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Abstract—The adoption of Big Data technologies can poten-
tially boost the scalability of data-driven biology and health
workflows by orders of magnitude. Consider, for instance, that
technologies in the Hadoop ecosystem have been successfully used
in data-driven industry to scale their processes to levels much
larger than any biological- or health-driven work attempted thus
far. In this work we demonstrate the scalability of a sequence
alignment pipeline based on technologies from the Hadoop
ecosystem – namely, Apache Flink and Hadoop MapReduce,
both running on the distributed Apache YARN platform. Unlike
previous work, our pipeline starts processing directly from the
raw BCL data produced by Illumina sequencers. A Flink-based
distributed algorithm reconstructs reads from the Illumina BCL
data, and then demultiplexes them – analogously to the bcl2fastq2
program provided by Illumina. Subsequently, the BWA-MEM-
based distributed aligner from the Seal project is used to perform
read mapping on the YARN platform. While the standard
programs by Illumina and BWA-MEM are limited to shared-
memory parallelism (multi-threading), our solution is completely
distributed and can scale across a large number of computing
nodes. Results show excellent pipeline scalability, linear in the
number of nodes. In addition, this approach automatically
benefits from the robustness to hardware failure and transient
cluster problems provided by the YARN platform, as well as the
scalability of the Hadoop Distributed File System. Moreover, this
YARN-based approach complements the up-and-coming version
4 of the GATK toolkit, which is based on Spark and therefore
can run on YARN. Together, they can be used to form a scalable
complete YARN-based variant calling pipeline for Illumina data,
which will be further improved with the arrival of distributed
in-memory filesystem technology such as Apache Arrow, thus
removing the need to write intermediate data to disk.
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I. INTRODUCTION

The data-intensive revolution in the life sciences [1], [2]
has next-generation sequencing (NGS) machines among its
most prominent officers. As it becomes more economically
accessible, DNA sequencing has opened up to a myriad
of new applications that were previously technologically or
economically unfeasible [3]. High-throughput sequencing can
now be used for research into understanding human genetic
diseases [4], in oncology [5], to study human phylogeny [6],

and is even reaching the level of personalized diagnostic
applications [7].

One of the main challenges brought forth by this phe-
nomenon is to develop scalable computing tools that can keep
up with such a massive data generation throughput. The raw
data produced by NGS needs to go through various intense
processing steps to extract biologically relevant information.
To date, it appears that most sequencing centers have opted to
implement processing systems based on conventional software
running on High-Performance Computing (HPC) infrastruc-
ture [8] – a set of computing nodes accessed through a
batch queuing system and equipped with a parallel shared
storage system. While with enough effort and equipment this
solution can certainly be made to work, it presents some
issues that need to be addressed. Two important ones are that
developers need to implement a general way to divide the
work of a single job among all computing nodes and, since
the probability of node failures increases with the number of
nodes, they also need to make the system robust to transient
or permanent hardware failures, recovering automatically and
bringing the job to successful completion. Nevertheless, even
with these measures, the architecture of the HPC cluster limits
the maximum throughput of the system because it is, usually,
centered around a single shared storage volume, which tends
to become the bottleneck as the number of computing nodes
increases – and this is especially true for some phases of
sequence processing which can perform a lot of I/O with
respect to processing activity.

This paper presents our novel approach to processing se-
quencing data, adopting a strategy completely different from
the status quo by processing raw sequencing data using
Hadoop MapReduce and Apache Flink (see Sections III-A
and III-B). To the best of the authors’ knowledge, this is the
first solution that can process the sequencer’s raw data directly
on a distributed platform. In brief, in this work we present:

• the first complete and scalable Hadoop-based pipeline to
align DNA sequences starting from raw data;

• an efficient Flink-based tool to convert from BCL to
FASTQ formats;

• the Read Aligner API (RAPI), which encapsulates aligner
functionality and provides C and Python bindings;

• improvements to the efficiency of the aligner in the Seal
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suite.
The rest of the paper is organized as follows. Section II

describes the Next Generation Sequencing process, the com-
putation that is required to make sense of the data and
the state-of-the-art in modern sequencing centers. Section III
provides background regarding Hadoop and Flink, motivating
the decision to adopt the Hadoop/YARN framework. Sec-
tions IV and V present the tools that have been developed
as part of this work. Section VI contains the performance
evaluation and a comparison to the state-of-the-art. Finally,
Section VIII discusses related work and Section IX concludes
the manuscript.

II. THE NGS PROCESS

Deoxyribonucleic acid (DNA) is a polymer composed of
simpler units known as nucleotides, or bases. These come
in four kinds: Adenine, Cytosine, Guanine and Thymine –
respectively denoted by their initial letters A, C, G, and
T. The DNA data produced by the NGS process are not
directly interpretable from a biological point of view. In fact,
the various high-throughput NGS technologies [9] all use a
“shotgun” approach, where the genome to be sequenced is
broken up into fragments of approximately the same size
and the individual fragments are sequenced in parallel. The
characteristics of the raw data produced by the sequencer
changes depending on the specific technology being used.
The sequencers by Illumina Inc. (http://www.illumina.com) –
which are the target of this work – operate by successively
attaching a fluorescent identifying molecule to each base of
the DNA fragments being sequenced [10].

