
  

  

Abstract—Recently, network inference algorithms have grown 
tremendously in the field of systems biology because network 
identification is essential for understanding relationships 
between regulation mechanisms for genes, elucidating 
functional mechanisms underlying cellular processes, as well as 
identifying molecular targets for discoveries in medicines. This 
article provides a brief overview of different approaches used 
to identify biological networks and reviews recent advances in 
network identification. 
 

I. INTRODUCTION 

A network is a set of nodes and a set of directed or undirected 
edges between the nodes. In biological systems, there exist 
many types of networks, including: transcriptional, signaling 
and metabolic networks, and an edge in the network 
corresponding to a biochemical interaction can be validated 
experimentally. However, since the size of the search space 
increases exponentially with the number of nodes in the 
network, still less is known about the structure of such 
networks. 

Many computational methods [1-14] used to infer gene 
regulatory networks (GRNs) or biochemical interactions 
provide a prediction of the ‘wiring diagram’ of the network. 
Roughly, these methods identify the network structure from 
gene expression profile data by searching for patterns of 
correlation or conditional probabilities that indicate causal 
influence, or by finding best parameters in the mathematical 
model that fit the data. These approaches fall generally into 
the following categories: 1) Statistical models and 2) 
Mechanistic network models.  

In general, the network identification remains a difficult 
problem; statistical dependencies are affected by both direct 
and indirect path of nodal interactions; nonlinearities in the 
system dynamics and measurement noise make this problem 
even more challenging. Also, in order to continue to have an 
impact in systems biology, identification of the graph 
topology from data should be able to reveal deficiencies in 
the model and suggest new experimental directions. 

 

II. STATISTICAL APPROACH 

Statistical approaches use the so-called ‘influence’ network 
model, which generally reflects global properties of a 
system's behavior, and thus true molecular interactions are 
described rather implicitly [15]. Hence, these models can be 
difficult to interpret and also difficult to integrate further 
information. 
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A. Correlation-based Method 
Predictions of physical and functional links between cellular 
components are often based on correlations between 
experimental measurements, such as gene expression [1]. The 
correlation coefficient ρij (between gene i and j) determines 
the connection between gene i and j; Adjacency matrix (A) 
can be defined as follows: 

 
This gives an undirected, unweighted network. However, 
many methods relying on a variety of pairwise gene 
expression correlation measures are subject to exceedingly 
high false-positive rates (direct vs. indirect influence, i.e., via 
one or more intermediaries). 

B. Mutual Information (MI)  
Mutual information is a measure of the mutual dependence 
between two variables which can be expressed by the joint 
distribution of two random variable X and Y relative to the 
joint distribution of X and Y under the assumption of 
independence. The mutual information can be defined as 
I(X;Y)=H(X)-H(X|Y) where H(X) is the marginal entropy and 
H(X|Y) is the conditional entropy. By applying the data 
processing inequality [16], indirect interactions can be 
eliminated since statistical dependencies might be of an 
indirect nature. For example, if XèYèZ, then I(X;Y) ≥	
 
I(X;Z), with equality if and only if I(X;Y|Z) =0.  

Many approaches apply some additional filtering and 
post-processing procedures and the final result is an 
adjacency matrix from which we can infer interactions.  

C. Bayesian Network 
Graphical model is a term that refers to the separation of a 
joint probability distribution into conditional probabilities. It 
is commonly used in Bayesian networks, which have several 
attractive properties for the inference of signaling pathways 
from biological data sets; Bayesian networks can represent 
stochastic nonlinear relationships and describe direct 
molecular interactions as well as indirect influences that 
proceed through additional unobserved components. Thus, 
very complex relationships in signaling pathways can be 
discovered [17-19]. 

