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Abstract  
Proteins that are components of the secretory machinery form a cellular pathway of 
paramount importance for physiological regulation, development and function of 
human tissues. Consistently, most secretory pathway components are ubiquitously 
expressed in all tissues. At the same time, recent studies identified that the largest 
fraction of tissue-specific proteins consists of secreted and membrane proteins and not 
intracellular proteins. This suggests that the secretory pathway is distinctively 
regulated in a tissue-specific fashion. However, a systematic analysis on how the 
protein secretory pathway is tuned in different tissues is lacking, and it is even largely 
unexplored if the secretome and membrane proteome differs in, for example, post-
translation modifications across tissues. Here, analyzing publically available 
transcriptome data across 30 human tissues, we discovered the expression level of key 
components previously categorized as housekeeping proteins were specifically over-
expressed in a certain tissue compared with the average expression of their 
corresponding secretory pathway subsystem (e.g. protein folding). These extreme 
genes define an exceptional fine-tuning in specific subnetworks, which neatly 
differentiated for example the pancreas and liver from 30 other tissues. Moreover, the 
subnetwork expression tuning correlated with the nature and number of post 
translational modification sites in the pancreas or liver-specific secretome and 
membrane proteome. These patterns were recurrently observed also in other tissues, 
like the blood, the brain and the skeletal muscle. These findings conciliate both the 
housekeeping and tissue-specific nature of the protein secretory pathway, which we 
attribute to a fine-tuned regulation of defined subnetworks in order to support the 
diversity of secreted proteins and their modifications. 
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Introduction 
 
The protein secretory pathway in eukarya involves an elaborate integration of 
functional modules compartmentalized in the endoplasmic reticulum (ER) and Golgi 
apparatus. These modules are responsible for stepwise post-translational 
modifications (PTMs) (such as folding and glycosylation) and transport of secretory 
proteins(Fig 1A). The essence of this intricate cell machinery is to guarantee the 
functionality of the proteins routed to the extracellular space, either as membrane or 
secreted proteins. A functioning secretory pathway is essential for human body 
physiology. The majority of hormones and enzymes produced by the endocrine and 
exocrine systems, but also receptors and channels, anchors and extracellular matrix 
components, coagulation factors, and other molecular transporters are all clients of the 
secretory pathway. Given these housekeeping roles, the pathway is considered to be 
expressed in most human tissues. Unsurprisingly, dysfunction of the secretory 
pathway is causally or indirectly implicated in a variety of systemic or developmental  
diseases, like cancer, diabetes, Parkinson’s disease, and congenital neurodegenerative 
disorders (Freeman, 2001; Pohlschröder et al, 2005; Sherwood, 2015; Uhlén et al, 
2015). Over the past 40 years, we have acquired an exhaustive picture of the 
molecular components (i.e. proteins) of the secretory pathway and its clients, i.e. the 
secretome and the membrane proteome (Lippincott-Schwartz, 2011; Novick et al, 
1981; Novick et al, 1980; Rothman, 2014; Südhof & Rothman, 2009). However, until 
recently, a systemic genome-scale map of the protein secretory pathway in eukarya 
was not available (Feizi et al, 2013). Therefore, the study of regulation of the protein 
secretory pathway at the system level is largely unexplored. 
 
In human tissues, tissue-specific features are generally the result of complex 
regulatory cascades through development stages, which are aimed to specifically tune 
the expression of the different cellular processes. In the case of secretory and 
membrane proteins, which are the clients of the secretory pathway, the differences 
across tissues are fairly obvious (e.g. insulin for pancreas as opposed to renin for 
kidney). Considering the above-mentioned housekeeping character of the secretory 
pathway itself, these tissue-specific differences should arise from an elaborate fine-
tuning in the expression of the pathway components. However, it is still unclear how 
different tissues regulate the recently mapped secretory pathway, nor if this regulation 
correlates with the different needs of tissue-specific membrane and secreted proteins, 
in terms of processing, transport, or specific PTMs. Compensating for this knowledge 
gap could result in three valuable outcomes: first, to provide a rational approach to 
study the diseases linked with secretory pathway by a detailed mechanistic mapping 
of all pathway steps in different tissues; second, to aid engineering of 
biopharmaceutical protein production, since the current bottleneck in the production 
of human proteins is the functional difference between the host (e.g. CHO cells) and 
parent secretion system (Golabgir et al, 2016; Kildegaard et al, 2013); and finally to 
advance our understanding on the role of gene expression in the development of 
tissue-specific function in humans. 
 
