/m) if z′ 6= z.

(8)

To include mutation, the probability that the sampled haplotype matches a haplotype in the reference187

panel is m/(m+ θ), and the probability of a mismatch (or mutation event) is θ/(m+ θ). Letting a refer188

to an allele where a ∈ {1, 0}, the matching and mismatching probabilities are189

Pr (Xi,j = a | Zj = z, h1, ..., hm) =

{
m/(m+ θ) + (1/2)(θ/(m+ θ)) if hz,j = a;
(1/2)(θ/(m+ θ)) if hz,j 6= a.

(9)

Eq (5) requires a sum over the probabilities of all possible values of Zj using Eq (8) and Eq (9). This is190

computed using the forward algorithm as described in Rabiner (1989) and Appendix A of Li and Stephens191

(2003) [Rabiner, 1989,Li and Stephens, 2003].192

The complete likelihood for our problem can then be expressed as193

Pr(X | t, A,H) =
n∏
i=1

L∑
w=1

αwβw Pr (W = w | t, A). (10)
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This computation is on the order 2Lnm2, and in practice for m = 20, n = 100 and L = 4000 takes194

approximately 3.027 seconds to compute on an Intel® Core� i7-4750HQ CPU at 2.00GHz×8 with 15.6195

GiB RAM.196

Inference197

Performing inference on t requires addressing the latent variables w and A in the model. Marginalizing198

over possible values of w is a natural summation per haplotype that is linear in L as shown above. For A,199

the number of possible values is large (2L), and so we employ a Metropolis–Hastings algorithm to jointly200

sample the posterior of A and t, and then we take marginal samples of t for inference. For the priors,201

we assign a uniform prior density for A such that Pr(A) = 1/2L, and we use an improper prior on t, a202

uniform density on all values greater than a positive constant value u. Proposed MCMC updates of the203

ancestral haplotype, A′, are generated by randomly selecting a site in A and flipping to the alternative204

allele. For t, proposed values are generated by adding a normally distributed random variable centered at205

0: t′ = t+N(0, σ2). To start the Metropolis–Hastings algorithm, an initial value of t is uniformly drawn206

from a user-specified range of values (10 to 2000 in the applications here). To initialize the ancestral207

haplotype to a reasonable value, we use a heuristic algorithm which exploits the characteristic decrease208

in variation near a selected site (see S1 Appendix).209

For each haplotype in the sample of beneficial allele carriers, the Li and Stephens (2003) model uses210

a haplotype miscopying rate θ, and switching rate ρ, to compute a likelihood term for loci following the211

recombination event off of the ancestral haplotype. For our analyses, we set ρ = 4.4 × 10−4 using our212

simulated values of r = 1.1× 10−8 per bp per generation and N = 10, 000, where ρ = 4Nr. Following Li213

and Stephens (2003) we fix θ = (
∑n=1
m=1 1/m)−1; as derived from the expected number of mutation events214

on a genealogy relating n chromosomes at a particular site. We found no discernible effects on estimate215

accuracy when specifying different values of ρ and θ (S1 Fig 3, 4).216

Results217

Evaluating accuracy218

We generated data using the software mssel (Dick Hudson, personal communication), which simulates a219

sample of haplotypes conditioned on the frequency trajectory of a selected variant under the structured220

coalescent [Kaplan et al., 1988,Hudson and Kaplan, 1988]. Trajectories were first simulated forwards in221

time under a Wright-Fisher model for an additive locus with varying strengths of selection and different222

ending frequencies of the selected variant. Trajectories were then truncated to end at the first time the223

allele reaches a specified frequency.224

Because our model requires a sample (or “panel”) of reference haplotypes without the selected allele,225

we tested our method for cases in which the reference panel is chosen from the local population in which226

the selected allele is found, as well as cases where the panel is from a diverged population where the227

selected haplotype is absent (Fig 1c). Regardless of scenario, the estimates are on average within a factor228

of 2 of the true value, and often much closer. When using a local reference panel, point estimates of t229

increasingly underestimate the true value (TMRCA) as selection becomes weaker and the allele frequency230

increases (Fig 2). Put differently, the age of older TMRCAs tend to be underestimated with local reference231

panels. Using the mean posteriors as point estimates, mean values of log2(estimate/true value) range232

from −0.62 to −0.14. Simulations using a diverged population for the reference panel removed the bias,233

though only in cases where the divergence time was not large. For a reference panel diverged by 0.5N234

generations, mean log2(estimate/true value) values range from −0.21 to −0.18. As the reference panel235

becomes too far diverged from the selected population, estimates become older than the true value (0.36236

to 0.94). In these cases, the HMM is unlikely to infer a close match between background haplotypes in237
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the sample and the reference panel, leading to many more mismatches being inferred as mutation events238

on the ancestral haplotype and an older estimate of t.239

The bottom panel of Fig 2 shows the effect of selection strength and allele frequency on the size of240

the normalized 95% credible interval around point estimates. Before normalizing, credible interval sizes241

using a local reference panel range from 73 to 213 generations for 2Ns = 100, versus 18 to 22 generations242

when 2Ns = 2000. Using local and diverged reference panels, we found a minimal effect of the sample243

size on point estimates (S1 Fig 3,4). As noted above, higher allele frequencies and weak selection are244

likely to induce more uncertainty due to the ancestral haplotype tracts recombining within the sample.245