Thus, at each cycle, the machine acquires a single base
from all the reads by snapping a picture of the flowcell where
a chemiluminescent reaction is taking place. For each picture,
and thus cycle, the software on the sequencer’s controlling
workstation performs base calling from the image data –
mapping each chemiluminescent dot to a specific base (A, C,
G, T) based on its color. The process produces base call files
(BCL), which contain the bases that were acquired from all the
fragments – also known as reads – but only in that specific
sequencing cycle. Therefore, the individual DNA fragments
are actually split over C files, where C is the number of cycles
in the sequencing run and the length of the reads.

Next-generation sequencing activity quickly results in a lot
of data. Consider that a modern high-throughput sequencer like
the Illumina HiSeq 4000 can produce 1500 Gigabases, which
equate to about 4 Terabytes of uncompressed sequencing data,
in just 3.5 days [11]. That much data is sufficient to reconstruct
up to 12 human-sized genomes, where a single sample of this
type equates to a bit over 300 GB of uncompressed data.
Moreover, in the context of a study or a sequencing center,
this hefty per-sample data size is typically multiplied by a
significant number of samples. Consider that for sequencing-
based studies that require high analysis sensitivity or to get
population-wide statistics, thousands of samples need to be
sequenced and processed; e.g., a population-wide study by
Orrù et al. [4] required the sequencing of 2870 whole genomes

TABLE I: Maximum sequencing capacities for a number of
Illumina high-throughput sequencers [11]–[13]. The size of the
output in GB is intended for uncompressed reads with base
qualities and id strings, considering a total of 2.5 bytes/base.

Sequencer Read length Time Gigabases Gigabytes Rate
(days) (GB) (GB/day)

HiSeq 2000 2 x 100 8 400 1000 125
HiSeq 2500 2 x 125 6 1000 2500 417
HiSeq 4000 2 x 150 3.5 1500 3750 1071
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Fig. 1: Recomposing nucleotide sequences from the raw data
in Illumina BCL files. The operation requires reading data
simultaneously from a number of files equal to the number of
cycles in the sequencing run – each file contains one base from
each read. Once all the bases of a read are acquired, the read
can be composed and emitted and processing can advance to
the next one.

resulting in almost one petabyte of sequencing data to be
analyzed and stored.

A. BCL conversion and sorting reads

The first step in making sense of the raw data is to recon-
struct the original DNA fragments from the “slices” produced
by the sequencer. The operation required to reconstruct the
reads is logically equivalent to a matrix transposition, where a
read is obtained by concatenating the elements located at the
same positions across several files, as illustrated in Fig. 1.

Along with the read reconstruction, one must typically also
perform other operations which help the subsequent analyses:
filtering out some of the reads (based on filter files which are
also part of the run output) and tagging each read with some
metadata (e.g., location of read within the flowcell).

Moreover, for reasons of efficiency and flexibility, the DNA
fragments from individual samples are often tagged with a
short identifying nucleotide sequence and then mixed and se-
quenced with other samples in a single batch. This procedure is
known as multiplexed sequencing. In this way, the sequencing
capacity of the run is divided among more biological samples
than would be possible if it was necessary to keep them
physically separate. Being that the genetic material of multiple
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samples is in the same biological solution, the sequencer will
acquire their fragments of DNA indiscriminately and they will
be output in the same dataset. Thus, after BCL conversion,
the NGS data will typically undergo a demultiplexing stage,
where fragments from various samples are sorted into separate
datasets using their identifying tag.

B. Read Alignment

The product of the high-throughput shotgun sequencing
and processing procedure described thus far is a set of
billions unordered short DNA fragments. These need to be
analyzed computationally to understand the structure of the
original whole DNA sequence from which they came. The
specific analyses to be performed will vary depending on the
application. The most common sequencing scenario – and
the one that concerns us in this work – is the one where
there is a reference genome available for the sample being
sequenced and it is used as a guide to reconstruct the sample’s
genome. This type of sequencing experiment is known as
resequencing. When resequencing, after the reconstruction of
the sequenced fragments, the fragments are aligned or mapped
to the reference genome – i.e., an approximate string matching
algorithm is applied to find the position in the reference
sequence from which the reads were most likely acquired. The
mapping algorithms are designed to be robust to sequencing
errors and to the small genetic variations that characterize the
sample. Moreover, when sequenced the genome is typically
oversampled many times; for instance, for whole-genome
sequencing 30 times oversampling – also known as 30X
coverage is common. The oversampling results in reads that
overlap, which will be essential in later phases of analysis
to detect heterozygosity and to distinguish genomic variants
specific to the sample from mere sequencing errors.

