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Abstract

Background

Chimeric transcripts are commonly defined as transcripts linking two or more different

genes in the genome, and can be explained by various biological mechanisms such as

genomic rearrangement, read-through or trans-splicing, but also by technical or biolog-

ical artefacts. Several studies have shown their importance in cancer, cell pluripotency

and motility. Many programs have recently been developed to identify chimeras from

Illumina RNA-seq data (mostly fusion genes in cancer). However outputs of different

programs on the same dataset can be widely inconsistent, and tend to include many

false positives. Other issues relate to simulated datasets restricted to fusion genes,

real datasets with limited numbers of validated cases, result inconsistencies between

simulated and real datasets, and gene rather than junction level assessment.

Results

Here we present ChimPipe, a modular and easy-to-use method to reliably identify

chimeras from paired-end Illumina RNA-seq data. We have also produced realistic

simulated datasets for three different read lengths, and enhanced two gold-standard

cancer datasets by associating exact junction points to validated gene fusions. Bench-

marking ChimPipe together with four other state-of-the-art tools on this data showed

ChimPipe to be the top program at identifying exact junction coordinates for both kinds

of datasets, and the one showing the best trade-off between sensitivity and precision.

Applied to 106 ENCODE human RNA-seq datasets, ChimPipe identified 137 high con-

fidence chimeras connecting the protein coding sequence of their parent genes. In

subsequent experiments, three out of four predicted chimeras, two of which recurrently

expressed in a large majority of the samples, could be validated. Cloning and sequenc-

ing of the three cases revealed several new chimeric transcript structures, 3 of which

with the potential to encode a chimeric protein for which we hypothesized a new role.
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Conclusions

ChimPipe combines spanning and paired end RNA-seq reads to detect any kind of

chimeras, including read-throughs, and shows an excellent trade-off between sensitiv-

ity and precision. The chimeras found by ChimPipe can be validated in-vitro with high

accuracy.

Keywords

chimera — transcript — fusion gene — RNA-seq — benchmark — cancer — simulation

— isoform — splice junction
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Background

Chimeric transcripts or chimeras are transcripts whose sequence originates from two

or more different genes in the genome [1], and can be explained by several different

biological mechanisms at the genomic or the transcriptional level. For its historical

relation to cancer, the most well known mechanism is genomic rearrangement. This

process brings two genes that are far apart in the germline genome close to each

other, and in the same direction, in the cancer genome. The fusion gene thus created

can have a deleterious role, either as a protein or as a transcript [1, 2]. Aside from

chimeras that are important for their known role in cancer, there are other functional

transcriptional mechanisms that can also explain the formation of chimeras in normal

or tumour cells: polymerase read-through and trans-splicing [1].

As indicated by its name, polymerase read-through occurs when the polymerase

reads through one gene into the next, therefore creating a chimera between two ad-

jacent genes. Initially thought to be an exception, this mechanism was found to be

widespread in mammals when large collections of ESTs (Expressed Sequence Tags)

and cDNAs (complementary DNA) became available and were mapped to the genome

[3–5], and when the ENCODE (ENCyclopedia Of DNA Elements) consortium system-

atically surveyed the transcriptome associated to annotated protein coding genes [6–

9]. Read-throughs occur between annotated exons of adjacent genes, preferentially

between the penultimate exon of the upstream (5’) gene and the second exon of the

downstream (3’) gene [3], resulting in new proteins containing domains from the two

parent genes, therefore increasing the diversity of a species proteome [1, 3, 4, 10, 11].

They are also largely conserved across vertebrates [11, 12], and could be a way to

regulate the expression of one or both parent genes [12].

Trans-splicing is a splicing mechanism that, unlike the well known cis-splicing, oc-

curs between two different pre-messenger RNA (pre-mRNA) molecules close in the

three dimensional (3D) space of the nucleus and thought to belong to the same ‘tran-

scription factory’. If the two pre-mRNAs come from two different genes, a transcrip-

tional chimera is generated [1, 13–16]. The two connected genes can therefore be

located distally from each other in the genome, however the chimeric junction must

have canonical splice sites. Initially thought to be restricted to trypanosomatidas, this

mechanism has gained interest in human research since several studies have found
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chimeras between genes on different chromosomes or strands, without evidence of

underlying genomic rearrangements [13, 14, 16]. One hypothesis is that such trans-

spliced transcripts occurring in normal cells would trigger a genomic rearrangement,

which will in turn produce a higher quantity of these transcripts (although through a

different mechanism), eventually leading to tumorigenesis [13].

But chimeras can also be non-functional, either because they are biological noise

from the transcriptional machinery, or because they are technical artefacts from Re-

verse Transcriptase polymerase chain reaction (RT-PCR) based assays. A biological

source of artefactual chimeras is polymerase transcriptional slippage through short ho-

mologous sequences (SHS), where the polymerase switches template (or pre-mRNA),

in the presence of a short sequence with high similarity to the one it is currently tran-

scribing, in another gene close in the 3D space [17]. This mechanism is reminiscent

of the reverse transcriptase (RT) template switching, which can also produce artefac-

tual chimeras in RT-PCR- based experiments [18, 19]. Note that in both cases the

chimeric junctions will harbor SHS and non canonical splice sites, however those are

not sufficient conditions for a chimera to be an artefact, since RNAse protection assay

experiments, which are not RT-PCR-based, have confirmed a number of them [9].

The importance of chimeras lies in their ability to create novel transcripts and pro-

teins, therefore potentially altering the phenotype of cells, individuals or groups of in-

dividuals [1, 3, 4, 10, 20]. In the field of cancer, some fusion genes are cancer driver

events and can be used as biomarkers or even lead to effective treatment - for instance

BCR-ABL1 in chronic myeloid leukemia (CML) [21] or TMPRSS2-ERG in prostate can-

cer [22, 23]. However not all cancer related chimeras result from genomic rearrange-

ments, since some of them can originate from read-through [24–28], and this mech-

anism could also be the most prevalent one for certain cancer types, such as CLL

[29]. Although chimeras’ function have mostly been investigated in relation to cancer,

chimeras can also be functionally important in other fields. For instance a chimera

produced by trans-splicing, TsRMST, has been shown to interact with pluripotency re-

lated transcription factors to control cells’ pluripotency [15], and the knock-down of two

widely expressed chimeras, CTBS-GNG5 and CTNNBIP1-CLSTN1, in non-neoplastic

cell lines, resulted in significant reduction in cell growth and motility [30].

