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Abstract—Ordinary differential equations (ODEs) provide a 

classical framework to model the dynamics of biological 

systems, given temporal experimental data. Qualitative analysis 

of the ODE model can lead to further biological insight and 

deeper understanding compared to traditional experiments 

alone. Simulation of the model under various perturbations can 

generate novel hypotheses and motivate the design of new 

experiments. This short paper will provide an overview of the 

ODE modeling framework, and present examples of how ODEs 

can be used to address problems in cancer biology. 

I. INTRODUCTION  

Mathematical modeling of biological systems is a 
powerful tool to examine and investigate natural phenomena 
more deeply compared to using traditional experimental 
methods alone. Models can facilitate comprehensive 
qualitative analysis of biological systems, predict behavior in 
response to various perturbations, and motivate the design of 
new experiments to test the predictions. Modeling naturally 
belongs to the process of scientific discovery, as it leads to 
further biological insight while guiding the direction of future 
research. Many modeling frameworks have been used to 
address a variety of biological questions. This short paper 
will focus on the use of ordinary differential equations 
(ODEs) as tools to study the dynamics of biological systems, 
with specific application to cancer biology. 

II. MATHEMATICAL OVERVIEW 

Ordinary differential equations describe how properties of 
a real-world system evolve over time. The properties are 
called the state of the system, and are chosen depending on 
the application at hand. For example, if we wish to 
understand how protein expression levels evolve in a cell 
line, it would be reasonable to define the state as a vector of 
protein expression levels. An ODE has the following general 
form, 

ẋ(t) = f (x(t), u(t), t) 

where x(t) ϵ ℝn is the state of the system at time t, n is the 
number of states, and ẋ(t) ϵ ℝn is the time-derivative of x(t), 
dx(t)

dt
. u(t) ϵ ℝm is the input vector at time t, and m is the 

number of inputs. The function f contains the mathematical 
rules which govern how x changes over time. For simplicity, 
we usually express x(t) as x (and u(t) as u) since dependence 
on time is implied. Continuing our example of protein 
expression dynamics, x(t) = [x1(t) x2(t) … xn(t)]T, where each 
xi(t) represents how a protein concentration of interest varies 
over time. u(t) may correspond to mutations in a cell line or 
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treatments applied to a cell line. f(x(t), u(t), t) governs how 
the protein concentrations of interest evolve in response to 
the mutations or treatments. In many applications, the input u 
is not present or not modeled, and we simply study evolution 
of ẋ = f (x, t). 

III. QUICK GUIDE FOR USING ODES 

An ODE framework is useful when the general structure 
of f is known from physics or other scientific principles. For 
instance, biochemical reactions can be modeled using mass 
action kinetics or Hill functions [1, 7]. Once the structure of f 
is chosen, experimental observations can be used to estimate 
the values of unknown parameters in f. Estimation of model 
parameters for nonlinear f is an open research challenge: 
collecting measurements at many time points is laborious, 
noise can confound true observations, and analytical 
expressions for parameters associated with nonlinear 
dynamics rarely exist. Conversely, if f is linear and a 
sufficient number of experiments are conducted, analytical 
solutions can be found using classical linear algebra 
approaches, such as least-squares optimization. 

In practice, the number of experimental observations are 
often limited. Hence, many sets of parameters may describe 
the data equally well, meaning that specific parameter values 
are not particularly meaningful. Instead, relative parameter 
values and qualitative trends can improve understanding of 
the interactions and mechanisms that govern biological 
system behavior. In addition, sensitivity analysis should be 
conducted in order to determine how parameter values vary 
with small perturbations in the experimental data; useful 
models tend to be less sensitive, i.e., robust, to small changes 
in data.   

Once a set of model parameters are determined from 
experimental data (i.e., f is fully specified), one should 
simulate the model and compare simulated behavior with 
experimental data. Often, one reserves a portion of data for 
model fitting (i.e., determining f) and the remaining data for 
model testing (i.e., comparing simulated and experimental 
results). This procedure is known as cross-validation, and 
provides a measure of modeling accuracy and limitations. A 
suitable model will generally attain qualitative agreement 
between simulations and data. 

Moreover, the model parameters should be analyzed from 
a qualitative perspective to improve understanding of the 
biological system dynamics. For example, if the parameters 
were reaction rates, parameter ratios would describe relative 
frequencies of the reactions.  

Further, the ODE can be simulated under new conditions 
to generate novel hypotheses that drive future experiments. 
The following section will show how an ODE model was 
used to propose a new chemotherapy treatment strategy, 
driven by promising results in simulation. 
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IV. APPLICATION TO CANCER BIOLOGY: CASE STUDY 

Below we describe the work of Itani et al. as a noteworthy 

example of using an ODE model for a cancer biology 

application. In this research, an ODE model was utilized to 

understand the effects of chemotherapy drugs applied to 

breast cancer cells and to propose a new time-dependent 

treatment strategy [1]. 