C. Standard practice

In a typical scenario, after the sequencer finishes its work a
multi-step processing pipeline will be executed, starting with
the BCL conversion and read alignment steps described in
the previous subsections. In the state-of-the-art, sequencing
operations are equipped with a conventional HPC cluster with
a shared parallel storage system. The nodes are typically
accessed via a batch queuing system, and often the computing
resources are dedicated to the needs of the sequencing and
bioinformatics work [8].

Within this context, the standard solution is to perform
read reconstruction and demultiplexing using Illumina’s own
proprietary, open-source tool: bcl2fastq2. It is written in C++
and powered by the Boost library [14]. This tool implements
shared-memory parallelism – i.e., it only exploits parallelism
within a single computing node. To the best of the authors’
knowledge, there are no alternatives for this tool in a conven-
tional computing setting.

On the other hand, there is variety of alignment programs
available and in widespread use [15], [16]. Among these,
BWA-MEM [17] is quite popular and has been found to
produce some of the best alignments [18], [19]. Like the

bcl2fastq2 – and the other conventional read alignment pro-
grams – BWA-MEM also implements shared-memory paral-
lelism.

Though shared-memory parallelism is certainly beneficial
to accelerating analysis, it is insufficient. Because of the huge
amount of data produced by current sequencers the processing
of a run on a single node easily takes several hours of
computation, even on state-of-the-art machines, with tens or
even hundreds of cores. One way to overcome this problem is
to distribute the data among different nodes and then running
distinct instances of the programs on each node, each one
working on its subset of the data. However, this ad hoc solution
is not trivial to implement properly, as one would inevitably
end up trying to reimplement one of the already existing
distributed computing frameworks.

III. BACKGROUND

A. Hadoop framework

The Hadoop framework, which has its origins in data
companies such as Yahoo! and Google, has been designed
to scale computing throughput up to very high levels while
containing costs. In particular it provides:

• Robustness to hardware failures, by automatically restart-
ing tasks that do not complete, even because of a broken
node, without any user intervention;

• A distributed file system (HDFS), which spreads data and
allows them to be processed directly on the node where
they are stored, drastically reducing the network load.

Another point worth mentioning is that by adopting Hadoop,
one also acquires access to Hadoop-based Platform-as-a-
Service (PaaS) offerings – for example, Amazon Elastic
MapReduce (EMR) [20] Google Cloud Dataproc [21] – which
entails having access to scalable cloud computing infrastruc-
ture without incurring any initial investment cost.

On the other hand Hadoop is not compatible with pre-
existent software: to adopt this framework in a sequencing
operation and reap the benefits it offers, one has to find
or implement new Hadoop-compatible software to perform
the processing steps required by the sequence processing
workflow; this is the problem that the work presented here
is addressing.

B. Flink

Apache Flink [22] is a system for processing in parallel
large streams of data; it is written in Java and can be run stan-
dalone or within an existent Hadoop/YARN installation [23],
benefitting both from shared- and distributed-memory par-
allelism. It originates from the Stratosphere project [24],
developed at TU Berlin, and is now a top-level project of the
Apache Software Foundation, supported by a large community
and being increasingly adopted both in research and industry.1

1An updated list of users is available at: https://cwiki.apache.org/confluence/
display/FLINK/Powered+by+Flink
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IV. BCL PROCESSING

In this section we describe our BCL converter, which is
shown to have the same performance as the shared-memory
Illumina bcl2fastq2 tool on a single node, while also enabling
easy and scalable distributed-memory parallelization. Our tool
is written in Scala [25] within the Flink framework and can
thus be easily integrated in any Hadoop/YARN system, as a
simple module to be used in any Hadoop-based workflow.

The organization of the BCL files depends on the generating
sequencer and in this paper we will adopt the format used
by the HiSeq 3000/4000 machines. Files are divided into a
tree structure, with a single file referring to data obtained
by specific lane, tile and cycle combination: e.g., the file
L003/C80.1/s_3_1213.bcl.gz corresponds to data read from
tile t = 1213, in lane l = 3 during cycle c = 80. The
uncompressed BCL files have constant size within a run and
represent arrays of bytes R(l, t, c). Let’s now consider the
matrix M(l, t), where the c-th row of M(l, t) is given by
R(l, t, c). The first step of the BCL processing consists in
computing the transposition of M(l, t), for all l and t. A
typical run with 8 lanes, hundreds of tiles within each lane,
hundreds of cycles per tile and BCL files of a few megabytes,
produces a total output in the order of the terabyte, scattered
among hundreds of thousands of files.