To assess the convergence properties of the MCMC, five replicate chains were run for each of 20246

simulated data sets produced under three 2Ns values (100, 200 and 2000) for frequency trajectories247

ending at 0.1 (Fig 3).248

Application249

We applied our method to five variants previously identified as targets of recent selection in various250

human populations. Using phased data from the 1000 Genomes Project, we focused on variants that251

are not completely fixed in any one population so that we could use a local reference panel. The Li and252

Stephens (2001) haplotype copying model is appropriate in cases where ancestry switches occur among253

chromosomes within a single population, so we excluded populations in the Americas for which high254

levels of admixture are known to exist. A brief background on previous work for each locus is provided255

below. In four of the five cases, variants chosen to be the selected site control observable differences in256

expression or enzyme activity in functional assays.257

In contrast to previous work, we provide age estimates across a range of population samples. This258

provides greater context to understand the relative timing of adaptation for different populations among259

each of the selected variants. In addition to the mean TMRCA estimates, the dispersion of estimates for260

replicate MCMCs using different subsamples of the data can shed light on any genealogical structure in261

the data and the degree to which a star-genealogy assumption is satisfied. In general, we expect older262

TMRCAs to have more non-independence represented in the sample’s genealogy and greater dispersion263

of estimates.264

For more efficient run times of the MCMC, we set a maximum number of individuals to include in the265

selected and reference panels to be 100 and 20, respectively. In cases where the true number of haplotypes266

for either panel was greater than this in the full data set, we resampled a subset of haplotypes from each267

population for a total of five replicates per population. For simulation results supporting the use of this268

resampling strategy, see Supplementary Fig 4. The MCMCs were run for 15000 iterations with 9000 burn-269

in iterations. Figures 4 and 5 show the results for all five variants along with previous point estimates and270

95% confidence intervals assuming a generation time of 29 years [Fenner, 2005]. Supplementary Table 1271

lists the mean and 95% credible intervals for estimates with the highest mean posterior probability which272

we refer to in the text below. Supplementary Table 2 lists the previous estimates and confidence intervals273

with additional details of the different approaches taken.274

To model recombination rate variation, we used recombination rates from the Decode sex-averaged275

recombination map inferred from pedigrees among families in Iceland [Kong et al., 2010]. Because some276

populations may have recombination maps which differ from the Decode map at fine scales, we used a277

mean uniform recombination rate inferred from the 1 megabase region surrounding each variant. The278

motivation for this arises from how recombination rate variation across the genome has been previously279

shown to remain relatively consistent among recombination maps inferred for different populations at the280

megabase-scale [Broman et al., 1998,Kong et al., 2002,Kong et al., 2010,Baudat et al., 2010,Auton and281

McVean, 2012]. Further, we found our estimates depend mostly on having the megabase-scale recom-282

bination rate appropriately set, with little difference in most cases for estimates obtained by modeling283

the full recombination map at each locus (S1 Fig 3). We specify the switching rate among background284
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Fig 2. Accuracy results from simulated data. Accuracy of TMRCA point estimates and 95%
credible interval ranges from posteriors inferred from simulated data under different strengths of
selection, final allele frequencies and choice of reference panel. Credible interval range sizes are in units
of generations. 100 simulations were performed for each parameter combination. MCMCs were run for
10000 iterations with a burn-in excluding the first 4000 iterations. A standard deviation of 10 was used
for the proposal distribution of t. The red boxplots indicate local reference panels. The blue and green
boxplots indicate reference panels diverged by .5Ne generations and 1Ne generations, respectively. Each
data set was simulated for a 1 Mbp locus with a mutation rate of 1.6× 10−8, recombination rate of
1.1× 10−8 and population size of 10000. Sample sizes for the selected and reference panels were 100 and
20, respectively.
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haplotypes after recombining off of the ancestral haplotype to be 4Nr, where N = 10, 000 and r is the285

mean recombination rate for the 1Mb locus.286

For modeling mutation, a challenge is that previous mutation rate estimates vary depending on the287

approach used [Scally and Durbin, 2012,Ségurel et al., 2014]. Estimates using the neutral substitution rate288

between humans and chimps are more than 2× 10−8 per bp per generation, while estimates using whole289

genome sequencing are closer to 1× 10−8. As a compromise, we specify a mutation rate of 1.6× 10−8.290

The population sample abbreviations referred to in all of the figures correspond to the following:291

CHB (Han Chinese in Bejing, China), JPT (Japanese in Tokyo, Japan), CHS (Southern Han Chinese),292

CDX (Chinese Dai in Xishuangbanna, China), KHV (Kinh in Ho Chi Minh City, Vietnam), CEU (Utah293

Residents (CEPH) with Northern and Western European Ancestry), TSI (Toscani in Italia), FIN (Finnish294

in Finland), GBR (British in England and Scotland), IBS (Iberian Population in Spain) YRI (Yoruba295

in Ibadan, Nigeria), LWK (Luhya in Webuye, Kenya), GWD (Gambian in Western Divisions in the296

Gambia), MSL (Mende in Sierra Leone), ESN (Esan in Nigeria), GIH (Gujarati Indian from Houston,297