Here we performed a systematic analysis of gene expression for the 575 core 
components of the secretory pathway across 30 human tissues, focusing on tissue-
specific fine-tuning and its relation with the requirements for each tissue-specific 
secretome and membrane proteome.  
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Results and Discussion 
 

Is the secretory pathway a housekeeping cell machinery? 
 
The secretory pathway is an essential and ubiquitous machinery in human cells, and 
yet provides specific functionality depending on the tissue. This is evident in 
secretory tissues belonging to the endocrine system (e.g. the pancreas), but it applies 
more generally to most human tissues. To dissect the extent to which the expression 
level of secretory pathway components is tuned in the different tissues as opposed to 
ubiquitous expression in a housekeeping fashion, we investigated the tissue-wise 
variation in the mRNA levels of the corresponding genes. We used two independent 
and comprehensive RNA-seq datasets of 30 human tissues, the Genotype-Tissue 
Expression Project (GTEx, (Melé et al, 2015)) as the main set and the Human Protein 
Atlas (HPA, (Uhlén et al, 2015)) as a validation set. Both datasets achieved 
unprecedented resolution on tissues’ RNA levels with significant between-study 
correlation (Uhlén et al, 2016). We opted to use the GTEx dataset as the main set 
because it included brain sub-regions and blood and featured a higher number of 
replicates and sequencing depth. These studies adopted expression categories to 
classify tissue-specificity of genes (e.g. “tissue elevated”, if the gene mRNA levels 
were at least five-fold higher in a particular tissue as compared to all other tissues).  

Next, starting from the yeast secretory model (Feizi et al, 2013), we reconstructed a 
generic human secretory pathway network of 575 core components (see Materials and 
methods), which were allocated to 13 specific functional modules (Fig. 1B). Of all 
575 secretory pathway components, ~83% (n=478) of the genes belonged to the same 
expression category according to both GTEx and HPA (Fig. 1B). Of these 478 genes, 
~86% (n=414) belonged to the “expressed in all” category and ~13% (n=64) were in 
tissue-specific categories (such as “tissue enriched” and “group enriched”) (Fig. 1C- 
EV1). The 414 “expressed in all” genes showed similar expression distribution (in 
terms of log10 FPKM) across tissues both in GTEx and HPA (median expression ~=10 
FPKM), yet tissues such as pancreas, skeletal muscle, heart and liver displayed 
slightly lower median expression compared to other tissues (Fig. S1). Collectively, 
this is consistent with the notion that the secretory pathway is a housekeeping 
machinery. 

On the other hand, it has been previously shown that in most tissues 10-20% of the 
transcriptome translates into secreted or cell-membrane proteins (Uhlén et al, 2015). 
This fraction increases up to 70% in secretory tissues such as pancreas and salivary- 
glands. Most strikingly, the largest fraction of tissue-specific proteins are secreted or 
membrane proteins as opposed to intracellular proteins (Fig 1D) (Uhlén et al, 2015). 
These facts argue that the secretome and the membrane proteome are the single most 
defining class of tissue-specific proteins in any human tissue. Based on HPA data, 
5,670 proteins were predicted to be uniquely secreted or membrane proteins, among 
which 3,328 were predicted with a N-terminal signal peptide that dictates the entering 
and passing through the secretory pathway for harboring proteins. Of these 3,328 
proteins, 1,218 were secreted proteins and 1,607 were plasma membrane proteins. 
Most of these were assigned to the tissue-specific categories (e.g. “tissue enriched”) 
(Fig. 1D). The remaining 503 proteins were localized in the lumen or the membranes 
of the ER, Golgi or other organelles (Fig. 1D). Among the 1,242 proteins without 
predicted signal peptide, there were 680 proteins predicted to be secreted by 
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unconventional secretion (secretome P NN-score > 0.6) among which 12 belonged to 
the secretome and 507 to the membrane proteome (Bendtsen et al, 2004; Nickel & 
Seedorf, 2008) (EV2). Considering this high degree of tissue-specificity of secreted 
proteins, we contended that the secretory pathway should be regulated differently 
across tissues, despite its ubiquitous expression. Indeed, the brain and the pancreas, 
for example, differ in secreted and membrane proteins both in terms of protein 
function and physiology, and we deemed this unlikely to be solely represented by the 
small fraction (13%) of “tissue elevated” genes in the pathway.  