A. Algorithmic details

From a high-level perspective our converter works as fol-
lows: the basic unit of job is the processing of a (lane, tile)
combination and several of these jobs are grouped together
into a Flink job, which is assigned a number of cores required
to run. Flink jobs are scheduled by our program and sent
to the Flink executor, which allocates them on the available
resources. As an example, given a cluster of 8 nodes, with
16 cores/node and 2 threads/core a possible assignment of the
resources is the following: 2 units of job per Flink job (to
match the simultaneous multithreading), 1 core per Flink job,
128 Flink jobs running concurrently.

When processing a (lane, tile), paired-end sequences are
handled at the same time, since they share the same filter and
locs files, which contain respectively information to filter the
sequence and to reconstruct the flowcell coordinates of each
read. Furthermore, the reads will be used together during the
alignment, so we have chosen to aggregate them already at
this stage of the processing. The BCL files corresponding to
different cycles are opened concurrently and the bases and
quality scores are extracted and filtered (see IV-B for some
implementation details). For each fragment, a header is added,
containing various meta-data and the fragment’s multiplexing
tag sequence, if present.

Once the fragments from the (lane, tile) have been recon-
structed and tagged, they are sorted by their tag sequence.
Since there can be read errors both in the data and in
the tags, their repartition can be done in a fuzzy way: a
parameter, which defaults to one, sets the numbers of allowed
substitution errors when matching a tag (i.e., the Hamming
distance between tag and match). Finally, a compressed file for

each tag is written to disk, with files from different (lane, tile)
combinations which match the same tag being written in the
same directory (they belong to the same biological sample).

B. Low-level optimizations

Our program is written in Scala and compiles into Java
bytecode, so it has been challenging to match the perfor-
mance of programs written in languages closer to the machine
hardware. Nonetheless, our program matches, on the single
computing node, the speed of bcl2fastq2 – i.e., Illumina’s
proprietary tool. In order to achieve such high performance we
used several techniques and optimizations, the most rewarding
being presented below.

1) Processing data in chunks: BCL files are arrays of
bytes, in which each byte encodes a base (bits 0-1) and a
quality score (bits 2-7). Therefore it would seem natural to
process them in Flink as datastreams of bytes (i.e., using
the DataStream[Byte] type). However, to exploit the full
performance of the Flink engine we had to read and process
data in bigger chunks (2048 bytes in our implementation),
which better exploits cache locality and lowers the overhead
of the streaming framework.

2) Use of ByteBuffer: In order to decode the bases and
quality scores encoded in the BCL files the bytes need to go
through some bit masks and shifts. Since the operations to be
performed are the same for every byte read, one can obtain
a factor 8 speed-up by grouping bytes into 64-bit longs and
executing the equivalent operations on longs. To implement
this optimization in Scala we used the ByteBuffer class, which
allows us to interpret byte arrays as longs.

3) Use of look-up tables: We implemented the con-
version of bases from numeric to ASCII notation (e.g.,
0x0001020303020100 maps to “ACGTTGCA”) by “com-
pressing” the input and using it as an index into a look-up
table (e.g., 0x0001020303020100 is compressed to an
index 0b0001101111100100=0x1BE4 into the precom-
puted look-up table).

V. ALIGNING READS

Read alignment in our read processing workflow was per-
formed using Seal seqal – the Hadoop-based aligner in the
Seal toolkit [26], [27] – which we improved as part of this
work. Among the various Hadoop-based read aligners (see
Section VIII) Seal was chosen because it integrates the BWA-
MEM aligner, has good performance, and was written by some
of the authors of this work.

The alignment step is implemented in seqal as a map-
only job using Pydoop [28]. Rather than implementing a new
aligner from scratch, seqal directly integrates the BWA-MEM
aligner through the RAPI read aligner API (developed as part
of this work; see Sec. V-A). To integrate BWA-MEM, its C
source code was significantly modified to repackage it as a
software library, so that its functions and data structures could
be called by seqal. Indeed, currently seqal is, to the best of
the authors knowledge, the only Hadoop-based read mapping
program that directly integrates the aligner core into its code;
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other options choose to execute conventional read alignment
programs in their unmodified form [29]–[33] as a separate
child process. The technique adopted by seqal, while being
more difficult to implement, provides improved flexibility and
should also have a positive effect on efficiency.

In addition to transforming BWA-MEM into a software
library, the original code was also modified to use memory-
mapped I/O to read the reference sequence and its index, in-
stead of simply writing the index components into malloc’d
memory blocks. The reference index and sequence, to which
the reads are mapped, is relatively large when working with
higher order organisms; for instance, the human genome
(3 Gigabases long) results in an indexed reference for BWA-
MEM that is just over 5 GB in size. Memory mapping
this data provides two significant advantages over BWA-
MEM’s original technique. The first is that by using mmap
all instances of the software using the same reference on the
same computer will share the same data in memory, thereby
significantly reducing the memory required for an alignment
job. This feature is especially important to seqal’s use case
since, for best efficiency, it should run many concurrent map
tasks per node; empirically we have found that one task
per hyperthreaded core achieves very good CPU utilization.
The second advantage is that after its first use the reference
is automatically cached in memory for a period of time,
so that subsequent invocations of the aligner with the same
reference will save the time required to load it from storage
(a significant amount of time for larger references such as for
Homo sapiens). Since the BWA-MEM project is open source,
these improvements were sent to the author of the original
program to be considered for integration into the main line of
development.

