bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Scalable genomics: from raw data to aligned reads
on Apache YARN

Francesco Versaci
Distributed Computing Group
CRS4
Pula, Italy
francesco.versaci @crs4.it

Abstract—The adoption of Big Data technologies can poten-
tially boost the scalability of data-driven biology and health
workflows by orders of magnitude. Consider, for instance, that
technologies in the Hadoop ecosystem have been successfully used
in data-driven industry to scale their processes to levels much
larger than any biological- or health-driven work attempted thus
far. In this work we demonstrate the scalability of a sequence
alignment pipeline based on technologies from the Hadoop
ecosystem — namely, Apache Flink and Hadoop MapReduce,
both running on the distributed Apache YARN platform. Unlike
previous work, our pipeline starts processing directly from the
raw BCL data produced by Illumina sequencers. A Flink-based
distributed algorithm reconstructs reads from the Illumina BCL
data, and then demultiplexes them — analogously to the bcl2fastq2
program provided by Illumina. Subsequently, the BWA-MEM-
based distributed aligner from the Seal project is used to perform
read mapping on the YARN platform. While the standard
programs by Illumina and BWA-MEM are limited to shared-
memory parallelism (multi-threading), our solution is completely
distributed and can scale across a large number of computing
nodes. Results show excellent pipeline scalability, linear in the
number of nodes. In addition, this approach automatically
benefits from the robustness to hardware failure and transient
cluster problems provided by the YARN pipeline, as well as the
scalability of the Hadoop Distributed File System. Moreover, this
YARN-based approach complements the up-and-coming version
4 of the GATK toolkit, which is based on Spark and therefore
can run on YARN. Together, they can be used to form a scalable
complete YARN-based variant calling pipeline for Illumina data,
which will be further improved with the arrival of distributed
in-memory filesystem technology such as Apache Arrow, thus
removing the need to write intermediate data to disk.

Keywords-NGS, Flink, Hadoop, Map-Reduce, YARN.

I. INTRODUCTION

The data-intensive revolution [1], [2] in the life sciences
has next-generation sequencing (NGS) machines among its
most prominent officers. As it becomes more economically
accessible, DNA sequencing has opened up to a myriad
of new applications that were previously technologically or
economically unfeasible [3]. High-throughput sequencing can
now be used for research into understanding human genetic
diseases [4], in oncology [5], to study human phylogeny [6],
and is even reaching the level of personalized diagnostic
applications [7].

One of the main challenges brought forth by this phe-
nomenon is to develop scalable computing tools that can keep

Luca Pireddu
Distributed Computing Group
CRS4
Pula, Ttaly
luca.pireddu@crs4.it

Gianluigi Zanetti
Distributed Computing Group
CRS4
Pula, Italy
gianluigi.zanetti @crs4.it

up with such a massive data generation throughput. The raw
data produced by NGS needs to go through various intense
processing steps to extract biologically relevant information.
To date, it appears that most sequencing centers have opted to
implement processing systems based on conventional software
running on High-Performance Computing (HPC) infrastruc-
ture [8] — a set of computing nodes accessed through a
batch queuing system and equipped with a parallel shared
storage system. While with enough effort and equipment this
solution can certainly be made to work, it presents some
issues that need to be addressed. Two important ones are that
developers need to implement a general way to divide the
work of a single job among all computing nodes and, since
the probability of node failures increases with the number of
nodes, they also need to make the system robust to transient
or permanent hardware failures, recovering automatically and
bringing the job to successful completion. Nevertheless, even
with these measures, the architecture of the HPC cluster limits
the maximum throughput of the system because it is, usually,
centered around a single shared storage volume, which tends
to become the bottleneck as the number of computing nodes
increases — and this is especially true for some phases of
sequence processing which can perform a lot of I/O with
respect to processing activity.

This paper presents our novel approach to processing se-
quencing data, adopting a strategy completely different from
the status quo by processing raw sequencing data using
Hadoop MapReduce and Apache Flink (see Sections III-A
and III-B). To the best of the authors knowledge, this is the
first solution that can process the sequencer’s raw data directly
on a distributed platform. In short, in this work we present:

« the first complete and scalable Hadoop-based pipeline to
align DNA sequences starting from raw data;

e an efficient Flink-based tool to convert from BCL to
FASTQ formats;

« the Read Aligner API (RAPI), which encapsulates aligner
functionality and provides C and Python bindings;

o improvements to the efficiency of the aligner in the Seal
suite.

The rest of the paper is organized as follows. Section II
describes the Next Generation Sequencing process, the com-

https://doi.org/10.1101/071092

bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

TABLE I: Maximum sequencing capacities for a number of
[lumina high-throughput sequencers [11]-[13]. The size of the
output in GB is intended for uncompressed reads with base
qualities and id strings, considering a total of 2.5 bytes/base.

putation that is required to make sense of the data and the
state-of-the-art in modern sequencing centers. Section III pro-
vides background regarding Hadoop and Flink, motivating the
decision to adopt the Hadoop/YARN framework. Sections IV

and V present the tools that have been developed as part of this

; . X Sequencer Read length Time Gigabases Gigabytes Rate
work. Section VI contains the performance evaluation and a (days) (GB) (GB/day)
comparison to the state-of-the-art. Finally, Sec. VIII discusses HiSeq 2000 2 x 100 8 400 1000 195
related work and Sec. IX concludes the manuscript. HiSeq 2500 2x 125 6 1000 2500 417

HiSeq 4000 2 x 150 3.5 1500 3750 1071
II. THE NGS PROCESS IR
RO N
L PSS
FEELE

Deoxyribonucleic acid (DNA) is a polymer composed of
simpler units known as nucleotides, or bases. These come
in four kinds: Adenine, Cytosine, Guanine and Thymine —
respectively denoted by their initial letters, A, C, G, and
T. The DNA data produced by the NGS process are not
directly interpretable from a biological point of view. There
exist a number of high-throughput NGS technologies [9], but
currently they all use a “shotgun” approach, where the genome
to be sequenced is broken up into fragments of approximately
the same size and the individual fragments are sequenced
in parallel. The characteristics of the raw data produced by
the sequencer changes depending on the specific technology
being used. The sequencers by Illumina Inc. (http://www.
illumina.com) — which are the target of this work — operate
by successively attaching a fluorescent identifying molecule to
each base of the DNA fragments being sequenced [10].

Thus, at each cycle, the machine acquires a single base from
all the reads by snapping a picture of the flow cell where a
chemiluminescent reaction is taking place. For each picture,
and thus cycle, the software on the sequencer’s controlling
workstation performs base calling from the image data —
mapping each chemiluminescent dot to a specific base (A, C,
G, T) based on its color. The process produces base call files
(BCL), which only contain the bases that were acquired from
all the fragments — also known as reads — in that specific
sequencing cycle. Therefore, the individual DNA fragments
are actually split over C' files, where C' is the number of cycles
in the sequencing run and the length of the reads.