These events were previously detected by RT-PCR-based methods such as EST
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alignment to the genome [5, 12], or RACEarray followed by RT-PCR, cloning and se-

quencing [7, 9], however RNA-seq has been shown to be both a more precise and

a more sensitive detection method [24]. A growing number of bioinformatic methods

have been created to detect chimeras amongst such datasets [31–39].

These programs usually include 3 steps: (1) mapping and filtering for chimeric

reads, (2) chimeric junction detection, and (3) chimera assembly and filtering [40].

They rely heavily on an underlying mapper to map the reads to the genome (and op-

tionally to the transcriptome), and make use of two kinds of reads for chimera detection:

(1) discordant paired end (PE) reads, i.e. paired end reads where the two mates map

in a way that is not consistent with annotated gene structure, e.g. on different chromo-

somes, and (2) ‘split’ reads, i.e. reads that do not map contiguously to the genome but

have to be split or fragmented into several blocks (usually two) to map to the genome

(Figure 1). In addition, the use of one or two kinds of reads for chimeric junction detec-

tion allows one to define 3 classes of approaches: (1) the whole paired end approach,

(2) the direct fragmentation approach, and (3) the paired end + fragmentation approach

[41].

Benchmarking of these programs has shown a high false positive rate and a poor

intersection between their outputs on the same dataset [42, 43]. On the other hand

these programs are usually developed to detect fusion genes in human cancer, and

are therefore not always able to detect read through events and to work on species

other than human. In addition, these programs are not always able to predict multiple

isoforms per gene pair, and more importantly to provide base pair resolution, prevent-

ing their downstream functional validation. To address these problems we present

ChimPipe, a modular method which uses the paired end + fragmentation approach

and a set of stringent filters, to reliably detect both transcriptional chimeras and fusion

genes from Illumina paired-end RNA-seq data from both normal and tumor samples, in

any species with a genome and an annotation available. The advantage of the paired

end + fragmentation approach is the complementarity of the two types of reads used,

with the first ones relatively easy to find but only providing a rough indication of the con-

nected regions, and the second ones more error prone but providing the exact chimeric

junction coordinates. ChimPipe represents an advance in methods to quickly and re-

liably detect chimeric transcripts amongst the rapidly increasing volume of short read
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transcriptome data.
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Results and discussion

The ChimPipe method

The ChimPipe method is depicted in Figure 2 and includes 4 consecutive steps:

(i) Exhaustive paired end and split read mapping with GEM. The paired end reads

are initially mapped in 3 ways with the GEMtools RNA-seq pipeline (http://

gemtools.github.io/docs/rna_pipeline.html): to the genome, to the transcrip-

tome and de novo. Firstly, the reads are mapped to the genome with GEM [44],

allowing up to 4% mismatches and indels. Secondly, the reads are mapped to the

transcriptome with the same mapping parameters, the transcriptome being com-

posed of all biologically valid combinations of exons within each gene (therefore

also including annotated splice junctions). This transcriptome is built from the

gene annotation and allows mapping of reads spanning exon to exon junctions

that would not match to the reference genome due to the presence of introns.

Thirdly, the reads are split-mapped to the genome with the GEM RNA map-

per (http://algorithms.cnag.cat/wiki/The_GEM_library) to identify de novo

splice junctions from unannotated transcripts. More precisely, reads are split

into two segments of at least 15 base pair (bp) length, which are mapped in-

dependently to the genome. To reduce the amount of false positive mappings,

only split-mappings with less than 4% mismatches or indels and harbouring ex-

tended consensus splice sites are further considered (GT+AG, GC+AG, ATATC+A.

and GTATC+AT, with . meaning any nucleotide). To increase the mapping sen-

sitivity, a second attempt is made by eroding a maximum of two bp towards the

ends of each segment if no result is found. At this stage, segments can map to

distant positions, but not to different chromosomes, different strands or reverse

order. After that, genome, transcriptome and de novo mappings are merged and

paired and those pairs mapping to more than 10 positions are set as unmapped.

Finally, unmapped reads are remapped in a second de novo mapping with the

GEM RNA mapper. Reads are split-mapped to identify bona fide splice junctions

connecting loci on different chromosomes, different strands and reverse order. In

order to reduce the number of false positive mappings, this last split-mapping is

done in a more stringent way since no second attempt is performed if no mapping
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is found. Note that we chose GEM-based methods for mapping because these

programs guarantee that all possible mappings of a read are reported given the

input parameters.

(ii) ChimSplice. Read mapping is followed by candidate chimeric splice junction de-

tection from split-mappings. The split-mapped reads are organized into clusters

of reads spanning the same splice junction. The donor and acceptor splice sites

are considered when building the clusters to guarantee that all of them are in the

5’ to 3’ orientation. This is very important to determine which are the upstream

and downstream parent genes, and is particularly useful in case of unstranded

RNA-seq data. Once the clusters have been generated, ChimSplice produces

a consensus splice junction defined by the exact junction coordinates, the up-

stream coordinates of the upstream cluster, and the downstream coordinates of

the downstream cluster. Additionally, each consensus junction is associated with

the number of supporting split-reads and staggered split-reads. The term stag-

gered split-reads refers to those reads spanning the same junction but mapping

to different external positions and, as a consequence, producing a characteris-

tic ladder-like pattern of reads across the junction (see Figure 2B). This pattern

has been suggested to be specific to genuine chimeric transcripts, while false

positives usually lack it [45]. This information is recorded and can be used to

distinguish real from artefactual chimeras in the downstream ChimFilter filtering

module. Then, the consensus junctions are annotated. Each junction is com-

pared to the annotated exons in order to determine its two parent genes. In case

a junction side overlaps several exons from different genes, the one with a higher

overlap is selected. Finally, splice junctions connecting exons from two different

genes (chimeric junctions) are selected for downstream analyses.