A. The RAPI Read Aligner API

In work related to NGS data, read aligners are currently one
of the most fundamental pieces of analysis software, so read
alignment is an operation that has been intensely studied [15],
[34], resulting in a number of effective algorithms and imple-
mentations, many of which are continuously evolving.

These tools are typically packaged as command-line pro-
grams that expect to receive three main arguments: the path
to the indexed reference sequence, the path to the input read
file in FASTQ format, and the path to the output file in SAM
or BAM format. This simple interface makes a number of
assumptions: that all the required data files (reference, input
and output) are accessible on locally mounted file systems; that
the data are in the formats that the aligner supports; and that
the use case supports executing a new process each time an
alignment is required. Although these assumptions may appear
to be reasonable within the conventional computing environ-
ment that is currently predominant in bioinformatics, they are
actually extremely limiting to work aimed at introducing novel
computing and data flow paradigms to the field – for instance,
using distributed computing to improve scalability.

As a more general solution, we have defined a read aligner
API that can be implemented with any underlying read map-

ping technology: the Read Aligner Application Programming
Interface (RAPI).2 For maximum compatibility the RAPI is
defined in C. It includes generic functions and data structures
to support typical alignment operations: index a reference
sequence, load and unload the reference, map reads to the
reference, interpret the results. Further, RAPI includes Python
bindings, making it simple to load an aligner as a Python
module and use it in unconventional ways – e.g., for scripting
or in an interactive session. The project includes a reference
aligner interface implementation that wraps the BWA-MEM
aligner. This aligner plug-in, through its Python bindings,
is used to compute alignments in Seal seqal. The fact that
RAPI does not make any assumptions about the source or
destination of the data makes it possible to easily integrate
it with unconventional scalable computing and data storage
technology, as has been done as part of this work. It makes
it equally feasible to transparently implement aligner plug-ins
based on GPGPU or FPGA accelerators. Also, since RAPI
does not make any assumptions about the data formats, it also
facilitates research into alternative data structures for persistent
storage. Finally, since RAPI standardizes the aligner interface,
one could parametrize the aligner to use within a RAPI-based
pipeline, swapping aligner without changing any of the code.

RAPI is being proposed to the community as an option
to standardize the read aligner interface. A standard interface
would open up new use cases, reducing maintenance for
existing applications, and make it simple and safe to harness
aligner plug-ins to prototype and create novel functionality.
The interface has been released under an open source license.

VI. EVALUATION

To evaluate the speed and scalability of our YARN-based
sequence processing workflow we ran it on a real human
sequencing dataset, with a varying number of nodes, process-
ing the raw data in BCL format produced by the sequencers,
reconstructing the DNA reads and aligning them to a reference
genome. In the following subsections we describe all aspects
of the experimental procedure and we compare it to a realistic
baseline workflow.

A. Hardware

All experiments were run on the Amazon Elastic Compute
Cloud (EC2 – https://aws.amazon.com/ec2), using up to 16
instances of type r3.8xlarge. The specifications are provided
in Table II. Of note, the instances include enhanced networking
which allows nodes to use Single Root I/O Virtualization,
providing “higher I/O performance and lower CPU utilization,
compared to traditional implementations.”3 Also, while the
Intel CPUs provided by the instance provide 20 virtual cores
each, the instance only has 32; we suppose that the instances
run on dual-CPU hardware and the virtualization scheme hides
8 cores from the virtual machine.

2https://github.com/crs4/rapi
3https://aws.amazon.com/ec2/faqs/#What_networking_capabilities_are_

included_in_this_feature
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TABLE II: Configuration of the Amazon EC2 r3.8xlarge nodes
used to evaluate performance.

CPUs 32 virtual cores (Xeon E5-2670 v2, 25 MB cache)
RAM 244 GiB
Disks 2x320 GB SSD
Network 10 Gb Ethernet connection with “enhanced networking”
OS Debian 8 (Linux kernel 3.16)

TABLE III: Characteristics of the input dataset used for
evaluation.

Sequencer Illumina HiSeq 3000
Total size of directory 279 GB
Size of data files 251 GB (gzip-compressed)
Number of files 1164005
Number of samples 48
Number of reads 2.9 · 109
Number of DNA bases 2.9 · 1011

Finally, an Amazon Elastic Block Store (EBS) device was
used as persistent storage for the input dataset, to avoid having
to transfer the data to the compute center multiple times.
However, this device was not used for I/O during any of our
experiments.