To assess within-tissue variation, we correlated the expression profile of proteins 
belonging to the secretory pathway, but limited to the 414 “expressed in all” genes 
across 30 tissues (Fig 2). Hierarchical clustering of the correlation coefficients 
supported on one hand a housekeeping role of the pathway, in that most tissues 
showed medium to high correlation with each other (ρ = 0.83 to 0.98), despite the 
presence of sub-clusters with higher in-between correlation (e.g. between uterus, 
cervix, vagina). On the other hand, nine tissues from the liver, pancreas, blood, 
kidney, skeletal muscle, heart, testis, and brain (cerebellum, and cerebrum) formed 
isolated clusters, with low to medium correlation with the tissues in the larger cluster 
(median coefficient ρ = 0.57 +- 0.17, permutation test p < 0.05). This clustering 
pattern partially was observed also using the HPA data, with the difference that the 
thyroid clustered instead with the salivary gland (missing in GTEx) and pancreas 
clustered with the skeletal muscle, albeit presenting an even smaller correlation with 
other tissues compared to GTEx (Fig. S2). This is suggestive that even ubiquitously 
expressed secretory pathway genes display a degree of tissue-specific modulation.  

We observed that at the transcriptome level, the pancreas, pituitary gland, and blood 
in GTEx and the pancreas, bone marrow and salivary gland in HPA clustered away, 
with negligible effect of including the secretory pathway genes, warranting a potential 
confounding effect due to a generally deviance of their expression profile (Fig S3). 
Collectively, these results indicate the secretory pathway mostly featured “expressed 
in all” genes but these can be further modulated in a tissue specific-function. We 
therefore evaluated whether this fine-tuning in housekeeping genes reflected a 
specific functional process important for a certain tissue by analyzing secretory 
pathway subsystems. 

Expression levels of the secretory pathway subsystems are tuned in each 
tissue. 
 
In our previous study for yeast (Feizi et al, 2013), we defined 169 secretory pathway 
components that were mapped in to functional modules (subsystems) representing 
distinct functional modules such as translocation, protein folding, ER glycosylation 
etc. Using the same approach (see Methods), we allocated the 575 core components of 
the human secretory pathway into these same 13 subsystems (Fig 1A and B , Table 
EV1). We sought to investigate whether in the outlier tissues the 414 “expressed in 
all” genes were fine-tuned uniformly across the spectrum of functions in the secretory 
pathway or preferentially in a specific subsystem(s), hinting that these tissues need to 
adjust housekeeping genes according to tissue-specific requirements. We started by 
analyzing first the pancreas, one of the least correlated tissues (median ρ = 0.49 +- 
0.11). We calculated for each subsystem the correlation between the expression levels 
in the pancreas versus any other tissue (Fig 3A). Most subsystems correlated fairly 
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well (ρ > 0.6, p < 0.05), while others fluctuated substantially to very low to high 
correlations according to the compared tissue (e.g. translocation). The correlation 
coefficients displayed a broad dynamic range between the lowest (translocation, ρ = 
0.03) and highest value (GPI-biosynthesis, ρ = 0.94). HPA data yielded highly 
consistent results (Fig. S5). This is suggestive that even if pancreas was a relative 
outlier when considering the bulk of housekeeping components of the secretory 
pathway, at the subsystem level, the pancreas had a relatively similar profile to many 
other tissues for many secretory functions, but it severely differed in terms of 
expression of proteins involved in translocation and trafficking subsystems. For 
example, the expression of GPI biosynthesis module correlated between the brain 
cerebrum and the pancreas, but no correlation was observed for translocation (Fig. 
3B). Consistently, the pancreas and the liver showed strong correlations in most 
subsystems, therefore they are expected to share similar functionality of the secretory 
pathway in general, as suggested by our results above (Fig. 2). The example of 
pancreas clearly highlights that “expressed in all” genes undergo tissue-specific 
adjustment geared towards specific functional modules rather than fine-tuning the 
pathway as a whole.  