(iii) ChimPE. Once chimeric junction candidates have been found using ChimSplice,

ChimPE looks for further paired end support for them (Figure 2B). Genome, tran-

scriptome and de novo mappings are filtered to select only those PE reads with

both mates mapped. Those PE reads are compared to annotated exons in the

same way as described in (ii), and reads with both mates mapping to exons from

different genes are identified (discordant PE reads). For each chimeric junc-

tion, discordant PE reads connecting their parent genes are then selected and
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their relative mapping position to the chimeric junction is evaluated. This is done

in order to know whether the discordant PE reads support the existence of the

chimeric junction (consistent PE) or if, on the other hand, they are incompatible

with the chimeric junction (inconsistent PE). Inconsistent PE can be due to differ-

ent reasons: they may come from a different chimeric RNA isoform than the one

highlighted by ChimSplice, or from PE read misalignment, but they could also

indicate a ChimSplice false positive. Finally, each chimeric junction is associated

to the number of consistent and inconsistent PE reads, which can be used in the

downstream ChimFilter filtering module to filter out artefactual chimeras.

(iv) ChimFilter. Chimeric junction candidates are filtered to produce a final set of more

reliable chimeras. Firstly, based on the principle that false positives due to read

misalignment would not be supported by both sources of evidence, ChimPipe re-

quires a candidate chimera to be supported by both split-reads and consistent PE

reads. Two different support based filtering schemes are applied depending on

whether the chimeric junction involves annotated or novel splice sites. By default,

chimeric junctions with annotated splice sites must be supported by at least one

consistent PE read, one split-read and three total (consistent PE + split) reads,

while those with novel splice sites have to be supported by at least three consis-

tent PE reads, three split-reads and six total reads. Secondly, chimeras between

genes that share high exonic sequence similarity are less reliable since the sup-

porting reads are more prone to mis-alignments. For this reason ChimPipe imple-

ments an homology-based filtering and chimeric junctions connecting genes with

homologous exonic sequence of at least 30 bp (and 90% sequence identity), are

discarded as likely false positives. All these filtering parameters can be tuned.

The main ChimPipe output is a tabulated text file with header including the set

of chimeric junctions after filtering, in which the first column is the junction identifier

in ChimPipe format (donchr donpos donstr:accchr accpos accstr), and the other 34

columns are valuable pieces of information about it, such as its support in terms of num-

ber of staggered split and consistent discordant paired-end reads, its type (readthrough

(resp. intrachromosomal) if the two parts are on the same chromosome, same strand,

expected genomic order and closer (resp. more distant) than 100 kilobase (kb), in-

verted if the two parts are on the same chromosome, same strand and unexpected
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genomic order, interstrand if the two parts are on the same chromosome but differ-

ent strands and interchromosomal if the two parts are on different chromosomes),

its two parent genes, its length and the list of its supporting reads (see Additional

data file 1 for more details). ChimPipe also outputs a file with chimeric junctions

before the filtering, and a file with the junctions that have been filtered out with in-

formation about the reason for this filtering (see ChimPipe user’s manual at http:

//chimpipe.readthedocs.io/en/latest/manual.html for more information). It has to

be noted that ChimPipe can also start from already aligned reads (bam file) provided

they include evidence of intra-chromosomal chimeric junctions, and that ChimPipe

does not only output chimeric junctions but also a standard bam file (from step (i) of

the pipeline) that can be used for more standard RNA-seq analyses such as differential

gene expression or transcript reconstruction. Finally ChimPipe has been designed to

require minimal information about the PE RNA-seq dataset on which it is run, since

it guesses the Illumina quality offset, the strandedness, and the mate configuration in

case of directional data. Note that ChimPipe’s documentation includes a tutorial and

an example.

Benchmark on simulated and cancer data

We evaluated ChimPipe and other state-of-the-art chimera detection tools, using two

kinds of evaluation data: simulated data and real data from melanoma and breast can-

cer. The main advantages of simulated data are the inclusion of all kinds of chimeras

(not only fusion genes) and the control over the chimeras expected to be found, there-

fore allowing a precise evaluation of the programs. Its main drawback, however, is the

uncertainty about whether it captures the underlying complexity of real data. The draw-

back of real data, on the other hand, is its very limited number of validated cases, and

the fact that most of them are fusion genes. Indeed neither does it allow to assess the

programs’ precision, nor to extrapolate their results to non cancer data.

We developed ChimSim, a program to simulate chimeric transcripts from a gene

annotation, a genome, and numbers of read-through, intra-chromosomal, inverted,

interstrand and interchromosomal chimeric transcripts to create from the annotation

(see supplementary methods). Using ChimSim on the the Gencode v19 protein-coding

genes [46] and the hg19 genome, we generated a simulated dataset of 250 chimeric
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transcripts homogeneously distributed in the 5 chimera classes (50 from each class)

(Additional data file 2). Knowing that about 60% of transcripts from protein coding

(pc) and long non-coding RNA (lncRNA) genes are usually expressed in a given con-

dition [47], we sampled 60% of transcripts from Gencode v19 pc and lncRNA gene

transcripts, totalling 101,961 transcripts (Additional data file 2). Knowing that when

a chimera is expressed, its parent genes are often also expressed [10], we added the

parent transcripts of the 250 chimeras to the sampled transcripts, totalling 102,149 non

chimeric transcripts (Additional data file 2).

The 102,399 transcripts resulting from the union of the 250 chimeric transcripts

and the 102,149 non-chimeric transcripts, were then passed on to the art illumina

program of the ART suite (version 2.3.7, [48]), to simulate Illumina non directional

paired-end RNA-seq reads of 3 different lengths: 50bp, 76bp and 101bp, called PE50,

PE76 and PE101 respectively. Several parameters were used in addition to read

length and paired-endness, to make our simulated chimera data closer to real RNA-

seq data, including insert size mean and standard deviation, read coverage and se-

quencing quality profile (see supplementary methods for details). The sequencing

quality profile was learnt from real Illumina PE data of the same read length using the

art profiler illumina program of the ART suite (version 2.3.7, Additional data file

2 and supplementary methods). Using these parameters, ART generated 32.3, 21.1

and 15.7 million PE reads for the PE50, PE76 and PE101 respectively (Additional data

file 2 and supplementary methods). The benchmark was done for each read length

separately.