B. Input dataset

The input dataset is the output of a multiplexed sequencing
run by an Illumina HiSeq 3000 at the CRS4 Sequencing and
Genotyping Platform (at the same research organization as the
authors of this manuscript). The run used a single multiplexing
tag per fragment (the sequencing technology supports up to
two) and contained 48 human genomic samples. The dataset
contains 279 GB of raw data, of which 251 GB are read
data scattered among 188,160 gzip-compressed BCL files (8
lanes × 112 tiles/lane × 210 cycles) plus 890 filter files
(which contain a QC pass/fail for each read). The size of
each uncompressed BCL and filter file is 4.1 MB. Additional
information is reported in Table III. Note that the input
BCL files are automatically gzip-compressed by the software
producing them on the sequencer.

C. Experimental Workflow

To evaluate the speed and scalability of our distributed-
memory workflow, we prepared the following setup:

• HDFS distributed among the n computing nodes, with
each datanode using its two SSD disks to store the data;

• YARN running on the same n nodes;
• YARN configured with 31 cores/node,

225 GB RAM/node, capacity scheduler with
DominantResourceCalculator;

• one of the n nodes works as both master and slave, run-
ning the HDFS namenode, the YARN resource manager
as well as the datanode and node manager services.

The input data are copied to the HDFS volume, along
with a tar archive of the indexed reference required by

Seal seqal for the alignment. Prior to each workflow in-
vocation, the various system caches were cleared with
echo 3 > /proc/sys/vm/drop_caches.

The experimental workflow then consists in running our
Flink-based BCL conversion tool immediately followed by
invoking Seal seqal for each resulting sample dataset.

1) BCL conversion: To run our Flink-based BCL converter
and demultiplexer, we start a detached Flink session on YARN.
The session is configured with two TaskManagers per node,
each with 80 GB of memory and 8 slots, while the Flink
JobManager is assigned 10 GB of memory.

After the session is launched the BCL converter reads
and write from/to HDFS. As soon as it completes its work,
the Flink session on YARN is torn down by killing it
(yarn application -kill <appID>). The operation
produces PRQ files4 (a text-based, tab-separated, format
that keeps paired reads in the same record) that are gzip-
compressed at compression level 1.

2) Alignment: Following the conclusion of the BCL conver-
sion phase, its output directory is scanned to find the datasets
produced. Empty files (as in gzip files with no content) are
deleted to work around a bug in the InputFormat used by Seal
seqal. The Undetermined dataset is also eliminated: these are
the reads whose identifying tag was not recognized and thus
cannot be assigned to any biological sample. Then, for each
dataset, Seal seqal is invoked. All invocations are done in rapid
succession, thus causing the various application instances to
queue in YARN, which takes care to dispatch the numerous
seqal tasks as computing resources become available. Seqal
is configured to use 8 threads per task within the alignment
core. On the other hand, the job is configured to request
only two YARN cores per task; the effect is that in our
experimental setup, with 31 cores per node, up to 15 tasks
can run simultaneously (31/2 = 15). Seal seqal distributes
the reference index to the various nodes via the Hadoop
MapReduce distributed cache. This operation implies a small
delay at the start of the first alignment tasks, as the archive
is copied to all the nodes, unarchived, and the reference files
are mapped to memory; however, subsequent tasks will find
the reference already in memory and will benefit from caching
effects. The seqal application directly reads the gzipped PRQ
files produced by the BCL converter, processing one file per
map task (gzip files are not splittable). It produces aligned
reads in the SAM format [35] – a common text-based format
for aligned reads – which are written to HDFS.

We ran this workflow on YARN clusters of 1, 2, 4, 8, and
16 nodes. On repeated runs we found very good agreement
(within 2% of the mean running time). In the experiments
we recorded the wall clock time required to run the entire
procedure, starting at the launch of the Flink session on YARN
and ending with the conclusion of the last alignment run;
an intermediate time is also recorded at the end of the BCL
conversion.

4http://biodoop-seal.sf.net/file_formats.html#prq-file-format
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TABLE IV: Versions of the various software packages used in this work.

Package Version Source

Java Oracle JDK 8u102 http://www.oracle.com/
Hadoop 2.7.2 http://hadoop.apache.org/
Flink 1.1-SNAPSHOT, Commit ID: 3ab9e36 https://github.com/apache/flink
bcl2fastq2 v2.17.1.14 http://support.illumina.com/
BWA 0.7.8-r455 https://github.com/lh3/bwa
Seal Commit ID: cc050ada https://github.com/crs4/seal
Rapi Commit ID: 8f428207 https://github.com/crs4/rapi

D. Baseline workflow

As the base case against which to compare, we implemented
a workflow to perform BCL conversion and read alignment
using the conventional tools described in Subsection II-C, thus
using shared-memory parallelism on a single node. Therefore,
the baseline workflow runs Illumina bcl2fastq2 and BWA-
MEM (vers. 0.7.8-r455 – same version that is used by Seal
seqal)

To prepare for the runs, the input data and the indexed
reference is copied to one of the node’s SSD drives and the
system caches are cleared in the same manner as described in
Subsection VI-C.