Next-generation sequencing activity quickly results in a lot
of data. Consider that a modern high-throughput sequencer like
the Illumina HiSeq 4000 can produce 1500 Gigabases, which
equate to about 4 Terabytes of uncompressed sequencing data,
in just 3.5 days [11]. That much data is sufficient to reconstruct
up to 12 human-sized genomes, where a single sample of this
type equates to a bit over 300 GB of uncompressed data.
Moreover, in the context of a study or a sequencing center,
this hefty per-sample data size is typically multiplied by a
significant number of samples. Consider that for sequencing-
based studies that require high analysis sensitivity or to get
population-wide statistics thousands of samples need to be
sequenced and processed; e.g., a population-wide study by
Orru et al. [4] required the sequencing of 2870 whole genomes
resulting in approximately one petabyte of sequencing data to
be analyzed and stored.

FiIellGIGlCITlAleclel

FiIeZlAIGlAIClAlecIeZ

FiI93|A|G|A|C|G|CycIe3

FiIe4|T|A|G|T|C|CycIe4

GAATC Readl
GGGAT Read2
CAAGG etc.
TCCTC

éAAGCT

Fig. 1: Recomposing nucleotide sequences from the raw data
in Illumina BCL files. The operation requires reading data
simultaneously from a number of files equal to the number of
cycles in the sequencing run — each file contains one base from
each read. Once all the bases of a read are acquired, the read
can be composed and emitted and processing can advance to
the next one.

FiIe5|C|T|G|C|T|CycIeS

A. BCL conversion and sorting reads

The first step in making sense of the raw data is to recon-
struct the original DNA fragments from the “slices” produced
by the sequencer. The operation required to reconstruct the
reads is logically equivalent to a matrix transposition, where a
read is obtained by concatenating the elements located at the
same positions across several files, as illustrated in Fig. 1.

Along with the read reconstruction, one must typically also
perform other operations which help the subsequent analyses:
filtering out some of the reads (based on filter files which are
also part of the run output) and tagging each read with some
metadata (e.g., z-y coordinates within the tile).

Moreover, for reasons of efficiency and flexibility, the DNA
fragments from individual samples are often tagged with a
short identifying nucleotide sequence and then mixed and se-
quenced with other samples in a single batch. This procedure is
known as multiplexed sequencing. In this way, the sequencing
capacity of the run is divided among more biological samples
than would be possible if it was necessary to keep them phys-
ically separated. Being that the genetic material of multiple
samples is in the same biological solution, the sequencer will
acquire their fragments of DNA indiscriminately and they will

https://doi.org/10.1101/071092

bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

be output in the same dataset. Thus, after BCL conversion,
the NGS data will typically undergo a demultiplexing stage,
where fragments from various samples are sorted into separate
datasets using their identifying tag.

B. Read Alignment

The product of the high-throughput sequencing and process-
ing procedure described thus far is a set of billions unordered
short DNA fragments. These need to be analyzed computa-
tionally to understand the structure of the original whole DNA
sequence from which they came. The specific analyses to be
performed will vary depending on the application. The most
common sequencing scenario — and the one that concerns us
in this work — is the one where there is a reference genome
available for the sample being sequenced and it is used as
a guide to reconstruct the sample’s genome. This type of
sequencing experiment is known as resequencing. When rese-
quencing, after the reconstruction of the sequenced fragments,
the fragments are aligned or mapped to the reference genome
— i.e., an approximate string matching algorithm is applied to
find the position in the reference sequence from which the
reads were most likely acquired. The mapping algorithms are
designed to be robust to sequencing errors and to the small
genetic variations that characterize the sample. Moreover,
when sequenced the genome is typically oversampled many
times; for instance, for whole-genome sequencing 30 times
oversampling — also known as 30X coverage is common.
The oversampling results in reads that overlap, which will be
essential in later phases of analysis to detect heterozygosity
and to distinguish genomic variants specific to the sample from
mere sequencing errors.

C. Standard practice

In a typical scenario, after the sequencer finishes its work a
multi-step processing pipeline will be executed, starting with
the BCL conversion and read alignment steps described in
the previous subsections. In the state-of-the-art, sequencing
operations are equipped with a conventional HPC cluster with
a shared parallel storage system. The nodes are typically
accessed via a batch queuing system, and often the computing
resources are dedicated to the needs of the sequencing and
bioinformatics work [8].

Within this context, the standard solution is to perform
read reconstruction and demultiplexing using Illumina’s own
proprietary, open-source tool: bcl2fastq2. It is written in C++
and powered by the Boost library [14]. This tool implements
shared-memory parallelism — i.e., it only exploits parallelism
within a single computing node. To the best of the authors’
knowledge, there are no alternatives for this tool in a conven-
tional computing setting.

On the other hand, there is variety of alignment programs
available and in widespread use [15], [16]. Among these,
BWA-MEM [17] is quite popular and has been found to
produce some of the best alignments [18], [19]. Like the
bcl2fastq2 — and the other conventional read alignment pro-

grams — BWA-MEM also implements shared-memory paral-
lelism.

Though shared-memory parallelism is certainly beneficial
to accelerating analysis, it is insufficient. Because of the huge
amount of data produced by current sequencers the processing
of a run on a single node easily takes several hours of
computation, even on state-of-the-art machines, with tens or
even hundreds of cores. One way to overcome this problem is
to distribute the data among different nodes and then running
distinct instances of the programs on each node, each one
working on its subset of the data. However, this ad hoc solution
is not trivial to implement properly, as one would inevitably
end up trying to reimplement one of the already existing
distributed computing frameworks.

III. BACKGROUND

A. Hadoop framework

The Hadoop framework, which has its origins in data
companies such as Yahoo! and Google, has been designed
from the ground up to scale computing throughput up to very
high levels while containing costs. In particular it provides:

o Robustness to hardware failures, by automatically taking
care of restarting tasks that do not complete because of
a broken node — without any user intervention,

o A distributed file system (HDFS), which allows data to
be processed directly on the node where they are stored,
drastically reducing the network load.

Another point worth mentioning is that by adopting Hadoop,
one also acquires access to Hadoop-based Platform-as-a-
Service (PaaS) offerings — for example, Amazon Elastic
MapReduce (EMR) [20] Google Cloud Dataproc [21] — which
entails having access to scalable cloud computing infrastruc-
ture without incurring any initial investment cost.