For real data with experimentally validated chimeras, we used two previously pub-

lished datasets: the leukemia/melanoma cancer study from Berger et al ([25], that we

call the Berger set), and the breast cancer study from Edgren et al ([45], that we call the

Edgren set). The Berger set was composed of the K562 chronic myelogenous leukemia

cell line associated to two different insert size ranges, 300-400 bp and 400-600 bp, of

the 501Mel melanoma cell line and of 5 melanoma patient-derived short-term cultures,

and came with 14 RT-PCR validated fusion genes (Table 1). The Edgren set was

composed of 4 breast cancer cell lines (of which two were associated to two different

median insert sizes, 100bp and 200bp), and came with 27 RT-PCR validated fusion

genes. For the Edgren set we used an additional 13 fusion genes that were found and
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RT-PCR-validated by a re-analysis of the Edgren data by Kangaspeska et al. [49], to-

talling 40 fusion genes (Table 1). The benchmark was done for each library separately,

but is provided for the pool of libraries of each dataset, for clarity reasons. Since the

chimeras specifically targeted by the Berger and the Edgren studies were only fusion

genes, the read-through events were removed from all programs’ predictions before

running the benchmark.

Since we wanted to do the evaluation both at the gene pair level and at the chimeric

junction level, and since an RT-PCR validated fusion gene is merely a gene pair to-

gether with the cDNA sequence corresponding to its junction, we used the blat pro-

gram [50] to align the cDNA sequences to the hg19 human genome, and further man-

ually curated these alignments to obtain the exact chimeric junction coordinates for

each fusion gene (see supplementary methods). This procedure resulted in 16 and 42

chimeric junctions for the Berger and Edgren sets respectively, indicating the presence

of two different isoforms for one gene pair in each set (Table S1).

The chimera detection programs that we chose to benchmark together with ChimPipe

(version 0.9.3) were the following:

• FusionMap (version 8.0.2.32, [33])

• PRADA (version 1.2, [38])

• Chimerascan (version 0.4.5, [34])

• TopHatFusion (version 2.0.12, [32]).

We chose these programs because their method was published and for one of the

following three reasons: (1) they were shown to have good results in several inde-

pendent studies (for example FusionMap and Chimerascan) or (2) they were used in

studies associated with gold-standard chimera RNA-seq datasets (for example PRADA

in [25] and Chimerascan in [24]) or (3) they were extensively used by the community

(for example TopHatFusion). Since these programs are optimized for human and for

cancer, we used them with their default parameters for real data, and we adjusted

their parameters to allow read-through detection for simulated data, whenever it was

possible (see supplementary methods).

The evaluation measures used are the standard sensitivity and precision for sim-

ulated data, and the sensitivity and total predictions for real data. In addition, the
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evaluation was done at two levels: the gene pair level and the junction level (Figure

S1). For each of these two objects, gene pair and junction, we have a reference set

(the objects to be predicted), and a predicted set for each program (the objects actually

predicted by the program). We then define a true positive (TP) as an object present

both in the reference and in the predicted set, a false positive (FP) as an object present

in the predicted set but not in the reference set, and a false negative (FN) as an object

present in the reference set but not in the predicted set. The sensitivity (Sn) is then the

fraction of the reference objects that are correctly predicted, while the precision (Pr) is

the fraction of the predicted objects that are correctly predicted. Since a high Sn can be

easily obtained at the expense of a low Pr, and reciprocally, we use the average of Sn

and Pr as an additional measure. Note that in order for a predicted chimeric junction

to be a TP, its coordinates must exactly match the coordinates of a reference chimeric

junction (Figure S1 and supplementary methods).

The results at both the gene pair level and at the junction level for both the PE76

simulated data and the real data, are shown on Figure 3 (similar results were observed

for PE50 and PE101 except for FusionMap which is clearly better on PE76, see Figure

S2). At the gene pair level the top program on the simulated data is Chimerascan

followed by ChimPipe, FusionMap, PRADA and finally TopHatFusion, with a generally

quite high precision for all programs but a sensitivity above 0.75 only for Chimerascan

and ChimPipe. For real data, Chimerascan is still the top program in terms of sensitivity

followed by ChimPipe, however its number of predicted gene pairs is 1 to 2 orders of

magnitude higher than the one of ChimPipe. The trend for real data sensitivity is similar

to the one of simulated data, but the Edgren gene pairs seem to be easier to predict

than the Berger gene pairs, with a higher sensitivity of the programs for the former.

Note that PRADA is a program that also has a good compromise between Sn and

number of predicted gene pairs on real data.

At the junction level, ChimPipe is the best program on both the simulated and the

real data with a sensitivity around 0.8 and a precision close to 1, and with a quite

reasonable number of predicted junctions for real data (around 60). It is followed by

PRADA and FusionMap, with PRADA behaving clearly better on real data. The per-

formances of both Chimerascan and TopHatFusion are quite poor at the junction level,

with TopHatFusion junctions always shifted by 1 bp on each side, and Chimerascan
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junctions most often shifted by 1 bp on one or both sides, compared to true junctions.

Since some of the evaluated programs are not able to predict read-through events

(PRADA), or happened to not detect any of them on simulated data (FusionMap and

TopHatFusion), we also made an evaluation without read-through events on simulated

data (Figure S3). The effect was an overall improvement of the programs’ perfor-

mances (except ChimPipe) but did not change the overall message above.

Since some programs have a quite different behaviour at the gene pair and at the

junction level, we also computed for each program and each evaluation set, the aver-

age and standard deviation of the distance between the predicted and the true junction

in case the gene pair was correctly predicted (Table 2). It showed that ChimPipe,

FusionMap and PRADA almost always provide the exact junction coordinates on sim-

ulated data and the Berger real set, while this is not the case for Chimerascan and

TopHatFusion, with a worse behaviour for the latter on the simulated data and for the

former on the Berger real set. One can note that for simulated data, the distance

between Chimerascan predicted and true junction tends to increase with read length.