The workflow is then started with the bcl2fastq2 tool. To al-
low it to fully exploit its multi-thread parallelism and minimize
I/O latencies, we configured it to read BCLs from one SSD
disk and write FASTQs to the other SSD disk. To lower its
CPU usage we decreased the level of the output compression,
by setting its option --fastq-compression-level to
one (equivalent to gzip’s --fast option and identical to the
setting used in our Flink-based converter). The tool detects
the number of cores in the system and automatically selects
the number of input, output, and processing threads to use;
its settings appeared to be effective since it maintained a very
high CPU utilization throughout the runs (very close to 100%).

Analogously to the YARN-based workflow, at the con-
clusion of the BCL conversion and demultiplexing step we
remove the Undetermined dataset. The alignment is then
performed with BWA-MEM. We configured the aligner to
use 31 threads for its parallelized sections of code (option
-t 31), which is analogous to YARN’s 31 cores/node. Since
BWA-MEM does not natively read gzip-compressed files (and
bcl2fastq2 does not write uncompressed files), we imple-
mented the workflow to uncompress the files with gunzip
on-the-fly and piped the data directly to the aligner, using
process substitution and named pipes. On the other hand,
BWA’s output, in SAM format just like Seal seqal’s, was
redirected to the second SSD drive – i.e., BWA was reading
from one drive and writing to the other.

Wall clock time was recorded at the start of the workflow, at
the conclusion of bcl2fastq2, and at the end of the workflow.

VII. RESULTS & DISCUSSION

A. Full pipeline

The times recorded for the runs are shown in Table V. The
first, somewhat surprising, observation is that our suite is faster

TABLE V: Running times of our Hadoop/YARN pipeline and
the baseline on a single node.

Time (minutes)
Nodes BCL Align Total

baseline 67.3 645 713

1 47.3 571 618
2 24.5 286 311
4 13.5 144 158
8 8.1 72.5 80.7

16 6.1 36.6 42.8

than the baseline even on a single node (618 vs 713 minutes).
There are several explanations for this result:

1) Though the standard BCL to FASTQ conversion does
take the same time on a single node (see VII-B), we
optimized our pipeline using Seal’s PRQ file format
which groups paired reads in the same file, thus resulting
in half the files and less output data being written
(perhaps ≈15%).

2) The BWA aligner used in the baseline processes reads in
batches, computing alignments and then writing the re-
sults. Only the alignment phase seems to be parallelized,
resulting in low CPU usage every time the aligner is
generating output. On the other hand, our aligner runs
more jobs concurrently, thus achieves a more uniform
CPU usage while using the same BWA alignment core.
This effect is illustrated in Fig. 3.

3) Seal mmap’s the reference data (thanks to our patch to
the BWA core), meaning that after the first invocation
seqal re-maps the reference in a tenth of a second. On the
other hand, BWA fread’s the reference data at every
invocation, which takes significantly longer and causes
it to waste a significant amount of time over the 48
invocations of the experiment.

4) Our pipeline has better I/O characteristics than the
baseline, since its tens of concurrent read and write
streams (a variable number for Flink, while the aligner
in this configuration had 31 read streams and 31 write
streams), distributed uniformly over the two available
SSD’s (through HDFS). The baseline, on the other hand,
has four read and four write threads in bcl2fastq2 and
two read and one write streams in the alignment phase.
Moreover, all the reads are from one disk and all the
writes are to the other disk.

Moving on to the multi-node results, given that both conver-
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Fig. 2: Strong scaling of our Hadoop/YARN pipeline, com-
pared with the single-node baseline.
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Fig. 3: Computation intensity during alignment (nmon screen-
shots, x is time, y is CPU usage).

sion and alignment can be decomposed in a large number of
independent subtasks, we have been able to obtain an almost
linear scaling, as shown in Fig. 2. We have tested strong
scalability (i.e., increasing nodes while keeping the same input
size) on up to 16 nodes and, thanks to our good performance
on the single node test, our solution’s test result lies above the
“perfect scalability” line of the baseline.

TABLE VI: Running times of our Flink-powered BCL con-
verter with gzipped FASTQ output. Compare with Illumina
bcl2fastq2: 57.1 minutes on a single node.