A. Background 

Itani et al. proposed an ODE model of a signaling 

pathway in breast cancer cell lines that overexpress HER2 

[1]. HER stands for human epidermal growth factor 

receptor, and is known to play a significant role in the 

progression of cancer [2]. The model was based on 

experimental observations from a leading Nature study, 

Sergina et al., which revealed how HER2-positive breast 

cancer cells escape inhibition by promising anticancer drugs, 

called tyrosine kinase inhibitors (TKIs) [1, 3]. Sergina et al. 

discovered that a shift in the HER3 phosphorylation-

dephosphorylation equilibrium, driven by Akt negative 

feedback signaling, causes TKIs to be ineffective in HER2-

driven breast cancers [3]. 

B. Construction and use of the ODE model 

The modeling goal in Itani et al. was to choose a 
sufficiently simple representation of the signaling pathway 
involving HER2, HER3 and Akt that reproduced the 
experimental observations of [3] and facilitated the design of 
novel treatment strategies [1]. Signal transmission via 
phosphorylation of proteins was represented using ODEs, 
assuming first- and second-order mass action kinetics [1]. For 
example, the equation associated with protein A has the form,  

Ȧ(t)= -kAB*A(t)*B(t)+kdAB*AB(t) 

where kAB is the rate of binding of protein A to protein B and 
kdAB is the rate of auto-decomposition of protein complex AB 
[1]. Moreover, trafficking of HER3 between the cytoplasm 
and cell membrane was modeled using an ODE framework 
that abstracted these two regions as compartments, and 
utilized special variables to transfer HER3 between the 
compartments [1]. 

A (non-unique) parameter set that produced qualitative 
agreement between model simulations and experimental 
observations of [3] was determined using a search algorithm 
[1]. The model was then used to explore the effects of various 
treatment strategies and identify one that showed improved 
performance over the standard approach, simple application 
of a TKI, in simulation [1]. Experimental validation in 
vitro/vivo is still needed and reserved for future work [1]. 

C. Discussion 

The proposed treatment scheme of [1] was sequential, 
meaning that certain drugs were applied in a specially-timed 
sequence to produce a desired outcome. Understanding the 
signaling pathway dynamics (i.e., how protein concentrations 
change over time) was essential for determining this time-
dependent strategy. Construction of the ODE dynamical 
system model facilitated the investigation of new treatment 
strategies in simulation, without the use of laborious 
experiments until a promising approach was identified. Thus, 

the model allowed for intelligent experiment design, whereas 
biological research without mathematical models must rely 
on intuition and guesswork to guide the development of 
future experiments. 

V. ADDITIONAL ILLUSTRATIVE EXAMPLES 

In the following section, we briefly present three additional 
examples of using ODEs in cancer biology research. In each 
work, an ODE model was estimated from experimental 
observations to represent a system of cancer cells, and 
supported existing knowledge or contributed to new 
biological insight. 

Gupta et al. studied how phenotypes of cancer cells 
transition naturally and under therapeutic stress using a 
special type of linear ODE, called a Markov model [4]. The 
model represented changes in cellular phenotype as 
stochastic transitions in discrete time [4]. Interestingly, the 
model predicted that cancer non-stem-like cells can transition 
into stem-like cells (at a low rate), which counters the 
classical unidirectional view of stem-like cells [4]. The major 
contribution of this work is a systematic procedure for 
characterizing how treatments influence phenotype 
transitions in cancer cell populations, using data collected at 
only two time points [4]. 

Moreover, Goldman et al. also used an ODE model to 
represent phenotype transitions in response to anticancer 
drugs [5]. A linear time-invariant ODE was constructed to 
theoretically test drug-induced phenotypic plasticity versus 
clonal selection [5]. The model described how the quantity of 
cells in each phenotype changed over time using parameters, 
such as net reproductive rates and phenotype switching rates 
[5]. The mathematical model predicted that chemotherapy-
tolerant cells arise from non-cancer-stem-like cells, which 
was later verified in experiments [5]. This contributed to the 
main conclusion of the paper that cancer treatment induces 
phenotype transition into a chemotherapy-tolerant state [5].  

In a final example, Dobbe et al. developed a methodology 
to estimate a linear time-varying ODE model of the signaling 
network in HER2 breast cancer cell lines [6]. Measurements 
of protein expression levels (from several cell lines with 
various treatments applied) were formulated into a convex 
optimization problem [6]. An ODE model describing the 
protein expression dynamics was obtained from the solution 
[6]. In addition, existing biological knowledge was identified 
in the solution [6]. This work provides a systematic 
mathematical framework for studying heterogeneity in 
cancer, as analysis of data sets composed of many treatments 
and cell types is often infeasible without computational tools.  

VI. CONCLUSIONS 

Ordinary differential equation-based models are useful in 
cancer biology to study how biological systems change over 
time. Collecting data at several time points is essential for 
estimating sufficiently accurate models. Models should be 
analyzed from a qualitative point of view to obtain deeper 
understanding of the underlying dynamics. Here we 
presented several examples of using ODEs in cancer biology 
applications. ODEs, and mathematical models in general, can 
support experimental findings and lead to new avenues of 
scientific discovery. 
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