Texas), PJL (Punjabi from Lahore, Pakistan), BEB (Bengali from Bangladesh), STU (Sri Lankan Tamil298

from the UK), ITU (Indian Telugu from the UK).299

ADH1B300

A derived allele at high frequency among East Asians at the ADH1B gene (rs3811801) has been shown301

to be functionally relevant for alcohol metabolism [Osier et al., 2002, Eng et al., 2007]. Previous age302

estimates are consistent with the timing of rice domestication and fermentation approximately 10,000303

years ago [Li et al., 2007,Peng et al., 2010,Peter et al., 2012]. However, a more recent estimate by Peter304

et al. (2012) pushes this time back several thousand years to 12,876 (2,204 - 49,764) years ago. Our305

results are consistent with an older timing of selection, as our CHB sample (Han Chinese in Beijing,306

China) TMRCA estimate is 15,377 (13,763 - 17,281) years. Replicate chains of the MCMC are generally307

consistent, with the oldest estimates in the CHB sample showing the most variation among resampled308

datasets and the youngest estimate of 10,841 (9,720 - 12,147) in the KHV sample showing the least (JPT309

and KHV refer to Japanese in Tokyo, Japan and Kinh in Ho Chi Minh City, Vietnam respectively). When310

using a Mbp-scale recombination rate, all of the ADH1B TMRCAs are inferred to be slightly younger311

(S1 Fig 3).312

EDAR313

Population genomic studies have repeatedly identified the gene EDAR to be under recent selection in East314

Asians [Akey et al., 2004, Williamson et al., 2005, Voight et al., 2006] with a particular site (rs3827760)315

showing strong evidence for being the putative target. Functional assays and allele specific expression316

differences at this position show phenotypic associations to a variety of phenotypes including hair thickness317

and dental morphology [Bryk et al., 2008,Fujimoto et al., 2008,Kimura et al., 2009].318

Our estimate of 22,192 (19,683 - 25,736) years for the EDAR allele in the CHB sample is older319

than ABC-based estimates of 12,458 (1,314 - 85,835) and 13,224 (4,899 - 50,692) years made by Bryk320

et al. (2008) and Peter et al. (2012), respectively. We included all populations for which the variant is321

present including the FIN and BEB samples where it exists at low frequency. Our results for the youngest322

TMRCAs are found in these two low frequency populations where the estimate in FIN is 17,386 (13,887 -323

20,794) and the estimate in BEB is 18,370 (14,325 - 22,872). Among East Asian populations, the oldest324

and youngest TMRCA estimates are found in the KHV sample (25,683; 23,169 - 28,380) and CHB sample325

(22,192; 19,683 - 25,736).326
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Fig 3. Comparison of TMRCA estimates with previous results. Violin plots of posterior
distributions for the complete set of estimated TMRCA values for the 5 variants indicated in the legend
scaled to a generation time of 29 years. Each row indicates a population sample from the 1000 Genomes
Project panel. Five replicate MCMCs were performed for each variant and population by resampling
the selected and reference panels with replacement. Each MCMC was run for 15000 iterations with a
standard deviation of 20 for the t proposal distribution. We used the Mb-scale Decode sex-averaged
recombination map and a mutation rate of 1.6× 10−8 per basepair per generation. Replicate MCMCs
are plotted with transparency. Points and lines overlaying the violins are previous point estimates and
95% confidence intervals for each of the variants indicated by a color and rs number in the legend (see
Supplementary Table 1,2). Populations are ordered by broadly defined continental regions. The
population sample abbreviations are defined in text.
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LCT327

The strongest known signature of selection in humans is for an allele at the LCT gene (rs4988235) which328

confers lactase persistence into adulthood–a trait unique among mammals and which is thought to be329

a result of cattle domestication and the incorporation of milk into the adult diets of several human330

populations [Hollox et al., 2001,Enattah et al., 2002,Bersaglieri et al., 2004,Tishkoff et al., 2007]. There331

are multiple alleles that show association with lactase persistence [Tishkoff et al., 2007]. We focused on332

estimating the age of the T-13910 allele, primarily found at high frequency among Northern Europeans,333

but which is also found in South Asian populations. In addition to complete association with the lactase334

persistence phenotype, this allele has been functionally verified by in vitro experiments [Kuokkanen et al.,335

2006,Olds and Sibley, 2003,Troelsen et al., 2003].336

Mathieson et al. (2015a) use ancient DNA collected from 83 human samples to get a better under-337

standing of the frequency trajectory for several adaptive alleles spanning a time scale of 8,000 years. For338

the LCT persistence allele (rs4988235), they find a sharp increase in frequency in the past 4,000 years339

ago. While this is more recent than previous estimates, an earlier TMRCA or time of mutation is still340

compatible with this scenario.341

Our estimates using European and South Asian samples fall between the range from 5000 to 10,000342

years ago, which is broadly consistent with age estimates from modern data. The credible intervals for343

estimates in all of the samples have substantial overlap which makes any ranking on the basis of point344

estimates difficult. We infer the PJL (Punjabi from Lahore, Pakistan) sample to have the oldest TMRCA345

estimate of 9,514 (8,596 - 10,383) years. Itan et al. (2009) use spatial modelling to infer the geographic346

spread of lactase allele from northern to southern Europe. Consistent with their results, the youngest347

estimate among European populations is found in the IBS sample at 9,341 (8,688 - 9,989) years. Among348

all samples, the youngest estimate was found in BEB at 6,869 (5,143 - 8809).349

KITLG and OCA2350

The genetic basis and natural history of human skin pigmentation is a well studied system with several351

alleles of major effect showing signatures consistent with being targets of recent selection [Jablonski and352

