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ABSTRACT 

Taxonomic expertise for the identification of species is rare and costly. On-going 

advances in computer vision and machine learning have led to the development of numerous 

semi- and fully automated species identification systems. However, these systems are rarely 

agnostic to specific morphology, rarely can perform taxonomic “approximation” (by which we 

mean partial identification at least to higher taxonomic level if not to species), and frequently rely 

on costly scientific imaging technologies. We present a generic, hierarchical identification system 

for automated taxonomic approximation of organisms from images. We assessed the effectiveness 

of this system using photographs of slipper orchids (Cypripedioideae), for which we implemented 

image pre-processing, segmentation, and colour and shape feature extraction algorithms to obtain 

digital phenotypes for 116 species. The identification system trained on these digital phenotypes 

uses a nested hierarchy of artificial neural networks for pattern recognition and automated 

classification that mirrors the Linnean taxonomy, such that user-submitted photos can be assigned 

a genus, section, and species classification by traversing this hierarchy. Performance of the 

identification system varied depending on photo quality, number of species included for training, 

and desired taxonomic level for identification. High quality photos were scarce for some taxa and 

were under-represented in the training set, resulting in imbalanced network training. The image 

features used for training were sufficient to reliably identify photos to the correct genus but less 

so to the correct section and species. The outcomes of this project include a library of feature 

extraction algorithms called ImgPheno, a collection of scripts for neural network training called 

NBClassify, a library for evolutionary optimization of artificial neural network construction called 

AI::FANN::Evolving and a planned web application called OrchID for identification of user-

submitted images. All project outcomes are open source and freely available. 
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INTRODUCTION 

Correct taxonomic identification of organisms is of great importance. However, 

taxonomic expertise is rare and costly (the “taxonomic impediment”[1]), so alternative, more 

scalable methods that are cheap, that require little expert knowledge, and that are accurate enough 

to derive taxonomic approximations – i.e. partial identification at least up to higher taxonomic 

levels such as genera, though under ideal circumstances to species level – would be of great 

value. Taxonomic identification and approximation using DNA barcodes (for example, to detect 

biological materials from endangered species [2]) may be dropping in relative cost and may 

require little taxonomic expertise, but the need for wet lab procedures and DNA sequencing is 

still prohibitive in many contexts. Low-cost taxonomic identification systems based on geometric 

morphometrics (for example of bee wing morphology [3]) require human assistance to identify 

homologous landmarks, which at least requires expertise in morphology, in addition to the time-

consuming handwork of applying landmarks, which impedes scalability.  

Considering the case of slipper orchids (Cypripedioideae), a popular horticultural group of 

orchids of which many species are highly endangered in the wild and in which illegal trade is 

soaring [5,12], more tools are needed to increase taxonomic identification to prevent species from 

going extinct. On-going advances in computer vision and machine learning have led to the 

development of numerous semi- and fully automated species identification systems. Such systems 

have been successful in the identification of plant species [4–6], phytoplankton [7], diatom 

frustules [8], and insects [9,10], among others. However, these systems frequently rely on costly 

scientific imaging and analysis (e.g. microscopy-based histology [6,8] or flow cytometry [7]) and 

rarely perform taxonomic approximation, rather taking a binary “all or nothing” approach. An 

informative exception to this is the work of Boddy et al. [7], who devised a hierarchy of 

classifiers whose structure mirrors that of the Linnean taxonomy such that queries are passed on 
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from classifiers at higher taxonomic levels to the appropriate classifier at lower levels. This 

approach allows for taxonomic approximation, and it is enabled by the application of Artificial 

Neural Networks (ANNs). ANNs have become an increasingly popular choice in automated 

image classification systems [12]. They provide a powerful tool for pattern recognition and 

machine learning. However, due to the frequently very large number of configuration parameters 

(for network topology, activation functions, training algorithms, and so on), ANN construction 

and training is difficult to generalize.  

Table 1 lists some of the recent studies that present systems for classifying organisms 

from images. Although some studies are based on (partially) manually applied landmarks [3,6], 

the majority of these systems use various ways to automatically capture and summarize putatively 

informative image features, e.g. by computing colour intensities and/or shape descriptors. The 

image data are obtained from a variety of technologies, about half of which are rely on standard, 

consumer-quality cameras, with the others using various types of microscopy or other ways of 

detecting microscopic features (i.e. by flow cytometry, [7]). Although the number of different 

statistical methods used to arrive at classifications is striking, the most commonly used approach 

is based on ANNs. Interestingly, few systems attempt to arrive at taxonomic approximation, and 

those that do in our survey [7,10], rely on specialized data capture technologies. 