On the other hand Hadoop is not compatible with pre-
existent software: to adopt this framework in a sequencing
operation and reap the benefits it offers, one has to find
or implement new Hadoop-compatible software to perform
the processing steps required by the sequence processing
workflow: that is the problem that the work presented here
is addressing.

B. Flink

Apache Flink [22] is a system for processing in parallel
large streams of data; it is written in Java and can be run stan-
dalone or within an existent Hadoop/YARN installation [23],
benefitting both from shared- and distributed-memory par-
allelism. It originates from the Stratosphere project [24],
developed at TU Berlin, and is now a top-level project of the
Apache Software Foundation, supported by a large community
and being increasingly adopted both in research and industry'.

! An updated list of users is available at: https://cwiki.apache.org/confluence/
display/FLINK/Powered+by+Flink

https://doi.org/10.1101/071092

bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

IV. BCL PROCESSING

We will now describe our BCL converter, which is shown
to have the same performance as the shared-memory Illumina
bel2fastq tool on a single node, while also enabling easy and
scalable distributed-memory parallelization. Our tool is written
in Scala [25] within the Flink framework and can thus be easily
integrated in any Hadoop/YARN system, as a simple module
to be used in any Hadoop-based workflow.

The organization of the BCL files depends on the generating
sequencer and in this paper we will adopt the format used
by the HiSeq 3000/4000 machines. Files are divided into a
tree structure, with a single file referring to data obtained
by specific lane, tile and cycle combination: e.g., the file
L003/C80.1/s_3_1213.bcl.gz corresponds to data read from
tile ¢ = 1213, in lane [= 3 during cycle ¢ = 80. The
uncompressed BCL files have constant size within a run and
represent arrays of bytes R(I,t,c). Let’s now consider the
matrix M (l,t), where the c-th row of M(l,t) is given by
R(l,t,c). The first step of the BCL processing consists in
computing the transposition of M(I,t), for all [and t. A
typical run with 8 lanes, hundreds of tiles within each lane,
hundreds of cycles per tile and BCL files of a few megabytes,
produces a total output in the order of the terabyte, scattered
among hundreds of thousands of files.

A. Algorithmic details

From a high-level perspective our converter works as fol-
lows: the basic unit of job is the processing of a lane-tile
combination and several of these jobs are grouped together
into a Flink job, which is assigned some cores to be run with.
Flink jobs are scheduled by our program and sent to the Flink
executor, which allocates them on the available resources. As
an example, given a cluster of 8 nodes, with 16 cores/node
and 2 threads/core a possible assignment of the resources
is the following: 2 units of job per Flink job (to match the
simultaneous multithreading), 1 core per Flink job, 128 Flink
jobs running concurrently.

When processing a lane-tile combination, paired-end se-
quences are handled at the same time, since they share
the same filter and locs files, which contain respectively
information to filter the sequence and to reconstruct the z-y
coordinates of each read. Furthermore, the reads will be used
together during the alignment, so we have chosen to aggregate
them already at this stage of the processing. The BCL files
corresponding to different cycles are opened concurrently and
the bases and quality scores are extracted and filtered (see IV-B
for some implementation details). For each fragment, a header
is added, containing various meta-data and an index, i.e., a
short DNA sequence which has been attached to the samples
to being able to process different genomic materials within the
same run.

Once the fragments have been reconstructed and tagged,
they are sorted by their indexes and since there can be read
errors both in the data and in the indexes, their repartition
is done in a fuzzy way: a parameter, which defaults to one,
sets the numbers of allowed misinterpreted symbols when

matching a tag (i.e., the Hamming distance between tag and
match). Finally, a compressed file for each index is written
to disk, with files from different lane-tile combinations which
match the same index being written in the same directory.

B. Low-level optimizations

Our program is written in Scala and compiles into Java
bytecode, and it has therefore being challenging to match the
performance of programs written in languages closer to the
machine hardware. Nonetheless, we have being able to reach,
on the single computing node, the same speed of bcl2fastq2,
the [llumina proprietary tool. In order to achieve such a high
performance, we had to implement several techniques and
optimizations, the most rewarding being presented below.

1) Processing data in chunks: BCL files are arrays of
bytes, in which each byte encodes a base (bits 0-1) and a
quality score (bits 2-7). Therefore it would seem natural to
process them in Flink as datastreams of bytes (i.e., using
the DataStream[Byte] type). However, to harvest the
full performance of the Flink engine, we had to read and
process data in bigger chunks (set to 2048 bytes in our
implementation), to better exploit cache locality and to impose
a lower load on the streaming framework.

2) Use of ByteBuffer: In order to decode the bases and
quality scores encoded in the BCL files the bytes need to go
through some bit masks and shifts. Since the operations to be
performed are the same for every byte read, one can obtain
a factor 8 speed-up by grouping bytes into 64-bit longs and
executing the equivalent operations on longs. To perform such
an optimization in Scala we have used the ByteBuffer class,
which allows to interpret byte arrays as longs.

3) Use of look-up tables: We have implemented the con-
version of bases from numeric to ASCII notation (e.g.,
0x0001020303020100 maps to “ACGTTGCA”) by com-
pressing the input and using it as index in a look-up ta-
ble (e.g., 0x0001020303020100 is compressed to index
0b0001101111100100=0x1BE4 and searched in the pre-
computed look-up table).

V. ALIGNING READS

Read alignment in our read processing workflow was per-
formed using Seal seqal — the Hadoop-based aligner in the
Seal toolkit [26], [27] — which we improved as part of this
work. Among the various Hadoop-based read aligners (see
Section VIII) Seal was chosen because it integrates the BWA-
MEM aligner, has good performance, and was written by some
of the authors of this work.

The alignment step is implemented in seqal as a map-
only job using Pydoop [28]. Rather than implementing a new
aligner from scratch, seqal directly integrates the BWA-MEM
aligner through the RAPI read aligner API (developed as part
of this work; see Sec. V-A). To integrate BWA-MEM, its C
source code was significantly modified to repackage it as a
software library, so that its functions and data structures could
be called by seqal. Indeed, currently seqal is, to the best of
the authors knowledge, the only Hadoop-based read mapping

https://doi.org/10.1101/071092

bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

program that directly integrates the aligner core into its code;
other options choose to execute conventional read alignment
programs in their unmodified form [29]-[33] as a separate
child process. The technique adopted by seqal, while being
more difficult to implement, provides improved flexibility and
should also have a positive effect on efficiency.