Chaplin, 2012,Beleza et al., 2013b,Wilde et al., 2014,Eaton et al., 2015]. We focused on an allele found at353

high frequency world-wide among non-African populations at the KITLG locus (rs642742) which shows354

significant effects on skin pigmentation differences between Europeans and Africans [Miller et al., 2007];355

although more recent work fails to find any contribution of KITLG toward variation in skin pigmentation356

in a Cape Verde African-European admixed population [Beleza et al., 2013a]. We also estimated the357

TMRCA for a melanin-associated allele at the OCA2 locus (rs1800414) which is only found among East358

Asian populations at high frequency [Edwards et al., 2010].359

For the KITLG variant, our estimates among different populations vary from 18,000 to 34,000 years360

ago, with the oldest age being in the YRI (Yoruba in Ibadan, Nigeria) sample (33,948; 28,861 - 39,099).361

The youngest TMRCA is found in FIN at 18,733 years (16,675 - 20,816). The next two youngest estimates362

are also found in Africa with the TMRCA in the MSL (Mende in Sierra Leone) sample being 22,340 (15,723363

- 28,950) years old, and that for LWK (Luhya in Webuye, Kenya) being 22,784 (17,922 - 2,8012) years364

old, suggesting a more complex history than a model of a simple allele frequency increase outside of365

Africa due to pigmentation related selection pressures. Previous point estimates using rejection sampling366

approaches on a Portuguese sample (32,277; 6,003 - 80,683) and East Asian sample (32,045; 6,032 -367

98,165) are again most consistent with our own results on the IBS (29,731; 26,170 - 32,813) and CHB368

samples (26,773; 24,297 - 30,141) [Beleza et al., 2013b,Chen et al., 2015]. Among East Asians, the oldest369

and youngest estimates are again found in the JPT (28,637; 24,297 - 30,141) and KHV (24,544; 21,643 -370

27,193) samples, respectively. The TMRCA for OCA2 alleles in the JPT (18,599; 16,110 - 20,786) and371

KHV (16370; 14,439 - 18,102) samples are also the oldest and youngest, respectively. When using a372

Mbp-scale recombination rate, all of the ADH1B estimates are inferred to be slightly younger (S1 Fig 3)373
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than estimates from the fine-scale map.374

Discussion375

Our approach uses a simplified model of haplotype evolution to more accurately estimate the timing of376

selection on a beneficial allele. By leveraging information from carriers and non-carriers of the allele,377

we can more effectively account for uncertainty in the extent of the ancestral haplotype and derived378

mutations. Using simulations, we show the performance of our method for different strengths of selection,379

beneficial allele frequencies and choices of reference panel. By applying our method to five variants380

previously identified as targets of natural selection in human populations, we provide a comparison among381

population-specific TMRCAs. This gives a more detailed account of the order in which populations may382

have acquired the variant and/or experienced selection for the trait it underlies. Comparisons across383

variants also help to identify patterns of adaptation that are consistent for particular populations or384

regions of the world.385

In that regard, it is hypothesized that local selection pressures and a cultural shift toward agrarian386

societies has induced adaptive responses among human populations around the globe. As would be387

expected for the traits associated with the loci studied here, all of our inferred TMRCA values are more388

recent than the earliest estimates that are commonly used for the dispersal out-of-Africa 40,000 years389

ago [Benazzi et al., 2011, Higham et al., 2011, Mellars, 2011]. However, the data associated with some390

variants seem to indicate more recent selective events than others. Our results for variants associated391

with dietary traits at the LCT and ADH1B genes both imply relatively recent TMRCAs, consistent with392

hypotheses that selection on these mutations results from recent changes in human diet following the393

spread of agriculture [Simoons, 1970, Peng et al., 2010]. In contrast, the inferred TMRCAs for EDAR,394

KITLG and OCA2 imply older adaptive events which may have coincided more closely with the habitation395

of new environments or other cultural changes.396

Several hypotheses have been suggested to describe the selective drivers of skin pigmentation dif-397

ferences among human populations, including reduced UV radiation at high latitudes and vitamin D398

deficiency [Loomis, 1967, Jablonski and Chaplin, 2000]. Estimated TMRCAs for the variants at the399

OCA2 and EDAR loci among East Asians appear to be as young or younger than the KITLG variant,400

but older than the LCT and ADH1B locus. This suggests a selective history in East Asian populations401

leading to adaptive responses for these traits occurring after an initial colonization. In some cases, the402

dispersion of replicate MCMC estimates make it difficult to describe the historical significance of an ob-403

served order for TMRCA values. However, the consistency of estimates among different populations for404

particular variants add some confidence to our model’s ability to reproduce the ages which are relevant405

to those loci or certain geographic regions.406

We also compared our estimates to a compilation of previous age estimates based on the time of mu-407

tation, time since fixation, or TMRCA of variants associated with the genes studied here. The range of408

confidence interval sizes for these studies is largely a reflection of the assumptions invoked or relaxed for409

any one method, as well as the sample size and quality of the data used. Relative to the ABC approaches410

which are most commonly used today, our method provides a gain in accuracy while accounting for uncer-411

tainty in both the ancestral haplotype and its length on each chromosome. Notably, our method provides412

narrower credible intervals by incorporating the full information from ancestral haplotype lengths, derived413

mutations, and a reference panel of non-carrier haplotypes.414

One caveat of our method is its dependence on the reference panel, which is intended to serve as a415

representative sample of non-ancestral haplotypes in the population during the selected allele’s increase416

in frequency. Four possible challenges can arise: (1) segments of the ancestral selected haplotype may be417

present in the reference panel due to recombination, (this is more likely for alleles that have reached higher418

frequency), (2) the reference panel may contain haplotypes that are similar to the ancestral haplotype due419

to low levels of genetic diversity, (3) the reference panel may be too diverged from the focal population,420
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and (4) population connectivity and turnover may lead the “local” reference panel to be largely composed421

of migrant haplotypes which were not present during the selected allele’s initial increase in frequency.422