Although the Edgren gene pairs seem easier to predict than the Berger gene pairs (as

stated above), the junctions from the correctly predicted gene pairs seem more difficult

to predict for the Edgren set than for the Berger set, since all the programs show a

quite important average distance between predicted and true junction for the Edgren

set. ChimPipe is second after FusionMap on the Edgren set but also has many more

true positives on this set. Since when ChimPipe detects the correct gene pair it also

detects the correct junction both for the simulated data and for the Berger cancer data,

we think that the most likely explanation for this difficulty in finding the true junction

for some Edgren cases is the fact that the mRNA isoform represented by the RT-PCR

sequence is not the same as the one sequenced with RNA-seq.

Although real data does not allow the computation of precision or false positive rate,

we expect the number of programs predicting a given chimera to be correlated to the

likelihood of this chimera being a true positive. We computed the intersection between

the gene pairs predicted by each program on each of the two real sets (Berger and

Edgren) (Figure 4), and saw that PRADA, ChimPipe and FusionMap predicted fewer

unique gene pairs, while TopHatFusion and Chimerascan predicted many unique gene

pairs, consistent with the previous benchmark results (Figure 3). We also confirmed
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that a gene pair predicted by at least 2 programs was more likely to be real since 26%

(respectively 65%) of the gene pairs predicted by 2 programs on the Berger (resp.

Edgren) set are true positives (i.e. validated by RT-PCR), while only 0% (respectively

1%) of the ones predicted by 1 program are true positives.

Regarding implementation, while some programs require a single step (apart from

the genome and/or transcriptome indexing) to predict the chimeras, which is the case

for ChimPipe, FusionMap and Chimerascan, some other programs require many dif-

ferent successive steps to obtain them, making the whole process more cumbersome.

This is the case for PRADA which requires 3 steps (mapping script making + mapping +

chimera prediction) and for TopHatFusion which requires 2 steps (mapping + mapping

filtering). The maximum virtual memory and wallclock time needed by each program

(run with 4 threads) on the PE76 simulated data are provided in Table 3. The program

that clearly needs the least resources is FusionMap with 11.7 Gb of RAM and less

than half an hour of running time, followed by Chimerascan with 4.8 Gb of RAM and

8.2 hours of running time, then PRADA with 35.5 Gb of RAM and 4.5 hours of running

time, then ChimPipe with 34.5 Gb of RAM and 10.1 hours of running time, and finally

TopHatFusion which requires 62.2 Gb of RAM and 18 hours of running time.

Detection and validation of novel chimeras

In order to survey the human chimera landscape more extensively, ChimPipe was run

on 106 ENCODE RNA-seq experiments from 15 human cell lines, 3 RNA fractions

(polyadenylated, non-polyadenylated, total) and 6 cell compartments (whole cell, cy-

tosol, nucleus, chromatin, nucleolus, nucleoplasm) [47]. At stringent settings (10 sup-

porting staggered split-reads and 5 discordant paired end reads in at least one experi-

ment), we found a total of 1195 chimeric junctions over all experiments. Of these, 525

had their 5’ and 3’ ends falling in a single protein-coding gene respectively, and 142

were either expressed recurrently (at least 1 supporting read in at least 11 out of the

15 cell lines) or very highly and specifically (at least 100 total reads in a single cell

line). We then only considered the 137 read-through and intrachromosomal chimeric

junctions from this set (Additional data file 3).

Four of these chimeric junctions were chosen for RT-PCR plus Sanger sequencing

validation. Two of them were selected from the recurrently expressed class (RPL38-
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TTYH2 and UBA2-WTIP), and two of them from the very highly and specifically ex-

pressed class (PICALM-SYTL2 and C16orf62-IQCK) (Table 4). Primers were designed

to perform RT-PCR on cDNA (to test for the RNA chimera) as well as PCR on genomic

DNA, to assess whether the chimeras could originate from genomic rearrangements

(Figure S4, Additional data file 3). Out of those 4 cases, all showed evidence of the

two parent gene mRNAs (except one, SYTL2, but this could be due to a low expression

level of this gene), and 3 showed the additional presence of the chimeric RNA (Figure

S5 and supplementary methods). These 3 chimeric junctions present at the RNA level,

were not present at the DNA level and therefore cannot originate from genomic re-

arrangements (Figure S6 and supplementary methods). We cloned and sequenced

these three chimeras (UBA2-WTIP, PICALM-SYTL2 and RPL38-TTYH2) (Figure S7,

Figure 5B for UBA2-WTIP, Additional data file 3 and supplementary methods). These

data are consistent with the hypothesis that some chimeras originate from read-through

or trans-splicing events.

It has been suggested that the generation of chimeric transcripts and their transla-

tion into chimeric proteins may serve to generate novel proteins with altered functions

[1, 10]. Therefore, we assessed the protein-coding potential of the 3 validated chimeric

junctions. For each chimeric junction, we reconstructed the theoretical chimeric tran-

script structures by combining the RefSeq reference mRNAs for the 5’ and 3’ parent

genes compatible with the junction and searched for Open Reading Frames (ORFs) in

the six possible translational frames with the NCBI ORF Finder (http://www.ncbi.nlm.

nih.gov/gorf/gorf.html). One case out of the three (UBA2-WTIP), maintained the

frame of the two parent genes, UBA2 and WTIP, while the other two, PICALM-SYTL2

and RPL38-TTYH2, did not. Interestingly, this chimera is recurrently expressed in 72

out of the 106 experiments, which include the 15 cell lines, the 3 RNA fractions and

5 out of the 6 cell compartments (cell, cytosol, nucleus, nucleoplasm and chromatin)

(Additional data file 3). Additional RT-PCR and Sanger sequencing was therefore per-

formed on UBA2-WTIP, giving rise to 3 novel complete transcript structures (Figure 5A,

Additional data file 3), of which the longest one (Q1), was more deeply analysed here.