Given the current state of the art we propose that generalizable systems for taxonomic 

approximation, agnostic to specific morphology, and applicable to low-cost imaging equipment 

such as phone cameras, should be coming within reach of non-expert users. We therefore present 

a novel framework to fill this void. The framework comprises reference image management; 

image pre-processing, segmentation, and naïve, unassisted feature extraction; and training of 

hierarchically nested ANNs. We address the challenges of ANN parameterization using an 

evolutionary algorithm, and bundle all functionality to classify user-submitted photos as a 
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handheld-compatible web application. To demonstrate the feasibility of the approach we apply it 

to taxonomic approximation within the slipper orchids (Cypripedioideae), a charismatic group of 

wild plant species whose exuberant flower shapes and colours make them very popular 

ornamentals among gardeners, orchid enthusiasts and wildlife photographers. Many species are 

highly endangered in the wild due to on-going illegal trade worldwide such that correct 

taxonomic identification is also necessary to improve identification of confiscated material by a 

wide variety of non-specialist law enforcers such as customs officers and park wardens. 

MATERIALS AND METHODS 

Reference image management 

ANNs must be trained with a sufficient number of exemplars to inform classification of 

new, out-of-sample queries. We therefore compiled a collection of reference photos by searching 

the Internet for images, mostly through Google Image searches. We obtained images from several 

multimedia resources such as Flickr (https://www.flickr.com) and Wikimedia Commons 

(http://commons.wikimedia.org), but also from botanical gardens, nurseries, orchid foundations 

and societies and wildlife photographers (see Acknowledgements). Given the progressively 

growing size of the reference image set and the amount of metadata on taxonomic classification 

and image provenance that needed to be tracked, we required a simple but consistent strategy for 

collaboratively managing all this. An ideal solution would be a central server where image sets 

can be assembled along with their metadata (i.e. taxonomic information required for training the 

neural networks, and provenance data on the photo per se). Such a database needs to be accessible 

via an application-programming interface (API) that allows for the implementation of custom 

image harvesters for easy retrieval of images and their metadata.      

 We used the online image hosting service Flickr since it meets these requirements. We 

uploaded photos to an account on Flickr, where we annotated them with standardized tags of the 
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form genus:<name>, section:<name>, and species:<name>. Here, section is understood to refer 

to its usage in botanical taxonomy, i.e. as a level in the Linnean hierarchy between genus and 

species. We verified the correct genus, section, and species for each training image with specialist 

taxonomic knowledge (BG), literature study [13–15] and phylogenetic reconstructions based on 

molecular analyses [16,17]. Only wild species were used so all horticultural hybrids were left out. 

We implemented a custom Python script utilising the Flickr API to mirror these reference image 

sets and associated metadata in a local file store prior to analysis. We stored images in an 

automatically generated directory hierarchy such that the nested directory names correspond to 

the taxonomy. In addition, we created a local relational database (Supplementary Figure 1) to 

store and query metadata for each reference image set, as this is needed in downstream image 

processing. 

Image pre-processing and feature extraction 

As part of the image pre-processing and feature extraction workflow, each image is first 

scaled down if the image exceeds a predefined maximum dimension. This is followed by 

foreground segmentation to get the region of interest (ROI) that matches, in this case, the flower. 

Foreground segmentation is done with an iterative approach using the GrabCut segmentation 

algorithm [18]. The ROI for the first iteration is set to the entire image and is shrunk a fixed 

number of pixels to get a margin around the ROI containing obvious background pixels (Fig. 1). 

Images must therefore be reasonably standardized such that the flower is within this initial ROI. 

There must also be good contrast between the flower and the background, as to keep 

segmentation errors to a minimum. Subsequent iterations further classify pixels inside the ROI as 

foreground or background until the maximum number of iterations is reached. Contours are then 

obtained from the resulting binary mask, which is a copy of the image where foreground pixels 

are made white and background pixels black. Sometimes multiple contours are found (e.g. on 
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images with multiple flowers) in which case only the largest contour is used to select the 

foreground pixels for downstream feature extraction. 