Under scenarios 1 and 2, the background haplotypes will be too similar to the ancestral haplotype423

and it may be difficult for the model to discern a specific ancestry switch location. This leads to fewer424

differences (mutations) than expected between the ancestral haplotype and each beneficial allele carrier.425

The simulation results are consistent with this scenario: our method tends to underestimate the true age426

across a range of selection intensities and allele frequencies when using a local reference panel.427

Conversely, under scenarios 3 and 4 the model will fail to describe a recombinant haplotype in the428

sample of beneficial allele carriers as a mosaic of haplotypes in the reference panel. As a result, the model429

will infer more mutation events to explain observed differences from the ancestral haplotype. Our simu-430

lation results show this to be the case with reference panels diverged by N generations: posterior mean431

estimates are consistently older than their true value. Our simulations are perhaps pessimistic though432

- we chose reference panel divergence times of N and 0.5N generations, approximately corresponding433

to FST values of 0.4 and 0.2, respectively. For the smaller FST values observed in humans, we expect434

results for diverged panels to closer to those obtained with the local reference panel. Nonetheless, future435

extensions to incorporate multiple populations within the reference panel would be helpful and possible436

by modifying the approach of Price et al. (2009). Such an approach would also enable the analysis of437

admixed populations (we excluded admixed samples from our analysis of the 1000 Genomes data above).438

Aside from the challenges imposed by the choice of reference panel, another potential source of bias439

lies in our transition probabilities, which are not conditioned on the frequency of the selected variant.440

In reality, recombination events at some distance away from the selected site will only result in a switch441

from the ancestral to background haplotypes at a rate proportional to 1−pl, where pl is the frequency of442

the ancestral haplotype alleles at locus l. In this way, some recombination events may go unobserved – as443

the beneficial allele goes to high frequency the probability of an event leading to an observable ancestral444

to background haplotype transition decreases. One solution may be to include the frequency-dependent445

transition probabilities derived by Chen and Slatkin (2015). Under their model, the mutation time is446

estimated by assuming a deterministic, logistic frequency trajectory starting at 1
2N . One concern is the447

specification of a initial frequency for our case, which should correspond to the frequency at which the448

TMRCA occurs rather than time of mutation. Griffiths and Tavare (1994) derive a framework to model449

a genealogy under arbitrary population size trajectories, which should be analogous to the problem450

of an allele frequency trajectory, and other theory on intra-allelic genealogies may be useful here as451

well [Griffiths and Tavare, 1994, Wiuf and Donnelly, 1999, Wiuf, 2000, Slatkin and Rannala, 2000]. An452

additional benefit of using frequency trajectories would be the ability to infer posterior distributions on453

selection coefficients.454

Our model also assumes independence among all haplotypes in the sample in a composite-likelihood455

framework, which is equivalent to assuming a star-genealogy [Varin et al., 2011,Larribe and Fearnhead,456

2011]. This is unlikely to be the case when sample sizes are large or the TMRCA is old. It is also unlikely457

to be true if the beneficial allele existed on multiple haplotypes preceding the onset of selection, was458

introduced by multiple migrant haplotypes from other populations, or occurred by multiple independent459

mutation events [Innan and Kim, 2004,Hermisson and Pennings, 2005,Prezeworski et al., 2005,Pritchard460

et al., 2010,Berg and Coop, 2015].461

If the underlying allelic genealogy is not star-like, one can expect different estimates of the TMRCA462

for different subsets of the data. We suggest performing multiple MCMCs on resampled subsets of463

the data to informally diagnose whether there are violations from the star-like genealogy assumption.464

We speculate that exactly how the TMRCAs vary may provide insight to the underlying history. In465

cases where the TMRCA estimates for a particular population are old and more variable than other466

populations, the results may be explained by structure in the genealogy, whereby recent coalescent events467

have occurred among the same ancestral haplotype before the common ancestor. When estimates are468

dispersed among resampled datasets, in addition to being relatively young, the presence of multiple469
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ancestral haplotypes prior to the variant’s increase in frequency may be a better explanation. Further470

support for this explanation might come from comparisons to other population samples which show little471

to know dispersion of estimates from resampled datasets. Future work might make it possible to formalize472

this inference process.473

One possible future direction may be to explicitly incorporate the possibility of multiple ancestral474

haplotypes within the sample. Under a disease mapping framework, Morris et al. (2002) implement a475

similar idea in the case where independent disease causing mutations arise at the same locus leading to476

independent genealogies, for which they coin the term “shattered coalescent”. For our case, beneficial477

mutations may also be independently derived on different haplotypes. Alternatively, a single mutation478

may be old enough to reside on different haplotypes due to a sufficient amount of linked variation existing479