This complete chimeric transcript has an ORF from UBA2 to WTIP annotated start and

stop codon respectively (Figure 5C). Thus, if translated it would give rise to a chimeric

protein including the two most N-terminal domains of the 5’ parent protein UBA2 (ThiF
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and UAE Ubl domains) and the three most C-terminal domains of the 3’ parent protein

WTIP (LIM domains), therefore only skipping the UBA2 C domain of the UBA2 protein

and the proline-rich N-terminal domain of the WTIP protein (Figure 5D).

We further investigated the putative role of this chimeric protein containing the

combination of domains from UBA2 and WTIP wild type proteins. UBA2 is part of

the SUMOylation machinery, which post-translationally modifies and regulates a large

number of proteins with important roles in diverse cellular processes, including reg-

ulation of transcription, chromatin structure, and DNA repair [51]. More precisely, it

associates with the Aos1 protein to produce the SUMO-activating enzyme (E1), a het-

erodimer that mediates the activation of ubiquitin-related modifier (SUMO) molecules

and their transference to the SUMO-conjugating enzyme (E2), which post-translationally

modifies a target protein through the binding of SUMO [52]. On the other hand, WTIP

belongs to a subset of LIM-domain containing proteins, which are involved in focal and

cell-cell adhesion. These interact with other proteins through their LIM domains, whose

sequence specifies a double zinc-finger structure capable of high-affinity binding to a

wide variety of protein targets [53]. Based on this, we hypothesize that the combina-

tion of UBA2 SUMOylation domain and WTIP protein binding LIM domains could lead

to a chimeric protein with altered SUMOylation activity. This protein may induce the

SUMOylation machinery to post-translationally modify and regulate novel targets, due

to the interaction of its LIM-domains with novel proteins.

Finally, each one of the two other validated chimeras, PICALM-SYTL2 and RPL38-

TTYH2, gave rise to one novel (although incompletely identified) transcript structure

with a premature stop codon before the last splice junction, leading us to hypothesize

that they are degraded through nonsense-mediated mRNA decay [54]. However, it is

important to note that these chimeric junctions are supported by a very high number

of reads (Table 4), suggesting that the chimeric transcripts is highly expressed, and

possibly functional.
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Conclusions

We have presented ChimPipe, a novel method for the accurate detection of chimeras

from PE RNA-seq data, based on the independent use of discordant PE reads and

split reads. In addition to fusion genes and trans-splicing events, ChimPipe is able to

detect read-through events, which is now recognized as the most prevalent class of

real chimeras in both normal and tumour tissues [20, 29, 30]. ChimPipe is general

enough to be able to work on any eukaryotic species with a genome and an annotation

available. This allows to study chimera evolution but also to investigate the impact

of chimeras on individuals from species on which we have more control than human

(for example livestock). ChimPipe can also predict several isoforms per gene pair

and the exact chimeric junction coordinates, which are essential for chimeric transcript

reconstruction and downstream validation.

ChimPipe is easy to run since it only requires a genome, a gene annotation and

RNA-seq fastq files (once the indexing of the genome and transcriptome has been

done), and guesses many other things such as the directionality, the mate configu-

ration and the Illumina offset quality. For advanced users, many parameters, such

as expression threshold or parent gene sequence similarity threshold, can be tuned.

ChimPipe provides both a complete and a filtered set of chimeric junctions, with ad-

ditional information about them, such as chimera category, expression support and

the list of reads supporting the junction (Additional data file 1). In addition to chimeric

junctions, ChimPipe provides a standard bam file obtained from the GEMtools RNA

pipeline (step (i) of Figure 2), that can be used for downstream analyses such as dif-

ferential gene expression or transcript reconstruction.

Benchmarking of ChimPipe together with four state-of-the art chimera detection

tools on both simulated and real data, showed ChimPipe to have a very good precision

(close to 1), and to be second most sensitive program (Sn of 0.8), therefore showing

a very good balance between sensitivity and precision. ChimPipe’s performances on

simulated and real data are comparable, and not much impacted by read length. They

are also similar at the gene pair and the junction level, which is not the case for all

programs since they generally predict gene pairs better than junctions. It has to be

noted that ChimPipe needs non negligible computer resources to achieve these results,

since it requires 30Gb of RAM and half a day to run with 4 threads, on the PE76
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simulated data (21 million PE reads).

The application of ChimPipe to 106 ENCODE PE RNA-seq samples allowed the

detection of 137 highly reliable chimeras, of which 4 were chosen for RT-PCR val-

idation, and of which 3 were indeed validated and further cloned and sequenced.

The UBA2-WTIP chimera additionally preserved the frame of the two parent genes

UBA2 and WTIP, and was therefore completely sequenced. This gave rise to 3 novel

transcripts which if translated, would lead to a chimeric protein with the ThiF and the

UAE-Ubf domains from the UBA2 protein and with the 3 LIM domains from the WTIP

protein. We hypothesize that this protein may induce the SUMOylation machinery to

post-translationally modify and regulate novel targets, due to the interaction of its LIM-

domains with novel proteins.

Despite these advantages, ChimPipe could be improved in at least two aspects:

(1) it could provide all the chimeric transcripts compatible with the chimeric junction

(module for which we already have a tested code) as additional information, (2) it could

be made more robust by being reimplemented in a pipeline specific language such as

nextflow http://www.nextflow.io/.

Finally it has to be noted that our contribution goes beyond the ChimPipe program,

since we provide two additional programs: (1) a chimera simulator program, called

ChimSim (https://github.com/Chimera-tools/ChimSim), and (2) a chimera bench-

mark program, called ChimBench (https://github.com/Chimera-tools/ChimBench).

We also provide new realistic simulated data, as well as junction coordinates for vali-

dated fusion genes from two extensively used gold-standard chimera datasets [25, 45].