Since two-dimensional pixel data are usually not appropriate for pattern recognition 

algorithms (which normally expect as input a fixed-length sequence of numbers) images need to 

be summarised to one or more numerical values. These values, often called features, describe 

some aspect of the image contents. The algorithms or applications that compute these features are 

often called feature descriptors or feature extractors. Many feature extraction algorithms are 

generic and are not limited to specific image types. Feature extractors can be applied to entire 

images and sometimes to regions of interest (ROI) in images. Many feature extraction algorithms 

exist and are described in the literature, and some have been implemented in standalone software 

or libraries. Image recognition software packages that use pattern recognition and machine 

learning usually implement one or more feature extraction algorithms to summarize features and 

use those to train classifiers. With the many different feature extraction algorithms already 

available and new ones emerging periodically, finding the right algorithm for a specific image-

processing problem can be a daunting task. Open Source Computer Vision (OpenCV) and Open 

Intelligent Multimedia Analysis for Java (OpenIMAJ) are comprehensive computer vision 

libraries that come with computer vision and machine learning algorithms (amongst others), but 

support for feature descriptors is currently limited. To remedy this, we developed a general 

purpose, open-source software library of image feature description algorithms for the Python 

programming language - similar to what JFeatureLib does for Java - called ImgPheno 

(https://github.com/naturalis/imgpheno), which we used as one of the modules in our framework. 

ImgPheno makes extensive use of OpenCV [19] for computer vision, NumPy [20] for array 

manipulation, and of scikit-learn [21] for data transformation and cross-validation.  
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We automated feature extraction and subsequent neural network training with a custom 

Python script that is part of the NBClassify package (https://github.com/naturalis/nbclassify). 

Configurations are kept in a separate YAML file so that neural network training can easily be 

reproduced. Different aspects of the feature extraction process can be configured with this 

configuration file: input/output format, data scaling, colour correction, foreground segmentation, 

feature descriptors to use, and a classification hierarchy definition for hierarchical training.  

In the present study we used only one feature extractor to generate data for subsequent 

training of the artificial neural networks. This feature extractor computes summarised histograms 

from the pixel colour intensities for the BGR colour space. This is done by calculating the upright 

bounding square for the main contour, dividing the square into N equal horizontal and vertical 

sections (bins), and calculating the mean blue, green, and red colour intensity for each bin. This 

results in two histograms, one for the horizontal and one for the vertical bins (Fig. 2). Plotting the 

histograms shows that this feature captures aspects of flower shape as well (Fig. 3). 

We performed principal component analysis (PCA) on the feature data to assess their 

suitability for differentiating photos by genus, section, and species. We conducted PCA with 

orthogonal rotation (varimax) on several training data sets containing -1 to 1 scaled mean colour 

intensities for the BGR colour space with 20 horizontal and vertical bins, which translates to 120 

features. We used the Kaiser-Meyer-Olkin measure to verify the sampling adequacy for the 

analysis. We used Bartlett’s test of sphericity to get indications whether correlations between 

items were sufficiently large for PCA. We used the inflexion in scree plots to set the number of 

components to be extracted. We performed PCA on training data for genus classification within 

the Cypripedioideae, section classification within the genus Paphiopedilum, and species 

classification within section Parvisepalum of genus Paphiopedilum. We did not perform PCA for 

the remaining data sets because the number of features often exceeds the sample size. 
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ANN training and cross-validation 

Because the 140+ species of slipper orchids pose challenges for training a single ANN 

(essentially, too many classes among which to discriminate), and because a single ANN cannot 

provide approximation at least to higher taxonomic levels, we used a hierarchical approach. We 

implemented artificial neural network (ANN) training using the Fast Artificial Neural Network 

Library (FANN) [22]. We performed hierarchical multi-species classification with a system of 

feed forward artificial neural networks that were trained using the iRPROP backpropagation 

training algorithm. Hierarchical training results in multiple neural networks: one ANN for genus 

classification, one ANN per genus for section classification, and one ANN per section for species 

classification. For the individual neural networks this means they need to differentiate between 

fewer classes and they can be trained using rank or taxon specific features. No ANNs need to be 

trained on nodes where no branching occurs in the hierarchy (e.g. monotypic genera).  