In addition to transforming BWA-MEM into a software
library, the original code was also modified to use memory-
mapped I/O to read the reference sequence and its index, in-
stead of simply writing the index components into malloc’d
memory blocks. The reference index and sequence, to which
the reads are mapped, is relatively large when working with
higher order organisms; for instance, the human genome
(3 Gigabases long) results in an indexed reference for BWA-
MEM that is just over 5 GB in size. Memory mapping
this data provides two significant advantages over BWA-
MEM’s original technique. The first is that by using mmap
all instances of the software using the same reference on the
same computer will share the same data in memory, thereby
significantly reducing the memory required for an alignment
job. This feature is especially important to seqal’s use case
since, for best efficiency, it should run many concurrent map
tasks per node; empirically we have found that one task
per hyperthreaded core achieves very good CPU utilization.
The second advantage is that after its first use the reference
is automatically cached in memory for a period of time,
so that subsequent invocations of the aligner with the same
reference will save the time required to load it from storage
(a significant amount of time for larger references such as for
Homo sapiens). Since the BWA-MEM project is open source,
these improvements were sent to the author of the original
program to be considered for integration into the main line of
development.

A. The RAPI Read Aligner API

In work related to NGS data, read aligners are currently one
of the most fundamental pieces of analysis software, so read
alignment is an operation that has been intensely studied [15],
[34], resulting in a number of effective algorithms and imple-
mentations, many of which are continuously evolving.

These tools are typically packaged as command-line pro-
grams that expect to receive three main arguments: the path
to the indexed reference sequence, the path to the input read
file in FASTQ format, and the path to the output file in SAM
or BAM format. This simple interface makes a number of
assumptions: that all the required data files (reference, input
and output) are accessible on locally mounted file systems; that
the data are in the formats that the aligner supports; and that
the use case supports executing a new process each time an
alignment is required. Although these assumptions may appear
to be reasonable within the conventional computing environ-
ment that is currently predominant in bioinformatics, they are
actually extremely limiting to work aimed at introducing novel
computing and data flow paradigms to the field — for instance,
using distributed computing to improve scalability.

As a more general solution, we have defined a read aligner
API that can be implemented with any underlying read map-
ping technology: the Read Aligner Application Programming
Interface (RAPI)>. For maximum compatibility the RAPI is
defined in C. It includes generic functions and data structures
to support typical alignment operations: index a reference
sequence, load and unload the reference, map reads to the
reference, interpret the results. Further, RAPI includes Python
bindings, making it simple to load an aligner as a Python
module and use it in unconventional ways — e.g., for scripting
or in an interactive session. The project includes a reference
aligner interface implementation that wraps the BWA-MEM
aligner. This aligner plug-in, through its Python bindings,
is used to compute alignments in Seal seqal. The fact that
RAPI does not make any assumptions about the source or
destination of the data makes it possible to easily integrate
it with unconventional scalable computing and data storage
technology, as has been done as part of this work. It makes
it equally feasible to transparently implement aligner plug-ins
based on GPGPU or FPGA accelerators. Also, since RAPI
does not make any assumptions about the data formats, it also
facilitates research into alternative data structures for persistent
storage. Finally, since RAPI standardizes the aligner interface,
one could parametrize the aligner to use within a RAPI-based
pipeline, swapping aligner without changing any of the code.

RAPI is being proposed to the community as an option
to standardize the read aligner interface. A standard interface
would open up new use cases, reducing maintenance for
existing applications, and make it simple and safe to harness
aligner plug-ins to prototype and create novel functionality.
The interface has been released under an open source license.

VI. EVALUATION

In order to evaluate the speed and scalability of our YARN-
based sequence processing workflow, we have run it on a
real dataset with a varying number of nodes, processing
the raw data in BCL format produced by the sequencers,
reconstructing the DNA reads and aligning them to a reference
genome. In the following subsections we describe all aspects
of the experimental procedure and we compare it to a realistic
baseline workflow.

A. Hardware

All experiments were run on the Amazon Elastic Compute
Cloud (EC2 - https://aws.amazon.com/ec2), using up to 16 in-
stances of r3.8xlarge machines. The specifications are provided
in Table II. Of note, the instances include enhanced networking
which allows instances to use Single Root I/O Virtualization,
providing “higher I/O performance and lower CPU utilization,
compared to traditional implementations.? Also, while the Intel
CPUs provided by the instance provide 20 virtual cores each,
the instance only has 32; we suppose that the instances run

Zhttps://github.com/crs4/rapi
3https://aws.amazon.com/ec2/faqs/#What_networking_capabilities_are_
included_in_this_feature

https://doi.org/10.1101/071092

bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

TABLE II: Hardware configuration of the Amazon EC2
r3.8xlarge nodes used to evaluate performance.

CPUs 32 virtual cores (Xeon E5-2670 v2, 25 MB cache)
RAM 244 GiB

Disks 2x320 GB SSD

Network 10 Gb Ethernet connection with “enhanced networking”

TABLE III: Characteristics of the input dataset used for
evaluation.

Sequencer Ilumina HiSeq 3000
Total size of directory 279 GB

Size of data files 251 GB (gzip-compressed)
Number of files 1164005

Number of samples 48
Number of reads 2.9 -10°
Number of DNA bases 2.9 - 10!

on dual-CPU hardware and the virtualization scheme hides 8
cores from the virtual machine.

Finally, an Amazon Elastic Block Store (EBS) device was
used as persistent storage for the input dataset, to avoid having
to transfer the data to the compute center multiple times.
However, this device was not used for I/O during any of our
experiments.

B. Input dataset

The input dataset is the output of a multiplexed sequencing
run by an Illumina HiSeq 3000 at the CRS4 Sequencing
and Genotyping Platform (at the same research organization
as the authors of this manuscript). The run used a single
multiplexing index, contained 48 human genomic samples.
The dataset contains 279 GB of raw data, of which 251 GB
are read data scattered among 188,160 gzip-compressed BCL
files (8 lanes x 112 tiles/lane x 210 cycles) plus 890 filter
files (which contain a QC pass/fail for each read). The size of
each uncompressed BCL and filter file is 4.1 MB. Additional
information is reported in Table III. Note that the input
BCL files are automatically gzip-compressed by the software
producing them on the sequencer.

C. Experimental Workflow

To evaluate the speed and scalability of our distributed-
memory workflow, we prepared the following setup:

« HDEFS distributed among the n computing nodes, with
each datanode using its two SSD disks to store the data;

¢ YARN running on the same n nodes;

¢ YARN configured with 31 cores/node,
225 GB RAM/node, capacity scheduler with
DominantResourceCalculator;

« one of the n nodes works as both master and slave, run-
ning the HDFS namenode, the YARN resource manager
as well as the datanode and node manager services.