In the formulation of Bayesian networks, the structure of a 
genetic regulatory network is modeled by a directed acyclic 
graph G = (V, E) where vertices (V) represent genes or other 
elements and edges (E) represent biochemical interactions in 
the network. Bayesian network modeling associates with 
each variable Xi, a probability distribution conditioned on its 
parents in the graph (Pai). The graph structure represents the 
dependency assumptions that each variable is independent of 
its non-descendant; thus the joint distribution can be 
decomposed into the following form: 

 

Aij = Aji =

⇢
0 if ⇢ij < ⇢0 hypothesis test

1 otherwise

P (X1, · · · , Xn) =
Y

i

P (Xi|Pai)
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The goal of Bayesian network inference is to search among 
possible graphs and select the best graph which describes the 
dependency relationships observed in the experimental data. 
One can take a score-based approach and given a scoring 
function and a set of data, network inference amounts to 
finding the structure that maximizes the score. Main 
challenges include: exponential complexity in the local 
network connectivity necessitating heuristic search 
procedures, reliance on unrealistic network models and the 
need to discretize expression data [15]. 
  

III. MECHANISTIC MODELING APPROACH 

Mechanistic network models identify the interactions based 
on a prior knowledge being used as biologically motivated 
constraints, i.e., reducing search space. Thus, such reverse 
engineering approaches reveal the best interaction maps that 
fit the data to prior models [20,21]. Many methods consider a 
dynamical system that depends on a reaction graph, 
summarizing all biochemical reactions and associated 
parameters. These methods assume that neither the graph nor 
the parameters are known. Inference regarding the graph 
structure is carried out by integrating experimental data with 
dynamic models and then reformulating parameter estimation 
problems. In this way, one can take account of model 
complexity as well as the fit-to-data.  

A. Boolean Networks 
The state of a gene can be described by a Boolean variable, 
i.e., a gene is considered to be either ‘on’ or ‘off’, and 
intermediate expression levels are neglected and hence its 
products are present or absent. Using Boolean variables, 
interactions between states can be represented by a Boolean 
functions, which define the status of state of a gene from the 
activation of other genes. Also, modeling regulatory 
networks by means of Boolean networks allows large 
regulatory networks to be analyzed in an efficient way, by 
making strong assumptions on the structure and simple 
dynamics of GRNs.  

B.  Ordinary Differential Equations 
Ordinary differential equations (ODEs), which model the 
dynamics of biological systems, have been widely used to 
analyze GRNs. The ODE formulation models the 
concentrations of RNAs, proteins, and other molecules by 
time-dependent variables with values contained in the set of 
nonnegative real numbers. Regulatory interactions take the 
form of functional and differential relations between the 
concentration variables. Specifically, gene regulation is 
modeled by rate equations expressing the rate of production 
of a component of the system as a function of the 
concentrations of other components as follows 

 
where x is the vector of concentrations of proteins, mRNAs, 
or small molecules and fi represents a nonlinear function. 
With dynamic models, regression techniques fit the data to a 
priori model and we can infer interaction maps from the 
biochemical reactions and associated parameters [22]. 

IV. RECENT TRENDS IN NETWORK IDENTIFICATION 

Although high-throughput measurement techniques have 
grown tremendously, still data insufficiency strongly impedes 
identification of GRNs. Hence, in order to obtain reliable 
inference results, it is important to incorporate biologically 
motivated constraints (i.e., sparsity). Also, many researchers 
propose new methods which combine diverse types of data 
together (e.g., multidimensional -omic data, ChIP-on-chip 
data, protein-protein interaction data, sequence information), 
or integrate a number of independent experimental clues from 
literature or biological databases.  

In general, regression techniques fit the data to prior models 
and such methods are limited to relatively simple models, 
i.e., usually based on simple, often linear, approximations to 
underlying dynamics. This is due to the fact that as the 
network complexity increases, the number of parameters 
becomes much larger than the number of experimental 
constraints. Thus, incorporating biologically motivated 
constraints is very useful to reduce the search space. Since 
biological regulatory networks are known to be sparse, 
meaning that most genes interact with only a small number of 
genes compared with the total number in the network, many 
methods take advantage of the sparsity [22]. These methods 
typically use l1-norm optimization, which leads to a sparse 
representation of the network and improves the ability to find 
the actual network structure. Moreover, these methods can be 
extended to combine a priori information on the network 
structure (i.e., known promotion and inhibition relations can 
be coded in with constraints). 

Various information from scientific literature and biological 
database can be used in combination with experimental data. 
Recently, many researchers proposed promising methods that 
integrate such diverse types of data in GRN identification 
[23]. Thus, facing limited amounts of experimental data, the 
integration of prior biological knowledge and multiple 
sources of heterogeneous data will be one of the important 
focuses in future GRN identification research.  
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