In training ANNs there is the risk of overfitting: if an ANN is provided a limited set of 

training data it may end up constructing responses to the specific idiosyncrasies of these data 

rather than on more appropriate, general properties that would be recognized had the training data 

set been larger, or more representative. When testing such overfitted ANNs, for example by 

presenting them with data from the training set, the problem will manifest in the form of 

spuriously inflated performance indicators. To mitigate against this we never tested ANNs by 

presenting them with the same data that were used for training. Throughout this manuscript, we 

indicate the distinction between training data and test data by referring to the latter as “out-of-

sample”, i.e. outside of the training data sample. 

Hierarchical classification means that an incorrect classification at a higher rank in the 

hierarchy propagates to incorrect subsequent classifications at lower ranks, but it also allows for 

partial classifications when classification fails for the lower ranks, i.e. taxonomic approximation. 
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The problem of propagating erroneous classifications can be mitigated against, at least to some 

extent, by selecting a stringent threshold value for the ANN’s uncertainty in its output (in FANN 

terminology, the mean squared error) such that further propagation ceases if the classification is 

too uncertain. 

The classification hierarchy is defined in the configuration file as a list of levels that tells 

the training script the path to follow during training and classification. In this study the levels 

were named after the corresponding taxonomic ranks: genus, section and species. Different 

features and training parameters can be set at each level in the classification hierarchy, which the 

script then uses to generate training data for the required ANNs. We scaled all training data to a -1 

to 1 range as per the span of the used activation function (symmetric sigmoid). We used bit 

vector-like output sequences to encode the known taxon for each image in the training data. Each 

ANN has its own set of sequences generated from the sorted lists of taxa the ANN is trained on. 

Each sequence consists of N bits, where N is the number of classes the ANN is trained on. All bits 

in the sequence are set to an off value (-1), except for one bit (1), which corresponds to the class 

in the sorted list of classes. Once the training data are generated they are used to train the 

individual neural networks. 

FANN supports many training parameters (e.g. training algorithms, activation functions, 

neural network topology, etc.), making it hard to predict which parameters and which 

combination of algorithms work best for a given classification case under the generally naïve 

approach we take (i.e. not tuned to a specific taxonomic group or feature set). We therefore 

implemented a framework for evolving optimal neural networks (AI::FANN::Evolving, 

https://github.com/naturalis/ai-fann-evolving) to overcome this issue. The evolutionary algorithm 

models a constant-sized population of diploid, one-chromosome organisms whose crossover and 

mutation rates can be configured. The algorithm then proceeds for a pre-defined number of 
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generations. At each generation, each individual crosses over and mutates its FANN configuration 

parameters, trains on a data set, and then tests its classifiers (two: one on each of the homologous 

chromosomes) on an out-of-sample data set. The individuals are then mated with each other in 

proportion to the success of their classifiers until the population size for the next generation is 

reached. Once the pre-configured number of generations is reached, the “fittest” overall ANN is 

selected. 

We performed stratified k-folds cross-validation to estimate the accuracy of hierarchical 

classification. We used genus-section-species combinations as the classes for the cross-

validations. Because the amount of images for some taxa was very limited, we excluded taxa for 

which the number of images was less than the number of folds (k). We performed cross-validation 

with both standard training and training with optimisation of ANN parameters by the evolutionary 

algorithm.   

RESULTS 

Reference image collection 

We collected a total of 1136 photos for 116 species of slipper orchids from various 

sources (Supplementary Table 1). The collection represents all five genera from subfamily 

Cypripedioideae: Cypripedium, Mexipedium, Paphiopedilum, Phragmipedium, and Selenipedium. 

With the number of photos for the five genera ranging from just four for the genus Selenipedium 

to 888 for Paphiopedilum, the collection is highly unbalanced. There is also a high variation in 

the number of images within genera. Unbalanced data results in a bias towards the more image-

rich taxa during neural network training, meaning the under-represented taxa are less likely to be 

classified correctly. 

Because images of some taxa were hard to find, we had to make some compromises with 

respect to the quality of the images. Many of the gathered images are not of the desired 
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standardised format, resulting in variations in background, lighting, dimension, and flower 

position or rotation, which makes pattern recognition more challenging. Since foreground 

segmentation is part of the automated workflow, this sometimes results in incorrectly segmented 

images.  