The input data are copied to the HDFS volume, along
with a tar archive of the indexed reference required by

Seal seqal for the alignment. Prior to each workflow in-
vocation, the various system caches were cleared with
echo 3 > /proc/sys/vm/drop_caches.

The experimental workflow then consists in running our
Flink-based BCL conversion tool immediately followed by
invoking Seal seqal for each resulting sample dataset.

BCL conversion. To run our Flink-based BCL converter and
demultiplexer, we start a detached Flink session on YARN.
The session is configured with two TaskManagers per node,
each with 80 GB of memory and 8 slots, while the Flink
JobManager is assigned 10 GB of memory.

After the session is launched the BCL converter reads
and write from/to HDFS. As soon as it completes its work,
the Flink session on YARN is torn down by killing it
(yarn application -kill <appID>). The operation
produces PRQ files (a variation of FASTQ which allows to
treat paired reads in the same file) that are gzip-compressed
at compression level 1.

Alignment. Following the conclusion of the BCL conversion
phase, its output directory is scanned to find the datasets
produced. Empty files (as in gzip files with no content) are
deleted to work around a bug in the InputFormat used by Seal
seqal. The Undetermined dataset is also eliminated; these are
the reads whose identifying tag was not recognized and thus
cannot be assigned to any biological sample. Then, for each
dataset, Seal seqal is invoked. All invocations are done in rapid
succession, thus causing the various application instances to
queue in YARN, which takes care to dispatch the numerous
seqal tasks as computing resources become available. Seqal
is configured to use 8 threads per task within the alignment
core. On the other hand, the job is configured to request
only two YARN cores per task; the effect is that in our
experimental setup, with 31 cores per node, up to 15 tasks
can run simultaneously (31/2 = 15). Seal seqal distributes
the reference index to the various nodes via the Hadoop
MapReduce distributed cache. This operation implies a small
delay at the start of the first alignment tasks, as the archive is
copied to all the nodes, unarchived, and the reference files are
mapped to memory; subsequent tasks however will find the
reference already in memory and will benefit from caching
effects. The seqal application directly reads the gzipped PRQ
files produced by the BCL converter, processing one file per
map task (gzip files are not splittable). It produces aligned
reads in the SAM format [35] — a common text-based format
for aligned reads — which are written to HDFS.

We ran this workflow on YARN clusters of 1, 2, 4, 8, and
16 nodes. On repeated runs we found very good agreement
(within 2% of the mean running time). In the experiments
we recorded the wall clock time required to run the entire
procedure, starting at the launch of the Flink session on YARN
and ending with the conclusion of the last alignment run;
an intermediate time is also recorded at the end of the BCL
conversion.

https://doi.org/10.1101/071092

bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

TABLE IV: Versions of the various software packages used in this work.

Package Version Source

Java Oracle JDK 8ul02 http://www.oracle.com/
Hadoop 2.7.2 http://hadoop.apache.org/
Flink 1.1-SNAPSHOT, Commit ID: 3ab9e36 https://github.com/apache/flink
bel2fastq2 v2.17.1.14 http://support.illumina.com/
BWA 0.7.8-r455 https://github.com/lh3/bwa
Seal Commit ID: cc050ada https://github.com/crs4/seal
Rapi Commit ID: 8f428207 https://github.com/crs4/rapi

D. Baseline workflow

As the base case against which to compare, we implemented
a workflow to perform BCL conversion and read alignment
using the conventional tools described in Subsection II-C, thus
using shared-memory parallelism on a single node. Therefore,
the baseline workflow runs Illumina bcl2fastq2 and BWA-
MEM (vers. 0.7.8-r455 — same version that is used by Seal
seqal)

To prepare for the runs, the input data and the indexed
reference is copied to one of the node’s SSD drives and the
system caches are cleared in the same manner as described in
Subsection VI-C.

The workflow is then started with the bcl2fastq2 tool. To al-
low it to fully exploit its multi-thread parallelism and minimize
I/O latencies, we configured it to read BCLs from one SSD
disk and write FASTQs to the other SSD disk. To lower its
CPU usage we decreased the level of the output compression,
by setting its option ——fastg-compression-level to
one (equivalent to gzip’s ——fast option and identical to the
setting used in our Flink-based converter). The tool detects
the number of cores in the system and automatically selects
the number of input, output, and processing threads to use;
its settings appeared to be effective since it maintained a very
high CPU utilization throughout the runs (very close to 100%).

Analogously to the YARN-based workflow, at the con-
clusion of the BCL conversion and demultiplexing step we
remove the Undetermined dataset. The alignment is then
performed with BWA-MEM. We configured the aligner to
use 31 threads for its parallelized sections of code (option
-t 31), which is analogous to YARN’s 31 cores/node. Since
BWA-MEM doesn’t natively read gzip-compressed files (and
bcl2fastq2 doesn’t write uncompressed files), we implemented
the workflow to uncompress the files with gunzip on-the-
fly and piped the data directly to the aligner, using process
substitution and named pipes. On the other hand, BWA’s
output, in SAM format just like Seal seqal’s, was redirected
to the second SSD drive — i.e., BWA was reading from one
drive and writing to the other.

Wall clock time was recorded at the start of the workflow, at
the conclusion of bcl2fastq2, and at the end of the workflow.

VII. RESULTS & DISCUSSION
A. Full pipeline

The times recorded for the runs are shown in Table V. The
first, somewhat surprising, observation is that our suite is faster

TABLE V: Running times of our Hadoop/YARN pipeline and
the baseline on a single node.

Time (minutes)

Nodes BCL Align Total
baseline 67.3 645 713
1 47.3 571 618
2 24.5 286 311
4 13.5 144 158

8 8.1 72.5 80.7

16 6.1 36.6 42.8

than the baseline even on a single node (618 vs 713 minutes).
There are several explanations for this result:

1) Though the standard BCL to FASTQ conversion does
take the same time on a single node (see VII-B), we
optimized our pipeline using Seal’s PRQ file format
which groups paired reads in the same file, thus resulting
in half the files and saving some space in output (perhaps
~15%).

2) The BWA aligner used in the baseline processes reads in
batches, computing alignments and then writing the re-
sults. Only the alignment phase seems to be parallelized,
resulting in low CPU usage every time the aligner is
generating output. On the other hand, our aligner runs
more jobs concurrently, thus achieves a more uniform
CPU usage while using the same BWA alignment core.
This effect is illustrated in Fig. 3.

3) Seal mmap’s the reference data (thanks to our patch to
the BWA core), meaning that after the first invocation
seqal re-maps the reference in a tenth of a second. On the
other hand, BWA fread’s the reference data at every
invocation, which takes significantly longer and cases
it to waste a significant amount of time over the 48
invocations of the experiment.