We next generalized the results from pancreas to the other tissues by performing a 
correlation analysis of all tissue-pairs (n=11700) for each subsystem, limited to 
“expressed in all” genes.  Interestingly, subsystems could be seen as either extremely 
correlated across most tissue-pairs, for example UPR (unfolded protein response), or 
with wider correlation coefficient distributions, like trafficking regulation (Fig. 4A). 
This indicates that certain subsystems might have tissue-specific gene expression 
modulation. Therefore, we sought to explore the tissue-pairs with non-significant 
subsystem correlation (ρ < 0.6). To identify the most tissue-specific gene among the 
“expressed in all” genes in each subsystem, we run Grubbs test (Grubbs, 1950) using 
both GTEx and HPA data and we picked the overlapped detected outliers, assuming 
that the total expression level of each subsystem vary among tissues (see Materials 
and Methods). As result, we discovered that within each subsystem tissues, there were 
a set of extreme genes (i.e. outliers) that were specific or shared between few tissues 
despite defined as expressed in all (Fig. 4B). These genes were likely responsible for 
the low tissue-pair correlations in some subsystems uncovered above (Fig. 4A), given 
that none of these extreme genes belonged for example to UPR, which was the most 
correlated subsystem across tissues (Fig. 4B). Noteworthy, these extreme genes still 
belong to the “expressed in all” category, meaning that they are expressed in all 
tissues, however in a specific (or few) tissue they displayed exceptionally high 
expression compared to the average expression of the subsystem they were part of. 
Most extreme genes belonged to post-Golgi trafficking or trafficking regulation 
subsystem (Fig 4E). This is consistent with the previous result that low tissue-pairs 
correlations were observed particularly in these subsystems for “expressed in all” 
genes (Fig. 4A). On the other hand, brain cerebrum has the highest number of extreme 
genes (n=17) that five of them are unique or shared up to seven tissues (Fig 4B and 
4F). For example, focusing on extreme genes in the skeletal muscle and the pancreas, 
as two tissues with lowest correlations (Fig. 4B), extreme genes that were uniquely 
associated with either of these tissues showed an evident higher expression level 
comparing to other tissues (for example OPTN for skeletal muscle or SEL1L for 
pancreas). Although, some of the extreme genes were shared between tissues like 
RAB10 (skeletal muscle and esophagus) and PDIA4 (pancreas, liver and kidney), the 
expression level was always higher for one of the tissues (Fig 4D and 4E). 
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Since the analysis above only contained “expressed in all” genes, we controlled that 
no biases in the above correlations could be imputed to low subsystem size or 
exclusion of genes in tissue-specific categories in the different subsystems. As 
suggested by the fact that 86% of pathway genes assigned to a consensus category 
were “expressed in all”, the greatest fraction of all subsystems also belonged to the 
“expressed in all” genes (Fig S6A). For instance, translocation genes were all 
assigned to “expressed in all” category, while certain subsystems, like ERAD 
(endoplasmic reticulum-associated degradation) and protein folding featured a small 
fraction of genes in tissue-specific categories. These sum up to 12 genes, which were 
all testis-specific proteins except CRYAA, which was a kidney-specific chaperone 
(Fig. S6B). These genes in testis belonged to ERAD (5 genes), protein folding (2), 
Golgi glycosylation (2) and trafficking regulation (2). Therefore, we ruled out that 
neglecting these genes in tissue-specific categories contributed to explain the lower 
correlation in the expression of the secretory subsystems observed for some tissues. 
This strengthens the hypothesis that subsystems experience expression fine-tuning in 
a tissue-specific fashion predominantly in the case of “expressed in all” genes. 
Finally, we tested the between-tissue correlations limited to non-“expressed in all” 
genes (n =64, based on GTEx) at the subsystem level. The distribution of tissue-pair 
correlations spanned a broad range of coefficient values in the subsystems with genes 
in tissue-specific categories (such as trafficking subsystems, Fig. S7). Thus, some 
tissue-pairs were lowly correlated in a given subsystem, suggesting that these tissue-
specific genes contribute (albeit modestly) rendering these subsystems tissue-specific. 
The same conclusion cannot hold for subsystems such as translocation or ER 
glycosylation, which featured exclusively “expressed in all” genes. 