We have stored the complete collection of reference images on Flickr 

(https://www.flickr.com/photos/113733456@N06/). However, as these images were supplied by a 

variety of different contributors (listed in the Acknowledgements section), who have varying 

requirements for attribution and reproduction, we have had to store our reference images in a 

password-protected collection. Access to this collection will be granted to all researchers 

interested in using these images for research purposes, provided the images are not reproduced 

without permission from the original copyright holders. Once access is granted, reference images 

can be downloaded in batch and placed in a directory hierarchy using the nbc-harvest-images 

script of the NBClassify package. In addition, the nbc-trainer script can be used to create a meta-

data database from an existing image directory, which would enable subsequent training on 

images of that directory. 

Image pre-processing and feature extraction 

The ImgPheno library is currently at an early development stage and only a few feature 

extraction algorithms have been implemented so far. The library also includes implementations of 

colour enhancement algorithms, helper functions for feature drawing, and algorithms that 

implement image features to compute shape properties (e.g. computing the centre point from 

moments). The intent of the ImgPheno library is to provide a generic toolkit for image processing 

and feature extraction that can be applied to problems beyond the scope of the present study. As 

such, ImgPheno contains functions beyond those strictly required for our current work. For 

example, although we have implemented a number of functions operating on object contours, we 
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found that they do not aid in discriminating among classes of orchid flowers (results not shown). 

An overview of the descriptors and enhancement functions can be found in Table 2. 

Figure 4 shows the scatter plots for the principal component analyses (PCAs) that we 

performed on a subset of the feature data. Poor classification accuracies shown in Table 3 

(discussed in more detail below) may be attributed to the poor discrimination ability of the 

colour-based feature to the different taxa and to improper foreground segmentation. Out of the 

four plots, only the plot for species classification within section Parvisepalum of genus 

Paphiopedilum showed some clear clusters. The accuracy for species classification within this 

section, given correct classification of genus and section, was 85% and 88% for 4 and 10 folds, 

respectively. This compares fairly well with the accuracy for genus classification (75% and 81% 

for 4 and 10 folds, respectively), which is surprising when comparing the scatter plots for genus 

classification and Parvisepalum species classification. 

ANN performance cross-validation 

We performed stratified k-folds cross-validation to estimate the accuracy of hierarchical 

classification. The accuracy for genus classification was 75%, but accuracy drops as section 

(52%) and species (48%) are also included in the classification (Table 3). With 10 folds and 

including only those species for which at least 10 photos were collected, we achieved slightly 

better accuracies, which can probably be attributed to the reduced number of taxa and more equal 

image representation between taxa.  

All results of the cross-validation are available in the data repository of the project 

(doi:10.5281/zenodo.31904) which includes the following: the phenotypes extracted from the 

input images (i.e. the actual input data); a placeholder directory that can be readily populated with 

the reference images using a script that harvests these from the Flickr library provided valid login 

credentials (we resort to this approach because some images shared with us cannot be posted 
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publicly); all ANNs that were trained during cross-validation; the training and testing data 

partitions; and the classification results. 

Bundling of interacting modules in the framework 

The interaction of the different modules in our framework is visualized in Figure 5. 

Briefly, reference image management is an asynchronous, collaborative process that uses the 

Flickr API (Fig. 5a); image pre-processing and feature extraction, both for reference images and 

user-submitted query images is based on the ImgPheno library, while ANN training and 

evolutionary optimization of ANNs are handled, respectively, by NBClassify and 

AI::FANN::Evolving (Fig. 5b); users can submit images for out-of-sample classification through a 

proof-of-concept web application called OrchID (under development in Python using the Django 

framework, source code included in the NBClassify repository; Fig. 5c). 

DISCUSSION 

Our results indicate that hierarchically nested ANNs trained on naïve image features can 

perform taxonomic approximation for out-of-sample images of slipper orchids. We obtained our 

results by extracting simple histograms of colour intensities along the horizontal and vertical axes 

of (pre-processed) input images, i.e. the image features we extracted are not based on any 

properties that are specific to orchid flowers. However, we did make certain assumptions about 

the input images that should also be met by any other group of taxa to which our approach might 

be applied. These assumptions are that:  

i) From the input images, a single region of interest can be selected. We have 

permitted input images that contained multiple flowers, corresponding with 

multiple potential regions of interest, but for these we automatically selected the 

single largest candidate region, i.e. a single flower. 
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ii) The selected region of interest consists of an object that can be orientated in the 

same direction consistently across all input images. In the case of the orchid 

flowers this meant that the input image had to contain a frontal view of a flower, 

for which we corrected any rotation such that in all pre-processed images the 

dorsoventral axis is exactly vertical. 

iii) The amount of variation of form within each image class is limited. For 

example, all images in class are from objects in the same developmental stage, 

and all parts of the objects are more or less in the same place. Indeed, we noticed 

that the performance of the classifiers was relatively poor in classes that showed 

a relatively large amount of variation, such as in the case of Coryopedilum, 

where the long, twisted petals can point in different directions.  

iv) Using the simple features we extracted, colour must be one of the discriminating 

features. We expect that other feature descriptors (e.g. variance in intensity 

among (groups of) pixels so as to capture speckled or striped phenotypes) can be 

readily and usefully implemented in ImgPheno but have not tested these in our 

current study.  