prior to the onset of selection. Berg and Coop (2015) model selection from standing variation to derive480

the distribution of haplotypes that the selected allele is present on.481

While we have treated the TMRCA as a parameter of interest, our method also produces a sample of482

the posterior distribution on the ancestral haplotype. This could provide useful information to estimate483

the frequency spectrum of derived mutations on the ancestral haplotype. Such information could shed484

light on the genealogy and how well it conforms to the star-shape assumption. The extent of the ancestral485

haplotype in each individual may also prove useful for identifying deleterious alleles that have increased in486

frequency as a result of strong positive selection on linked beneficial alleles [Chun and Fay, 2011,Hartfield487

and Otto, 2011]. For example, Huff et al. (2012) describe a risk allele for Crohn’s disease at high frequency488

in European populations which they suggest is linked to a beneficial allele under recent selection. Similar489

to an admixture mapping approach, our method could be used to identify risk loci by testing for an490

association between the ancestral haplotype and disease status. As another application, identifying the491

ancestral haplotype may be useful in the context of identifying a source population (or species) for a492

beneficial allele prior to its introduction and subsequent increase in frequency in the recipient population.493

In many cases, the specific site under selection may be unknown or restricted to some set of putative494

sites. While our method requires the position of the selected site be specified, future extensions could495

treat the selected site as a random variable to be estimated under the same MCMC framework. This496

framework would also be amenable to marginalizing over uncertainty on the selected site.497

While we focus here on inference from modern DNA data, the increased accessibility of ancient498

DNA has added a new dimension to population genetic datasets [Lazaridis et al., 2014, Skoglund et al.,499

2014, Allentoft et al., 2015, Haak et al., 2015, Mathieson et al., 2015a, Mathieson et al., 2015b]. Because500

it will remain difficult to use ancient DNA approaches in many species with poor archaeological records,501

we believe methods based on modern DNA will continue to be useful going forward. That said, ancient502

DNA are providing an interesting avenue for comparative work between inference from modern and503

ancient samples. For example, Nakagome et al. (2015) use simulations to assess the fit of this ancient504

DNA polymorphism to data simulated under their inferred parameter values for allele age and selection505

intensity and they find reasonable agreement. Much work still remains though to fully leverage ancient506

samples into population genetic inference while accounting for new sources of uncertainty and potential507

for sampling bias.508

Despite these challenges, it is clear that our understanding of adaptive history will continue to benefit509

from new computational tools which extract insightful information from a diverse set of data sources.510
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522

S1 Fig. Effect of local reference panel sample size on estimate accuracy. Accuracy of point523

estimates and 95% credible interval ranges from posteriors inferred from simulated data under different524

strengths of selection, final allele frequencies and sample sizes for a reference panel. In all cases the525

reference panel is sampled from the local population where the selected allele is found. All other parameter526

values are identical to Figure 2 in the main text.527
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528

S2 Fig. Effect of diverged reference panel sample size on estimate accuracy. Accuracy of529

point estimates and 95% credible interval ranges from posteriors inferred from simulated data under530

different strengths of selection, final allele frequencies and sample sizes for a reference panel. In all cases531

the reference panel is sampled from a population 0.5Ne generations diverged from the selected population.532

All other parameter values are identical to Figure 2 in the main text.533
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534

S3 Fig. Effect of misspecifying ρ. Accuracy results for 3 different values of ρ used in the Li and535

Stephens (2003) copying model for background haplotypes in a local reference panel. All other parameter536

values are identical to Figure 2 in the main text.537
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S4 Fig. Effect of misspecifying θ. Accuracy results for 3 different values of θ used in the Li and539

Stephens (2003) copying model for background haplotypes in a local reference panel. All other parameter540

values are identical to Figure 2 in the main text.541
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S5 Fig. Effects of resampling subsets of complete data. Estimated accuracy and among inde-543

pendent MCMC runs for different resampling schemes. Frequency trajectories were simulated to an end544

frequency of 0.1. Under each 2Ns value and resampling scheme indicated in the legend, 20 data sets were545

simulated and inference was performed on the 5 replicate MCMCs. In each simulation, the full dataset546

includes sample sizes of 100 for the selected and reference panels. Inference for each replicate was then547

performed on 50 selected haplotypes and 20 reference haplotypes according to the sampling scheme in548

the legend. Normalized RMSE values are calculated using the estimates and true TMRCA value, while549

the standard deviations are calculated using the estimates and their mean.550

551
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S6 Fig. Comparison of fine scale and megabase scale recombination maps. A comparison553

between estimates made using the fine-scale Decode recombination map (grey) and a uniform recombina-554

tion rate (red and blue). The uniform recombination rate used for each gene is the mean rate for the 1Mb555

region around each variant indicated by the rs number. Five replicate MCMCs were performed for each556

variant and population by resampling the selected and reference panels with replacement. Each MCMC557

was run for 5000 iterations with a standard deviation of 20 for the t proposal distribution. Replicate558

MCMCs are plotted with transparency.559
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S1 Appendix. Initializing the ancestral haplotype for the MCMC.560

To decrease run times for the MCMC, we initialize the starting sequence for the ancestral haplotype561

using a heuristic algorithm which exploits the decrease in polymorphism near the selected site. Let A0
562

denote the initial ancestral haplotype to be estimated, and let the indicator variable Iij denote whether563

chromosome i is part of the ancestral haplotype at site j:564

Iij =

{
1 if Xij = A0

j ;
0 if Xij 6= A0

j
(11)