Nodes Time (minutes)

1 58.4
2 30.2
4 15.2
6 10.5
8 8.4

14 5.4
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Fig. 4: Speed-up of the Flink-powered BCL converter com-
pared with the single-node Illumina bcl2fastq2 tool

B. BCL conversion

We also ran an independent test on our BCL conversion
tool. To compare the performance of our core with Illumina’s
bcl2fastq2 we implemented the gzip-compressed FASTQ out-
put format, producing exactly the same output as Illumina’s
tool. The results obtained in this test are shown in Table VI and
the strong, absolute scaling, compared to bcl2fastq2, is shown
in Fig. 4. We can see that on the single node we nearly match
the performance of Illumina’s tool (58.4 vs 57.1 minutes) and
we observe good scalability, which tapers as the running time
goes below 10 minutes because of the fixed costs incurred by
Flink’s scheduler. We have run this test on up to 14 nodes,
choosing to stop at 14 nodes rather than 16 to have a more
even division of the 896 = 64 · 14 Flink jobs.

The conversion from BCL to FASTQ handles as many data
as the alignment, while taking much less time, because of its
simpler algorithm. It is therefore the core which stresses more
the I/O, making the analysis of the I/O performance in this
phase a particularly interesting exercise.

Despite its relative simplicity the converter shows clearly
to be CPU-bound, with all the virtual cores of the cluster at
close to 100% utilization for the entire duration of the run.
On a single node we observe a running time of 58.4 minutes,
yielding a throughput of about 150 MB/s, considering both in-
put and output, which is in fact much lower than the 700 MB/s
that we could have theoretically extracted from the two SSDs
of the machine, had we been limited by the I/O. When using
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14 nodes the running time is only 5.43 minutes, implying a
throughput of 1.6 GB/s during the program execution, which is
particularly impressive considered that both input and output
are compressed.

VIII. RELATED WORK

Usage of “BigData” tools for bioinformatics applications
started in late 2008 with work on Hadoop [36], [37] and has
since continued to increase [38]. Most of the advancement
in this area have come in NGS data analysis, where many
Hadoop-based tools have been developed [39]; tools such as
Crossbow [31] for SNP discovery, and Myrna [33] for RNA-
Seq [40] differential expression analysis were pioneers in this
area.

Several Hadoop-based sequencing alignment tools have
already been published. Crossbow [31] (based on the
Bowtie [41] aligner, which it executes internally) and Cloud-
burst [42] were two of the first. The alignment algorithms used
by these programs has been superseded by others, including
the BWA-MEM algorithm [17] which is used by Seal. More
recently, newer distributed programs integrating BWA-MEM
have been published, running on Hadoop MapReduce [29]
and Spark [30], [43]. The authors have showed their tools
to be faster than Seal’s latest official release, which is now
obsolete because it integrates an outdated version of BWA.
The version of Seal seqal used in this work is newer and
though it has not been officially released it is open source
and available on github.com in the develop branch of
the project repository. Further, those works integrate BWA by
running the executable from within their framework; Seal uses
a more flexible approach which will more easily allow future
work in the area of integrating more advanced storage file
formats into the NGS processing workflows.

Of course, there exist other approaches to scale the through-
put of sequence data processing. Work has been done on
using hardware “accelerators” such as Graphical Processor
Units (GPUs) [44], [45] or Field-Programmable Gate Arrays
(FPGAs) [46]–[48] to accelerate sequence alignment. These
should be seen as complementary to our work since they could
be easily integrated into our Seqal aligner by implementing a
RAPI-compatible plugin.

It is also worth mentioning a project called ADAM [49] that
is developing a suite of tools for the analysis of sequencing
data on Spark. That project is also complementary to this work
since it provides a myriad of tools that are useful for post-
alignment sequence analysis.

Finally, an important project relevant to this work is the
Genome Analysis Toolkit (GATK) [50], which implements
essential analyses for NGS data that are downstream of
alignment. Moreover, the GATK is probably one of the most
important packages in its niche, and independent research has
found it to be one of the best at what it does [18], [19].
The new version of the GATK will run on Spark, which
makes it an excellent complement for the work presented in
this manuscript: with our YARN-based pipeline and GATK

4 a sequencing center could implement the entire processing
pipeline on YARN.

IX. CONCLUSION

We have presented a YARN-based pipeline to process raw
Illumina NGS data up to the stage of aligning reads – the first,
to the best of the authors’ knowledge, to process raw data.
Our experiments have shown the pipeline to have excellent
scalability characteristics, such that a sequencing center could
reasonably aim to reduce their processing per sequencing run
to under an hour with the use of a small YARN cluster.
Moreover, our solution performed better than the baseline even
on a single computing node. Completing this pipeline has
required the creation of a Read Aligner API and improvements
to the efficiency of the sequence aligner in the Seal suite
of tools. The work we presented is an excellent complement
to work currently being done by the GATK group to bring
the sequence analysis downstream of alignment to the YARN
platform; combining our tools one could have a complete
YARN-based pipeline for NGS data, and then further improve
performance by adopting an in-memory file system such as
Apache Arrow, thus removing the need to write intermediate
data to disk.

The code presented it this work is already available as open
source.5
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