Consequently, the framework should be applicable to (parts of) other symmetrical, regularly 

shaped, colourful organisms, such as butterflies, beetles, colourful bivalves, and so on. Given the 

recursive design of our hierarchically nested classifiers, more taxonomic levels can readily be 

included, such that traversal along the Linnean hierarchy would be extended from higher taxa 

(e.g. families, or orders).  

The framework requires many high-quality reference images, which need to be balanced 

across classes. For example, the considerably higher accuracy in identifying out-of-sample images 

as Paphiopedilum (Table 4) compared to other genera is probably to a large extent the result of 
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the much larger number of reference images for this genus. This may also explain the higher 

accuracy in classifying to genus level versus section or species (75% vs. 52% vs. 48%). Likewise, 

the accuracy of the classification to section level strongly depends on the number of reference 

images, but is also influenced by variation in shape and colour (Table 5). For example, the lowest 

number of reference images (13) that still yielded an accuracy of 50% in 10-fold cross-validation 

was for section Sinopedilum, which are very distinct in their brownish colour and compact, 

rounded petal shape, while 22 reference images still only yielded an accuracy of 13.33% in 10-

fold cross-validation for section Coryopedilum, which are characterized by their long, twisted 

petals that extend at variable angles, presumably introducing too much variation in the extracted 

features. Note that the counts here indicated for reference images (respectively, 13 and 22) do not 

directly correspond with the raw numbers in Table 5. This is because in our implementation of k-

fold validation all images are stratified at species level such that all species whose number of 

available images is < k are excluded from validation analyses, also at higher taxonomic levels. 

The aggregate number of available images in the cross-validation at higher taxonomic levels is 

consequently lower than the raw counts. 

Identification accuracy can probably be improved by means of neural network ensembles 

where multiple neural networks are used to make classifications [23]. The identification system 

presented here does use multiple neural networks for the identification of an image, but these 

cannot be considered neural networks ensembles because only one neural network is used for 

each level within the hierarchical classification. The output codes used for training the neural 

networks as implemented in this study is another aspect that could be improved. The 

implementation presented here uses the simplest possible output codes for training, but the usage 

of more sophisticated codes could improve neural network training and therefore identification 

accuracy [24]. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/070904doi: bioRxiv preprint 

https://doi.org/10.1101/070904
http://creativecommons.org/licenses/by-nd/4.0/


 

Likewise, identification accuracy can probably also be improved by using more, or 

different, image features. For example, other summary statistics along bins can be computed, such 

as to capture variance in colour (high variance would then correspond with stripes or dots, while 

more homogeneous colouration would show lower variance). In addition, analogous to the use of 

multiple morphological characters in species identification by taxonomic experts, a combination 

of multiple features may be used for ANN training, potentially with different features being used 

at different levels of the hierarchical classification system. Developing such specialized features 

extraction methods is not especially straightforward, however. Many different specialized image 

feature extraction methods have been developed, and it would be desirable to have these 

combined in a freely available library, as was attempted in this study. Therefore, our work on the 

ImgPheno library is on-going. For example, in an effort to normalize images prior to feature 

extraction, we implemented some colour image enhancement methods (developed by [25]). 

However, most images used were already of good quality, and performing hue-preserving linear 

transformation with maximum contrast often did not result in an enhanced image, and 

identification accuracy was not significantly improved. In other cases, where discrete patterns and 

shapes are more important than colour, additional algorithms might be of use. For example, in 

extracting features that capture venation patterns such as on leaves or insect wings, algorithms for 

increasing contrast and for detecting edges and intersections may yield good results.  