The algorithm proceeds as follows:565

1. At j = 1 all chromosomes with the beneficial allele are specified to be on the ancestral haplotype566

at the selected site, i.e.
∑n
i=1 Ii1 = n and A0

j = 1.567

2. Moving to the next adjacent SNP, we calculate the allele frequency, Fj , among chromosomes on the568

ancestral haplotype at the previous site:569

Fj =

∑n
i=1XijIi(j−1)∑n
i=1 Ii(j−1)

(12)

3. The major allele among advantageous allele carriers is assumed to be the putative ancestral allele570

and minor alleles are assumed to be the result of a putative recombination event off of the ancestral571

haplotype in the previous SNP interval. For j > 0,572

A0
j =

{
1 if Fj > 0.5;
0 if Fj < 0.5

(13)

Because we expect there to be some rare or singleton variants on the ancestral haplotype, singletons are573

removed before step 1 in an effort to improve estimates of the ancestral haplotype at more distant sites.574

In addition, major and minor alleles can’t be identified at sites with alleles at 0.5 frequency and are also575

removed initially. Steps 2 and 3 are computed iteratively until reaching the end of the locus (j = L) on576

both sides flanking the selected site. The sites that were removed (Fj = 0.5 and singletons) are then577

added back in and take values of Iij from Iij+1. A0
j for the added sites are computed using equations 12578

and 13. At sites for which
∑n
i=1 Ii1 = 0, A0

j = Binomial(1, Pj), where Pj = 1
n

∑n
i=1Xij . After getting579

the initial estimate A0
j , the MCMC is run and evaluated for convergence by visual inspection of trace580

plots.581
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Mb scale recombination map fine scale recombination map
gene population t (years) 95% credible interval t (years) 95% credible interval
KITLG FIN 18733.11 16675.03 - 20816.16 26343.99 21185.68 - 31439.77
KITLG MSL 22339.79 15723.06 - 28949.85 20244 15042.13 - 26063.71
KITLG LWK 22783.5 17921.93 - 28011.88 24200.86 16839.43 30730.11
KITLG KHV 24544.92 21643.47 - 27192.74 26697.31 22249.2 31526.1
KITLG ESN 26254.27 22854.93 - 29657.6 31791.02 26440.75 36543.8
KITLG TSI 26427.6 24109.65 - 28905.17 22776.53 18379.65 27588.96
KITLG CHS 26535.39 23456.37 - 29651.06 28396.03 23284.08 33294.5
KITLG CHB 26772.95 24297.24 - 30141.32 28968.9 24451.06 34718.66
KITLG GBR 26785.87 23841.96 - 29252.6 36132.87 31410.16 41697.2
KITLG GWD 27669.05 21900.96 - 33664.19 25833.85 20134.3 32433.62
KITLG ITU 28093.72 24607.36 - 31040.55 28090.16 24212.08 32250.46
KITLG CDX 28362.37 25128.88 - 31245.57 29010.65 24457.71 33869.7
KITLG JPT 28636.9 26351.84 - 31139.23 31634.52 27551.51 36471.26
KITLG GIH 29029.82 25862.18 - 32439.4 28935.4 24599.77 33752.46
KITLG IBS 29730.96 26169.86 - 32812.62 25373.45 21393.79 30031.51
KITLG CEU 31287.49 27866.12 - 34512.88 34009.13 29818.32 38072.96
KITLG STU 32021.3 2 8243.9 - 36318.9 27693.36 23968.81 32516.82
KITLG BEB 32030.37 29000.59 - 34975.94 34375.32 29254.91 39578.63
KITLG PJL 33719.74 30137.36 - 37310.9 31384.02 26814.24 36005.58
KITLG YRI 33947.53 28861.11 - 39098.89 44437.11 36047.45 54074.11
EDAR FIN 17386.19 13887.25 - 20794.2 20176.21 15053.08 25838.39
EDAR BEB 18370.17 14325.16 - 22871.72 18418.06 13680.78 25409.82
EDAR CHB 22192.42 19682.73 - 25735.6 19262.27 16921.98 21521.19
EDAR JPT 23508.87 21595.24 - 25644.81 25730.04 23096.63 28826.86
EDAR CHS 24058.94 22005.79 - 26678.85 24813.16 22493.15 27204.94
EDAR CDX 24360.34 21572.05 - 27044.11 24346.84 21214.9 28019.59
EDAR KHV 25683.33 23169.98 - 28379.79 12686.77 11001.3 14645.05
OCA2 KHV 16370.39 14439.12 - 18102.08 26904.93 22093.63 32402.26
OCA2 CHS 17316.96 14913.26 - 19799.16 26377.66 21217.62 31921.16
OCA2 CHB 17838.58 15336.98 - 20174.82 25159.82 20764 29688.86
OCA2 CDX 18083.2 1 6231.36 - 20253.74 28644.18 24241.91 33819.6
OCA2 JPT 18598.62 16110.22 - 20785.6 31582.69 27875.01 35522.35
ADH1B KHV 10841.65 9720.032 - 12147.5 11186.97 9503.454 12862.22
ADH1B CHS 12101.84 10668.909 - 13479.33 15352.24 12969.029 17974.85
ADH1B CDX 12176.61 10678.377 - 13699.32 13568.88 11183.01 15941.4
ADH1B JPT 13996.17 12670.869 - 15278.67 18317.67 15995.495 20911.5
ADH1B CHB 15377.36 13763.712 - 17281.5 13526.93 11280.86 16210.89
LCT BEB 6869.385 5143.203 - 8808.557 7971.853 5893.793 10443.94
LCT FIN 7545.399 6982.857 - 8112.515 10332.821 9349.834 11427.629
LCT ITU 7795.401 6199.996 - 9419.64 8972.475 7043.311 11015.566
LCT TSI 7936.011 6616.676 - 9435.192 8630.238 7084.033 10230.152
LCT STU 8197.625 6167.62 - 10338.243 7671.266 5205.261 10364.956
LCT GBR 8412.48 7754.023 - 9084.704 8185.932 7111.164 9226.64
LCT CEU 8662.519 8064.022 - 9340.064 10701.2 9579.387 11839.975
LCT GIH 8732.25 7724.106 - 9921.599 9926.97 8596.736 11379.234
LCT IBS 9341.408 8687.717 - 9988.713 7593.055 6602.516 8681.566
LCT PJL 9514.453 8596.386 - 10382.874 9500.563 8511.207 10618.241