4) Our pipeline has better I/O characteristics than the
baseline, since its tens of concurrent read and write
streams (a variable number for Flink, while the aligner
in this configuration had 31 read streams and 31 write
streams), distributed uniformly over the two available
SSD’s (through HDEFES). The baseline, on the other hand,
has four read and four write threads in bcl2fastq2 and
two read and one write streams in the alignment phase.
Moreover, all the reads are from one disk and all the
writes are to the other disk.

Moving on to the multi-node results, given that both conver-

https://doi.org/10.1101/071092

bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

18 T T T

Speed-up

Hadoop/YARN pipeline =

[i i i
1 2 4 8 12 16 18
Number of nodes

Fig. 2: Strong scaling of our Hadoop/YARN pipeline, com-
pared with the single-node baseline.

nmon—14g

[H for help]—Hostname=ip-10-0-3-40-Refresh= 2secs —14:33.28———

(a) BWA

[H for helpl—-Hostname=1p-10-0-3-26-Refresh= 2secs —14:36.32—

nman-14g

8L LLULUULUUULUUUULULUULUL UL LU UL ULULUULUU UL UL ULULUULULUUUUUUUULUULY
A |- UL LU UL UL UL UL UL U UL UUUULULULU U U UL DU U UUU UL UL UL LU UUUUUUU
S UUUUUUULULUUUUUUULUUUUUULUUULUULULULULUUUUUUUUUUUUUUUULUUUUUUUUUUUUUL
A |- LU LU UL UULULULUUL UL UL UL UL UL UUUULULULU UL UL U DU DU UUUULULULUUUUUUUUUU
A |- UL LU UL UL UL UL UL U UL UUUULULULU U U UL DU U UUU UL UL UL LU UUUUUUU
S UUUUUUULULUUUUUUULUUUUUULUUULUULULULULUUUUUUUUUUUUUUUULUUUUUUUUUUUUUL
A |- UL LU UL UL UL UL UL U UL UUUULULULU U U UL DU U UUU UL UL UL LU UUUUUUU
A |- LU UL UULULULLUUL UL UL UL UL UL UUUULULULU UL UL UL U UL UUU UL UL UL DDLU UUUUU
S UUUUUUULULUUUUUUULUUUUUULUUULUULULULULUUUUUUUUUUUUUUUULUUUUUUUUUUUUUL
A |- UL LU UL UL UL UL UL U UL UUUULULULU U U UL DU U UUU UL UL UL LU UUUUUUU
SUUUUUUULULUULULUULUUUUUULUUUUUULULULULUUUUUUUUUUUUUUUULUUUUUUUUUUUUUL
S UUUUUUULULUUUUUUULUUUUUULUUULUULULULULUUUUUUUUUUUUUUUULUUUUUUUUUUUUUL
A |- UL LU UL UL UL UL UL U UL UUUULULULU U U UL DU U UUU UL UL UL LU UUUUUUU
SUUUUUUULULUULULUULUUUUUULUUUUUULULULULUUUUUUUUUUUUUUUULUUUUUUUUUUUUUL
S UUUUUUULULUUUUUUULUUUUUULUUULUULULULULUUUUUUUUUUUUUUUULUUUUUUUUUUUUUL
A |- UL LU UL UL UL UL UL U UL UUUULULULU U U UL DU U UUU UL UL UL LU UUUUUUU
SUUUUUUUUUULUUUUUULUUUUUUUUUUUUUUULULULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUL

(b) seqal

Fig. 3: Computation intensity during alignment (nmon screen-
shots, x is time, y is CPUs usage).

sion and alignment can be decomposed in a large number of
independent subtasks, we have been able to obtain an almost
linear scaling, as shown in Fig. 2. We have tested strong
scalability (i.e., increasing nodes while keeping the same input
size) on up to 16 nodes and, thanks to our good performance
on the single node test, our solution’s test result lies above the
“perfect scalability” line of the baseline.

TABLE VI: Running times of our Flink-powered BCL con-
verter with gzipped FASTQ output. Compare with Illumina
bcl2fastq2: 57.1 minutes on a single node.

Nodes Time (minutes)
1 58.4
2 30.2
4 15.2
6 10.5
8 8.4
14 5.4
14 T T T T T T
12 -
10 — .
o,
=
< 8F 1
(]
[
2,
n gk _
4 —
BCL converter
1 1 | 1 I | 1 j

1 2 4 6 8 10 12 14
Number of nodes
Fig. 4: Speed-up of the Flink-powered BCL converter com-
pared with the single-node Illumina bcl2fastq2 tool

B. BCL conversion

We also ran an independent test on our BCL conversion
tool. To compare the performance of our core with Illumina’s
bel2fastq2 we implemented the gzip-compressed FASTQ out-
put format, producing exactly the same output as Illumina’s
tool. The results obtained in this test are shown in Table VI and
the strong, absolute scaling, compared to bcl2fastq2, is shown
in Fig. 4. We can see that on the single node we nearly match
the performance of Illumina’s tool (58.4 vs 57.1 minutes) and
we obtain a good scalability, which tapers as the running time
goes below 10 minutes because of the fixed costs incurred by
Flink’s scheduler. We have run this test on up to 14 nodes,
choosing to stop at 14 nodes rather than 16 to have a more
even division of the 896 = 64 - 14 Flink jobs.

The conversion from BCL to FASTQ handles as many data
as the alignment, while taking much less time, because of its
simpler algorithm. It is therefore the core which stresses more
the I/0, making the analysis of the I/O performance in this
phase a particularly interesting exercise.

Despite its relative simplicity the converter shows clearly
to be CPU-bound, with all the virtual cores of the cluster
at close to 100% utilization for the entire length of the
run. On the single node we observe a running time of 58.4
minutes, yielding a throughput of about 150 MB/s, considering
both input and output, which is in fact much lower than the
700 MB/s that we could have extracted from the two SSDs
of the machine, had we been limited by the I/O. When using

https://doi.org/10.1101/071092

bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

14 nodes the running time is only 5.43 minutes, implying a
throughput of 1.6 GB/s during the program execution, which is
particularly impressive considered that both input and output
are compressed.

VIII. RELATED WORK

Usage of “BigData” tools for bioinformatics applications
started in late 2008 with work on Hadoop [36], [37] and has
since continued to increase [38]. Most of the advancement
in this area have come in NGS data analysis, where many
Hadoop-based tools have been developed [39]; tools such as
Crossbow [31] for SNP discovery, and Myrna [33] for RNA-
Seq [40] differential expression analysis were pioneers in this
area.