We think that, in addition to ChimPipe, both these programs and this data can be very

useful in future chimera detection assessments.
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List of abbreviations

- EST = Expressed Sequence Tag

- cDNA = complementary DNA

- mRNA = messenger RNA

- 3D = three dimensional

- RT-PCR = reverse transcriptase polymerase chain reaction

- PE = paired end

- bp = base pair

- kb = kilobase

- RAM = random access memory

- Gb = Gigabyte
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Data availability

The ChimPipe program is available at https://github.com/Chimera-tools/ChimPipe,

its associated documentation at https://chimpipe.readthedocs.io/en/latest/, and

a description of its main output in Additional data file 1. The chimera simulation data

is provided in Additional data file 2 at http://public-docs.crg.es/rguigo/Papers/

ChimPipe/Paper/additional.data_2.tar.gz. The exact junction coordinates for the

Berger and Edgren validated gene fusions are provided in Table S1. The RT-PCR

validation data are provided in Additional data file 3 at http://public-docs.crg.es/

rguigo/Papers/ChimPipe/Paper/additional.data_3.tar.gz. The ChimSim chimera

simulation program is available at https://github.com/Chimera-tools/ChimSim, and

the ChimBench chimera detection benchmark program is available at https://github.

com/Chimera-tools/ChimBench.
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Figure legends

Figure 1. Two types of RNA-seq reads for chimera detection. This picture shows

a chimeric transcript (bottom) made from exons of two genes, A and B, depicted in

blue and red respectively (bottom). This chimeric transcript is supported by two types

of reads: a split-read and a discordant paired-end read, that we depict both on the

genome (middle-top) and on the transcriptome (middle-bottom). The chimeric junction

position on the transcriptome is highlighted by a yellow star both in the split-read and

in the chimeric transcript.

Figure 2. The ChimPipe method. (A) RNA-seq reads are first mapped to the

genome and transcriptome using the GEMtools RNA-seq pipeline, and the reads that

do not map this way are passed to the GEM RNA-mapper to get reads that split map to

different chromosomes or strands. (B) The split-reads from these two mapping steps

are then gathered and passed on to the ChimSplice module which derives consen-

sus junctions associated to their expression calculated as the number of staggered

split-reads supporting them. The ChimPE module can then associate each chimeric

junction found by ChimSplice to their discordant PE reads, splitting them into the ones

consistent and the ones inconsistent with the junction. (C) The ChimFilter module then

applies a series of filters to the chimeric junctions obtained until this point in order to

discard false positives, leading to (D) a set of reliable chimeric junctions to which it

associates several pieces of information such as a category (readthrough, intrachro-

mosomal, inverted, interstand, or interchromosomal), and the supporting evidence in

terms of number of staggered split-reads and number of consistent PE reads, among

others.

Figure 3. Benchmark results for 5 chimera detection programs on simulated

(left) and on real (right) data. The sets of barplots on the top (A,B) indicate the

programs’ performances at the gene pair level, while the sets of barplots at the bottom

(C,D) indicate the programs’ performances at the junction level. For simulated data the

provided measures are sensitivity (in red), precision (in blue), and average between

the two (in green), while for the two real datasets (Berger in red and Edgren in blue),

the only provided measures are sensitivity (bars) and the total number of predictions
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(at the top of each bar). Here we show the results on PE76 simulated data, for the 250

simulated chimeric junctions (i.e. including read through events). For the benchmark

on real data, read through events, i.e. junction distance smaller than 100kb when on

the same chromosome, same strand and expected genomic order, were removed from

the output of each program before the evaluation.

Figure 4. Chimeric gene pairs predicted by the 5 programs on the two real

datasets. Intersection between chimeric gene pairs predicted by the 5 programs on

the Berger set (A) and on the Edgren set (B) are represented as Venn diagrams. In

general gene pairs predicted by all 5 programs are few compared to the gene pairs

predicted by a single program, and we expect that the higher the number of programs

predicting a gene pair the more reliable the gene pair. Chimerascan and TophaFusion

are the programs that predict more gene pairs predicted by no other program, while

PRADA, Chimpipe and FusionMap are the programs with less such gene pairs. CP:

ChimPipe, FM: FusionMap, PR: PRADA, CS: Chimerascan, THF: TopHatFusion.

Figure 5. UBA2-WTIP chimeric transcript isoforms. (A) Experimentally validated

UBA2-WTIP chimeric transcript isoforms. (Top) UBA2 and WTIP parent transcripts

according to RefSeq version 74. Coding and UTR exonic sequences are displayed

as thick and thin boxes, respectively, and introns as lines. The genomic strand of the

transcripts is represented as an arrow on the 5’ end (Bottom) Chimeric RNAs with

chimeric splice junctions are depicted as yellow dashed lines. On the left, list of cancer

cell lines where each isoform was validated (B) UBA2-WTIP chimeric splice junction

validation (Left) Primer design for validating the chimeric junction through RT-PCR plus

Sanger sequencing. (Right) Chimeric junction validation in 4 different cell lines. The

72 bp amplicons proving the expression of the chimeric RNAs are highlighted in red.

(C) UBA2-WTIP Q1 isoform protein coding potential. (Top) UBA2 and WTIP annotated

start and stop codons represented over the transcript sequence. (Bottom) ORFs in the

six possible frames. The selected ORF from the UBA2 annotated start codon to the

WTIP annotated stop codon is highlighted in dark yellow. (D) Putative chimeric protein

encoded by the UBA2-WTIP Q1 isoform. (Top) UBA2 and WTIP wild type proteins.