The ImgPheno library was developed in Python, but to make such a library more suitable 

for high-throughput purposes, it might be useful to port it to a lower level programming language 

that can easily be interfaced to other programming languages (e.g. C++). It might even make 

more sense to extend existing computer vision libraries with our algorithms. OpenCV, which 

ImgPheno uses, is an open-source library that already implements a range of image feature 
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(detection) algorithms, and such a library could easily be contributed to with new algorithms. As 

a bonus it already comes with interfaces to many other programming languages. 

The prototype of the OrchID web application renders web pages that are adaptive to 

different screens, such that the interface looks good both on desktop computers and handheld 

devices. However, serving the framework in this way precludes access to advanced features in 

handheld devices, such as direct access to the camera or to GPS functionality (useful for logging 

species occurrences, or for narrowing down the possibilities during identification, as done by the 

Leafsnap app [26]). To enable such functionality, the web application is undergoing development 

to have a JSON API so that clients such as native phone apps can be developed. As such, the web 

application is not yet publicly accessible. However, readers interested in trying out its current 

functionality can do so quite easily on any UNIX-like operating system, installation consists of a 

single terminal command and no separate web server is required, as noted in the documentation. 

Public hosting of the web application on servers at Naturalis Biodiversity Center is planned for 

2016. 
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FIGURES 

Figure 1. Foreground segmentation of a photo of Paphiopedilum villosum using the 

GrabCut algorithm. (a) Shows how the initial region of interest (ROI) is set; (b) shows the result 

of the segmentation using the GrabCut algorithm. Reprinted from 

http://www.pbase.com/rogiervanvugt/image/109985904 under a CC BY license, with permission 

from Rogier van Vugt, original copyright 2009. 

Figure 2. The second horizontal and vertical bin (N = 20) highlighted in a foreground-

segmented image of Paphiopedilum villosum. 

Figure 3. Plots of the mean BGR colour intensities for an image of Paphiopedilum 

villosum. The plots display the mean intensities for the horizontal and vertical bins respectively. 

Arrows indicate the locations of the bins shown in Figure 2. 

Figure 4. Scatter plots for the principal components analysis results. PCA was conducted 

on training data for (a) all genera; (b) all sections within genus Cypripedium; (c) all sections 

within genus Paphiopedilum; and (d) all species within Paphiopedilum section Parvisepalum. For 

all plots the first principal component (PC1) was plotted against the second (PC2). 

Figure 5. Interactions between modules in the framework. (a) Management, annotation 

and mirroring of reference images using the Flickr API. (b) Image pre-processing and feature 

extraction using ImgPheno; ANN training using NBClassify; ANN evolutionary optimization 

using AI::FANN::Evolving. (c) Out-of-sample classification of user-submitted query images using 

the OrchID web application. The processes in (a) and (b) are asynchronous, preparatory steps; the 

processes in (c) happen in real time. 
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TABLES 

Table 1. Prior art in image recognition and classification of organisms. KDA=Kernel 

Discriminant Analysis; SVM=Support Vector Machine; DFA=Discriminant Factor Analysis; 

ANN=Artificial Neural Network; EFA=elliptic Fourier analysis; LDA=Linear Discriminant 

Analysis. “Summary” image features are those that are computed by summarizing one or more 

image properties, such as colour intensities or the properties of an object outline. 

 
Project name Image type Classifier 

type 
Feature 
type 

Taxonomic 
approximation 

Literature 
reference 

ABIS Microscopy KDA Landmarks No [3] 
VISIONTRAIN Standard SVM Summary No [4] 
Sanz et al. Standard DFA Summary No [5] 
Arinkin et al. Microscopy ANN Landmarks No [6] 
Boddy et al. Cytometry ANN Summary Yes [7] 
SHERPA Microscopy EFA Summary No [8] 
Kang et al. Standard ANN Summary No [9] 
DAISY Microscopy Kendall-τ Summary Yes [10] 
Corney et al. Standard LDA Summary No [11] 
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Table 2. ImgPheno features and methods overview. 

Method Description 

Colour Histogram Returns the histogram for an image. 

Binned Colour Histogram Returns histograms for the mean BGR intensities from 
the horizontally and vertically binned image. 

Contour Eccentricity Computes a scalar that specifies the eccentricity of the 
ellipse that fits the contour. The eccentricity is the ratio 
of the distance between the centre and either focus of 
the ellipse and its major axis length. 

Contour Equivalent Diameter Computes a scalar that specifies the diameter of a circle 
with the same area as the contour. 