Several Hadoop-based sequencing alignment tools have
already been published. Crossbow [31] (based on the
Bowtie [41] aligner, which it executes internally) and Cloud-
burst [42] were two of the first. The alignment algorithms used
by these programs has been superseded by others, including
the BWA-MEM algorithm [17] which is used by Seal. More
recently, newer distributed programs integrating BWA-MEM
have been published, running on Hadoop MapReduce [29]
and Spark [30], [43]. The authors have showed their tools
to be faster than Seal’s latest official release, which is now
obsolete because it integrates an outdated version of BWA.
The version of Seal seqal used in this work is newer and
though it has not been officially release it is open source and
available on github.com in the develop branch of the project
repository. Further, those works integrate BWA by running
the executable from within their framework; Seal uses a more
flexible approach which will more easily allow future work in
the area of integrating more advanced storage file formats into
the NGS processing workflows.

Of course, there exist other approaches to scale the through-
put of sequence data processing. Work has been done on
using hardware “accelerators” such as Graphical Processor
Units (GPUs) [44], [45] or Field-Programmable Gate Arrays
(FPGAs) [46]-[48] to accelerate sequence alignment. These
should be seen as complementary to our work since they could
be easily integrated into our Seqal aligner by implementing a
RAPI-compatible plugin.

It is also worth mentioning a project called ADAM [49] that
is developing a suite of tools for the analysis of sequencing
data on Spark. That project is complementary to this work
since it provides a myriad of tools that are useful for post-
alignment sequence analysis.

Finally, an important project relevant to this work is the
Genome Analysis Toolkit (GATK) [50], which implements
essential analyses for NGS data that are downstream of
alignment. Moreover, the GATK is probably one of the most
important packages in its niche, and independent research has
found it to be one of the best at what it does [18], [19].
The new version of the GATK will run on Spark, which
makes it an excellent complement for the work presented in
this manuscript: with our YARN-based pipeline and GATK

4 a sequencing center could implement the entire processing
pipeline on YARN.

IX. CONCLUSION

We have presented a YARN-based pipeline to process raw
Ilumina NGS data up to the stage of aligning reads — the first,
to the best of the authors’ knowledge, to process raw data.
Our experiments have shown the pipeline to have excellent
scalability characteristics, such that a sequencing center could
reasonably aim to reduce their processing per sequencing run
to under an hour with the use of a small YARN cluster.
Moreover, our solution performed better than the baseline even
on a single computing node. Completing this pipeline has
required the creation of a Read Aligner API and improvements
to the efficiency of the sequence aligner in the Seal suite
of tools. The work we presented is an excellent complement
to work currently being done by the GATK group to bring
the sequence analysis downstream of alignment to YARN;
combining our tools one could have a complete YARN-based
pipeline for NGS data, and then further improve performance
by adopting an in-memory file system such as Apache Arrow,
thus removing the need to write intermediate data to disk.

Much of the code presented it this work is already available
as open source?, while the Flink-based software will soon be
integrated into the Seal package and released.

ACKNOWLEDGMENTS

We thank Gianmauro Cuccuru for the NGS dataset used
in the experiments and Massimo Gaggero for his support in
setting up the AWS EC2 environment.

REFERENCES

[1] V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498,
June 2013.

[2] K. M. Tolle, D. S. W. Tansley, and A. J. G. Hey, “The Fourth Paradigm:
Data-Intensive Scientific Discovery,” Proceedings of the IEEE, vol. 99,
no. 8, pp. 1334-1337, 2011.

[3] J. Shendure and E. L. Aiden, “The expanding scope of DNA sequenc-
ing,” Nature biotechnology, vol. 30, no. 11, pp. 1084-1094, 2012.

[4] V. Orru et al., “Genetic variants regulating immune cell levels in health
and disease,” Cell, vol. 155, no. 1, pp. 242-56, Sep. 2013.

[5] P. L. Bedard, A. R. Hansen, M. J. Ratain, and L. L. Siu, “Tumour
heterogeneity in the clinic,” Nature, vol. 501, no. 7467, pp. 355-364,
Sep 2013, insight.

[6] P. Francalacci, L. Morelli, A. Angius, R. Berutti, F. Reinier, R. Atzeni,
R. Pilu, F. Busonero, A. Maschio, 1. Zara et al., “Low-pass DNA
sequencing of 1200 Sardinians reconstructs European Y-chromosome
phylogeny,” Science, vol. 341, no. 6145, pp. 565-569, 2013.

[71 S. D. Boyd, “Diagnostic applications of high-throughput DNA sequenc-
ing,” Annual Review of Pathology: Mechanisms of Disease, vol. 8, no. 1,
pp. 381410, 2013, pMID: 23121054.

[8] O. Spjuth, E. Bongcam-Rudloff, G. C. Hernandez, L. Forer, M. Gio-
vacchini, R. V. Guimera, A. Kallio, E. Korpelainen, M. M. Kariduta,
M. Krachunov et al., “Experiences with workflows for automating data-
intensive bioinformatics,” Biology Direct, vol. 10, no. 1, pp. 1-12, 2015.

[9] J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature

biotechnology, vol. 26, no. 10, pp. 1135-1145, 2008.

D. R. Bentley et al., “Accurate whole human genome sequencing using

reversible terminator chemistry,” Nature, vol. 456, no. 7218, pp. 53-59,

Nov 2008.

[11] HiSeq 3000/HiSeq 4000 System Specifications, Illumina, Inc., 9885

Towne Centre Drive, San Diego, CA 92121 USA, 2015.

[10]

4Code available at http://github.com/crs4

https://doi.org/10.1101/071092

bioRxiv preprint doi: https://doi.org/10.1101/071092; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

[12]
[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

HiSeq 2000 Sequencing System, Illumina, Inc., 9885 Towne Centre
Drive, San Diego, CA 92121 USA, 2010.

I. Mumina, HiSeq 2500 System Specifications, Illumina, Inc., 9885
Towne Centre Drive, San Diego, CA 92121 USA, 2015.

B. Schiling, The boost C++ libraries. XML Press, 2nd edition, 2013.
H. Li and N. Homer, “A survey of sequence alignment algorithms for
next-generation sequencing,” Briefings in Bioinformatics, vol. 11, no. 5,
pp. 473-483, 2010.

M. Ruffalo, T. LaFramboise, and M. Koyutiirk, “Comparative
analysis of algorithms for next-generation sequencing read alignment,”
Bioinformatics, vol. 27, no. 20, pp. 2790-2796, 2011. [Online].
Available: http://bioinformatics.oxfordjournals.org/content/27/20/2790.
abstract

H. Li. (2013) Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM.

A. Cornish and C. Guda, “A comparison of variant calling pipelines
using genome in a bottle as a reference,” BioMed Research International,
vol. 2015, p. 11, 2015.