The exact position of the two protein breakpoints is indicated by yellow stars. Protein

domains are depicted as boxes and triangles over the protein sequences. Thin boxes
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on the WTIP protein sequence correspond to low complexity regions. The x axis shows

the amino acid position along the protein sequence. (Bottom) Putative UBA2-WTIP

chimeric protein.
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Figure S1. Two evaluation levels: gene pair level and junction level. On top is one reference junction with its

associated gene pair (gene A, gene B). At the bottom are two predicted junctions of which the first one exactly corre-

sponds to the reference junction, and is therefore considered both a junction level and a gene pair level true positive

(TP). The second junction does not exactly correspond to the reference junction, and is therefore not considered a

junction level TP, however since its first part overlaps an exon of gene A and its second part an exon of gene B, it is

considered a gene pair level TP.
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Figure S2. Benchmark results of 5 chimera detection programs on simulated data of different read lengths and on real data. On the top row (A-D)

are the programs’ performances at the gene pair level, and on the bottom row (E-H) at the junction level. The three first sets of barplots of each row are the

results on simulated data, with sensitivity in first column, precision in second column and the average between the two in third column, with different colors for

3 read lengths, while the last set of barplots of each row show the results on real data (Berger in red and Edgren in blue). According to simulated data, read

length does not have a big impact on the results, except for Fusionmap which is better with 76bp reads. The sensitivity tends to decrease when the read length

increases

0.00

0.25

0.50

0.75

Chim
Pipe

Fusio
nMap

PRADA

Chim
erasca

n

To
phatFusio

n

S
en

si
tiv

ity Read_length
1_50bp
2_76bp
3_101bp

Directed gene pair sensitivity

A

0.0

0.2

0.4

0.6

0.8

Chim
Pipe

Fusio
nMap

PRADA

Chim
erasca

n

To
phatFusio

n

S
en

si
tiv

ity Read_length
1_50bp
2_76bp
3_101bp

Junction sensitivity

E

0.00

0.25

0.50

0.75

1.00

Chim
Pipe

Fusio
nMap

PRADA

Chim
erasca

n

To
phatFusio

n

P
re

ci
si

on Read_length
1_50bp
2_76bp
3_101bp

Directed gene pair precision

B

0.00

0.25

0.50

0.75

1.00

Chim
Pipe

Fusio
nMap

PRADA

Chim
erasca

n

To
phatFusio

n

P
re

ci
si

on Read_length
1_50bp
2_76bp
3_101bp

Junction precision

F

0.00

0.25

0.50

0.75

Chim
Pipe

Fusio
nMap

PRADA

Chim
erasca

n

To
phatFusio

n

A
ve

ra
ge

 s
co

re

Read_length
1_50bp
2_76bp
3_101bp

Directed average score

C

0.00

0.25

0.50

0.75

Chim
Pipe

Fusio
nMap

PRADA

Chim
erasca

n

To
phatFusio

n

A
ve

ra
ge

 s
co

re

Read_length
1_50bp
2_76bp
3_101bp

Junction average score

G

47

55

20

48

19
39

3050

617

58

116

0.00

0.25

0.50

0.75

1.00

Chim
Pipe

Fusio
nMap

PRADA

Chim
erasca

n

To
phatFusio

n

S
en

si
tiv

ity PositiveSet
Berger
Edgren

Directed gene pair sensitivity

D

52

75

20

58

19

39

3058

619
77

190

0.0

0.2

0.4

0.6

0.8

Chim
Pipe

Fusio
nMap

PRADA

Chim
erasca

n

To
phatFusio

n

S
en

si
tiv

ity PositiveSet
Berger
Edgren

Junction sensitivity

H

Figure S23

.
C

C
-B

Y
 4.0 International license

available under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint (w

hich w
as

this version posted A
ugust 22, 2016. 

; 
https://doi.org/10.1101/070888

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/070888
http://creativecommons.org/licenses/by/4.0/


Figure S3. Benchmark results when excluding read-through events for simulated data. This is the same as

figure 3 but excluding read-through events when benchmarking the programs on simulated data. Note that figures

S3B and S3D are the same as figures 3B and 3D, and are present here for the purpose of comparison between

results on simulated and real data.
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Figure S4. RT-PCR validation method. For each chimeric junction attempted to be validated by RT-PCR, 3 tests

were actually performed, each of them requiring different pairs of primers: (1) the actual validation of the chimeric

junction is done by doing RT-PCR on a cDNA library using a pair of primers that are located externally to the junction

but in the exons overlapped by each part of the junction; (2) genomic DNA tests (starting from genomic DNA) are

done for each of the parent gene and for the chimeric junction, in order to check whether a genomic rearrangement

could explain the chimeric junction and to see if the parent genes are present at the DNA level; (3) mRNA checks are

done for each parent gene (starting from cDNA and using pairs of primers specific to each gene) in order to check

whether they are present at the mRNA level.

Figure S4
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Figure S5. RT-PCR validation results for 4 chimeras in four cell lines (HeLa, HL60, MCF-7, K562). Here we

show the products of the RT-PCR amplification of 4 chimeras and their parent genes, from the cDNAs of 4 different

cell lines: HeLa (H), HL60 (6), MCF-7 (M) and K562 (K). For each chimeric junction we also provide a negative control

(-) for comparison, and higlight the bands that show the presence of the chimeras and of the parent genes. For the 3

successfully validated cases (3 first ones, i.e. UBA2-WTIP, PICALM-SYTL2 and RPL38-TTYH2), the bands show the

presence of the chimeric RNAs at the expected size, except for PICALM-SYTL2, which chimera size is higher than

expected, and of all parent mRNAs except SYTL2, although this could be due to a low expression level of this gene.
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Figure S6. Genomic DNA analysis for the 3 successfully validated chimeras. For the 3 chimeras that were

successfully validated by RT-PCR, we show the products of the genomic amplification of the 6 chimeras and their

parent genes in the same 4 cell lines as the ones where the mRNA analysis was done (see supplementary Figure S5

above). These tests show that the parent genes are present at the DNA level, but not the chimeras. Indeed we see

some unspecific amplification in the genomic DNA for the chimeras, but the band intensities are too low to consider

them as genomic rearrangements. For the RPL38-TTYH2 chimera, there are some clearer unspecific products, but

they are probably due to a primer contamination since they are also present in the negative control. H: HeLa, 6:

HL60, M: MCF-7, K: K562, -: negative control.
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Figure S7. Colony PCR check and selection for RT-PCR validated chimeras. For the 3 RT-PCR validated

chimeras, the RT-PCR products were purified from the gel bands, and cloned into pGEMTeasy vectors. E. coli

bacterias were then transformed with these vectors, white colonies were selected and colony PCR was performed

with the results indicated on the picture. Selected colonies (indicated by red boxes) were grown, plasmid purified and

sent for sequencing.
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