Contour Solidity Computes a scalar specifying the proportion of the 
pixels in the convex hull that are also in the region. 

Contour Outline Computes a vector that summarizes the outlines of a 
contour at a specified resolution. 

Contour Centre Based Branch Lengths Computes a vector that summarizes the outline of a 
contour using branch lengths from the centre of mass. 

Linear Colour Enhancement Provides a hue preserving linear transformation with 
maximum possible contrast [24]. 

Non-linear Colour Enhancement Provides non-linear hue preserving transformation 
without gamut problem, provided that linear 
transformation is initially applied on each of the pixels 
[24]. 

S-type enhancement function This implements the S-type enhancement function for 
contrast enhancement of grey scale images [24]. Can 
be used as the enhancement function for non-linear 
colour enhancement. 
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Table 3. Results for stratified k-fold cross-validations. Cross-validation was performed on 

three taxonomic ranks: genus, section, and species. The results for genus/section and 

genus/section/species nest the results from their respective ranks. 

Classification Accuracy (k=4) Accuracy (k=10) 
Genus 75% 81% 
Section 52% 60% 
Species 48% 56% 
Genus/section 41% 49% 
Genus/section/species 20% 27% 

 

  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/070904doi: bioRxiv preprint 

https://doi.org/10.1101/070904
http://creativecommons.org/licenses/by-nd/4.0/


 

 
Table 4. Number of sections and species per genus, number of photos, and 10-fold cross-

validation results at genus level, where applicable. Where too few photos were available for a 

species (i.e. < k), and where the candidate genus subtends only a single section and/or species, the 

absence of validation is indicated with ‘not applicable’ (N/A). 

Genus Sections Species Photos Accuracy 
Cypripedium 11 24 149 28.45% 
Mexipedium 1 1 8 N/A 
Paphiopedilum 7 71 886 89.95% 
Phragmipedium 4 19 89 33.17% 
Selenipedium 1 1 4 N/A 
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Table 5. Results for k-fold cross-validations at section level. Where too few photos were 

available for a species (i.e. < k), and where the candidate genus subtends only a single section, 

and/or species the absence of validation is indicated with ‘not applicable’ (N/A). 

Section Genus Photos 4-fold (nested) 10-fold (nested) 
Barbata Paphiopedilum 326 58.65% (54.57%) 65.62% (61.85%) 
Parvisepalum Paphiopedilum 135 72.66% (56.61%) 70.46% (60.08%) 
Paphiopedilum Paphiopedilum 188 57.30% (46.91%) 58.89% (54.57%) 
Coryopedilum Paphiopedilum 60 10.34% (5.21%) 13.33% (13.33%) 
Brachypetalum Paphiopedilum 63 58.67% (50.85%) 54.07% (47.21%) 
Pardalopetalum Paphiopedilum 48 30.71% (22.00%) 20.00% (17.50%) 
Cochlopetalum Paphiopedilum 66 49.58% (43.11%) 46.83% (43.17%) 
Coryopedilum Paphiopedilum 60 10.34% (5.21%) N/A 
Micropetalum Phragmipedium 38 50.56% (32.15%) 100.00% (45.00%) 
Phragmipedium Phragmipedium 26 39.17% (0.00%) 100.00% (0.00%) 
Lorifolia Phragmipedium 21 46.67% (14.58%) N/A 
Cypripedium Cypripedium 57 36.74% (13.07%) 53.33% (6.67%) 
Obtusipetala Cypripedium 21 57.50% (10.00%) 85.00% (20.00%) 
Trigonopedia Cypripedium 20 37.08% (16.67%) 40.00% (30.00%) 
Sinopedilum Cypripedium 14 20.83% (14.58%) 50.00% (15.00%) 
Flabellinervia Cypripedium 11 25.00% (8.33%) N/A 
Bifolia Cypripedium 7 50.00% (12.50%) N/A 
Arietinum Cypripedium 7 0.00% (0.00%) N/A 
Acaulia Cypripedium 4 0.00% (0.00%) N/A 
Macrantha Cypripedium 5 25.00% (0.00%) N/A 
Selenipedium Selenipedium 4 N/A N/A 
Mexipedium Mexipedium 8 N/A N/A 
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SUPPLEMENTARY MATERIALS 

Supplementary Figure 1. Entity-relationship diagram of the metadata database used for 

storing taxonomic information for a collection of reference photos. 

Supplementary Table 1. Photos available for this study. 
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