S. Hwang, E. Kim, I. Lee, and E. M. Marcotte, “Systematic comparison
of variant calling pipelines using gold standard personal exome
variants,” Scientific Reports, vol. 5, p. 17875, Dec 2015, article.
[Online]. Available: http://dx.doi.org/10.1038/srep17875

Amazon Elastic MapReduce. [Online]. Available: http://aws.amazon.
com/elasticmapreduce

Google Cloud Dataproc. [Online]. Available: https://cloud.google.com/
dataproc

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink™: Stream and Batch Processing in a Single
Engine,” IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28-38, 2015.

V. K. Vavilapalli et al., “Apache Hadoop YARN: yet another resource
negotiator,” in ACM Symposium on Cloud Computing, SOCC ’13, Santa
Clara, CA, USA, October 1-3, 2013, 2013, pp. 5:1-5:16.

A. Alexandrov et al., “The Stratosphere platform for big data analytics,”
VLDB J., vol. 23, no. 6, pp. 939-964, 2014.

M. Odersky, L. Spoon, and B. Venners, Programming in Scala. Artima
Press, 2016.

L. Pireddu, S. Leo, and G. Zanetti, “SEAL: a distributed short read
mapping and duplicate removal tool,” Bioinformatics, vol. 27, no. 15,
pp. 2159-2160, 2011.

——, “MapReducing a genomic sequencing workflow,” in Proceedings
of the second international workshop on MapReduce and its applica-
tions, ser. MapReduce '11. New York, NY, USA: ACM, 2011, pp.
67-74.

S. Leo and G. Zanetti, “Pydoop: a Python MapReduce and HDFS API
for Hadoop,” in Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, ser. HPDC ’10. New
York, NY, USA: ACM, 2010, pp. 819-825.

J. M. Abuin, J. C. Pichel, T. F. Pena, and J. Amigo, “BigBWA:
approaching the Burrows-Wheeler aligner to Big Data technologies,”
Bioinformatics, vol. 31, no. 24, pp. 4003—4005, 2015.

, “Sparkbwa: Speeding up the alignment of high-throughput dna
sequencing data,” PLoS ONE, vol. 11, no. 5, pp. 1-21, 05 2016.
[Online]. Available: http://dx.doi.org/10.1371%2Fjournal.pone.0155461
B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg,
“Searching for SNPs with cloud computing,” Genome Biology, vol. 10,
no. 11, p. R134, 2009.

L. Jourdren, M. Bernard, M.-A. Dillies, and S. Le Crom, “Eoulsan: a
cloud computing-based framework facilitating high throughput sequenc-
ing analyses,” Bioinformatics, vol. 28, no. 11, pp. 1542-1543, 2012.
B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg et al., “Ultrafast
and memory-efficient alignment of short DNA sequences to the human
genome,” Genome biol, vol. 10, no. 3, p. R25, 2009.

[34]

[35]

(36]

[37]

(38]

(391

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

M. Ruffalo, T. LaFramboise, and M. Koyutiirk, “Comparative analysis
of algorithms for next-generation sequencing read alignment,” Bioinfor-
matics, vol. 27, no. 20, pp. 2790-2796, 2011.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, R. Durbin, and . G. P. D. P. Subgroup, “The
sequence alignment/map format and SAMtools,” Bioinformatics, vol. 25,
no. 16, pp. 2078-2079, 2009.

M. Gaggero, S. Leo, S. Manca, F. Santoni, O. Schiaratura, and
G. Zanetti, “Parallelizing bioinformatics applications with MapReduce,”
CCA-08: Cloud Computing and its Applications, 2008.

A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: combining
MapReduce and virtualization on distributed resources for bioinformat-
ics applications,” in Fourth IEEE International Conference on eScience,
2008, pp. 222-229.

R. Taylor, “An overview of the Hadoop/MapReduce/HBase framework
and its current applications in bioinformatics,” BMC Bioinformatics,
vol. 11, no. Suppl 12, p. 1, 2010.

A. O’Driscoll, J. Daugelaite, and R. D. Sleator, ““big data”, hadoop
and cloud computing in genomics,” Journal of Biomedical Informatics,
vol. 46, no. 5, pp. 774 — 781, 2013.

Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool
for transcriptomics,” Nat Rev Genet, vol. 10, no. 1, pp. 57-63, Jan 2009.

B. Langmead, “Aligning short sequencing reads with Bowtie,” Current
protocols in bioinformatics, pp. 11-7, 2010.

M. C. Schatz, “CloudBurst: highly sensitive read mapping with MapRe-
duce,” Bioinformatics, vol. 25, no. 11, pp. 1363-1369, 2009.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, pp.
10-10, 2010.

P. Klus, S. Lam, D. Lyberg, M. S. Cheung, G. Pullan, I. McFarlane,
G. S. Yeo, and B. Y. Lam, “BarraCUDA - a fast short read sequence
aligner using graphics processing units,” BMC Research Notes, vol. 5,
no. 1, pp. 1-7, 2012.

Y. Liu, B. Schmidt, and D. L. Maskell, “CUSHAW: a CUDA compatible
short read aligner to large genomes based on the Burrows-Wheeler
transform,” Bioinformatics, vol. 28, no. 14, pp. 1830-1837, 2012.

H. A. Shah, L. Hasan, and N. Ahmad, “An optimized and low-
cost FPGA-based DNA sequence alignment — a step towards personal
genomics,” in Engineering in Medicine and Biology Society (EMBC),
2013 35th Annual International Conference of the IEEE, July 2013, pp.
2696-2699.

G. Caffarena, C. Pedreira, C. Carreras, S. Bojanic, and O. Nieto-Taladriz,
“FPGA acceleration for DNA sequence alignment,” Journal of Circuits,
Systems, and Computers, vol. 16, no. 02, pp. 245-266, 2007.

H. M. Waidyasooriya, M. Hariyama, and M. Kameyama, “FPGA-
accelerator for DNA sequence alignment based on an efficient data-
dependent memory access scheme,” in Proc. of the 5th International
Symposium on Highly-Efficient Accelerators and Reconfigurable Tech-
nologies (HEART), 2014, pp. 127-130.

M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. D.
Joseph, and D. A. Patterson, “ADAM: Genomics formats and processing
patterns for cloud scale computing,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2013-207, Dec 2013.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/
EECS-2013-207.html

A. McKenna, M. Hanna, E. Banks er al, “The genome analysis
toolkit: A MapReduce framework for analyzing next-generation DNA
sequencing data,” Genome Research, vol. 20, no. 9, pp. 1297-1303,
2010.

https://doi.org/10.1101/071092