S1 Table 1. TMRCA estimates from 1000 Genomes Project data. TMRCA estimates from
the 1000 Genomes Project panel using the Mb and fine scale recombination rate. These results
represent the distributions with the highest posterior probability among the 5 replicates shown with
transparency in Figures 6 and 7. All estimates are scaled to a generation time of 29 years.
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gene population t (years) time estimated approach method reference

LCT CEU 5350 (4580 - 6163) t1 LD and allele frequency HMM [Chen et al., 2015]
LCT CEU 6999.44 (5171 - 10330) t1 LD, mutation and allele frequency ABC [Nakagome et al., 2015]
LCT CEU 9277.68 (4021 - 21102) t1 LD, mutation and allele frequency ABC [Tishkoff et al., 2007]
LCT CEU 13246.04 (2538.08 - 23954) TMRCA LD [Reich and Goldstein, 1999] [Bersaglieri et al., 2004]
LCT Finland 2791.54 (1885 - 3698) TMRCA LD [Reich and Goldstein, 1999] [Bersaglieri et al., 2004]
LCT Finland (west) 6032 (5365 - 6699) TMRCA mutation [Bandelt et al., 1999] [Enattah et al., 2008]
LCT Finland (east) 6293 (5307 - 7279) TMRCA mutation [Bandelt et al., 1999] [Enattah et al., 2008]
LCT Finland (west) 6119 (5655 - 6542) TMRCA LD [Serre et al., 1990] [Enattah et al., 2007]
LCT Finland 9425 (4350 - 18125) TMRCA LD [Seixas et al., 2001] [Coelho et al., 2005]
LCT Finland (east) 10732.32 (116 - 39440) TMRCA mutation [Stumpf and Goldstein, 2001] [Enattah et al., 2007]
LCT Finland 10730 (0 - 39440) TMRCA mutation [Stumpf and Goldstein, 2001] [Coelho et al., 2005]
LCT Italy 9645.4 (3990 - 32120) TMRCA LD [Seixas et al., 2001] [Coelho et al., 2005]
LCT Italy 23710.4 (5000 - 66120) TMRCA mutation [Stumpf and Goldstein, 2001] [Coelho et al., 2005]
LCT Portugal 10869.2 (6890.4 - 19940) TMRCA LD [Seixas et al., 2001] [Coelho et al., 2005]
LCT Portugal 21958.8 (4489.2 - 62199) TMRCA mutation [Stumpf and Goldstein, 2001] [Coelho et al., 2005]
LCT Finland 12992 (1740 - 75284) t1 LD, mutation and allele frequency ABC [Peter et al., 2012]
LCT European 8631.56 (7256.96 - 10020) t1 spatial and archeological modeling ABC [Itan et al., 2009]
KITLG Portugal 32277 (6003 - 80683) t1 LD, mutation and allele frequency ABC [Beleza et al., 2013b]
KITLG Japanese and Han Chinese 32045 (6032 - 98165) t1 LD, mutation and allele frequency ABC [Beleza et al., 2013b]
KITLG CEU 16480.004 (10540 - 35580) t1 LD and allele frequency HMM [Chen et al., 2015]
OCA2 Han Chinese 10660.0056 (8070 - 15779) t1 LD and allele frequency HMM [Chen et al., 2015]
ADH1B East Asians 4060 (2320 - 5800) TMRCA mutation [Su et al., 1999] [Li et al., 2011]
ADH1B East Asians 10025.88 (8512 - 11540) TMRCA LD [Serre et al., 1990] [Peng et al., 2010]
ADH1B Han Chinese 12876 (2204 - 49764) t1 LD, mutation and allele frequency ABC [Peter et al., 2012]
EDAR East Asians 12458 (1314 - 85835) tfix LD and mutation ABC [Bryk et al., 2008]
EDAR Han Chinese 13224 (4988 - 50692) t1 LD, mutation and allele frequency ABC [Peter et al., 2012]

S1 Table 2. Previous allele age point estimates and 95% confidence intervals for the loci considered in this study. All estimates are scaled to a
generation time of 29 years. For the times estimated in each case, t1 refers to the time of mutation and tfix refers to the time since fixation [Przeworski, 2003].
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