These findings show that even if secretory pathway genes are expressed rather 
consistently in all tissues, individual tissues can spike the expression of selected genes 
in defined subsystems in a tissue-specific fashion. This indicates that the secretory 
pathway is a housekeeping machinery, but certain functional modules, particularly 
within protein folding and trafficking, need to be finely adjusted according to tissue-
specific requirements. Next, we explored if this tissue-specific expression tuning 
correlated with requirements for PTMs and functions of membrane proteins or 
proteins secreted that are typically specific to the different human tissues.  

Tissue specific properties of human secretome and membrane proteome 
dictates the expression tuning of the secretory pathway components  
 
So far there has not been a systemic approach on how the secretory pathway is 
regulated in the different tissues to provide the known degree of specificity in their 
secretome and membrane proteome. This has also been hindered by the fact that it has 
not yet been elucidated if and how the properties of the secretome and membrane 
proeome differ across human tissues. We hypothesized that the tissue-specific fine-
tuning of certain secretory pathway subsystems is associated with the properties of the 
proteins that are client of the pathway in a certain tissue. To investigate this, we 
analyzed the tissue-specific properties of the secretome and membrane proteome.  
 
As already discussed earlier in Fig 1C, we assembled a list of 4,098 of conventional 
(with signal peptide) (n=3,328) and unconventional (without signal peptide) (n=680) 
secreted or membrane proteins. We obtained the GTEx expression profiles of the 
associated genes and performed hierarchical clustering of tissues based on their 
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expression correlation matrix (Pearson correlation). We focused on genes in tissue-
specific categories (2,047 genes) and used the scaled expression instead of FPKM for 
gaining better resolution. We observed a neat separation of “tissue-enriched” genes 
for the corresponding tissue (Fig. 5). The liver (N secreted or membrane proteins = 
90) and the pancreas (N=30) showed the highest ratio of secreted to membrane 
"tissue-enriched” genes. The testis (101), blood (34), kidney (25), and brain-cerebrum 
(21) displayed the highest ratio of membrane to secreted “tissue-enriched” genes 
(“localization” in Fig 5).  
  
Secretory proteins, unlike intracellular proteins, undergo specific modifications steps 
through the ER and Golgi that guarantee their function once exposed to the 
extracellular environment. Of the secretory PTMs, glycosylation, sulfation and 
glycosylphosphatidylinositol (GPI anchor) are the main modifications. The secretome 
and membrane proteome are highly tissue-specific, and therefore should impose 
specific PTMs processing within the secretory pathway depending on the tissue. This 
might correlate with the fine-tuning of specific secretory subsystems attributed to 
extreme genes that we observed before. To investigate PTMs differences, we obtained 
information from UniProt on number of sites for N-glycosylation (NG), disulfide 
(DS), O-glycosylation (OG), GPI-anchored (GP) for secreted and membrane proteins 
specific to each tissue, and integrated this information with the clustering result (Fig. 
5). In general, most of the tissue specific secreted and membrane proteons are 
enriched with N-linked glycosylation and disulfide sites, however, pancreas and 
pituitary are two tissues which stand out as they have less enrichment in the N-linked 
glycosylation sites in their secretome while they are highly enriched in disulfide sites 
(Fig. 5). O-linked and GPI-anchored sites are rather tissue-specific. For example, liver 
secreted proteins are enriched in O-linked, whereas brain sub-regions are enriched 
with GPI-anchored membrane proteins.  In the following we interpreted these results 
in respect of the similarity between the tissues secretory function and if there are any 
correlation with identified extreme genes.  
 
Pancreas, liver and kidney  
Both in the liver and the pancreas, genes in tissue-specific categories were mainly 
secreted protein (Fig. 5). In the pancreas, highly expressed genes were CELA2A, 
CTRB2 (peptidase), CTRB1, insulin (INS), PNLIP (pancreas lipase), and AMY2A 
(alpha amylase); in the liver, some of these genes were F9, C8A, or CFHR2, which 
encode proteins involved in plasma complement binding or lipid transporters (see 
EV3 for the full list). These proteins harbored multiple glycosylation and disulfide 
sites, which require plenty of glycan, energy and folding processing units within the 
secretory pathway of these tissues. Also, as most of the proteins were secreted, with 
continues outflux to the extracellular space, therefore we expected a high pressure on 
transport subsystems. Collectively, these properties should require specific 
modulation of the folding, glycosylation and transport system in these two tissues. 
This argument was in line with the function of the extreme genes previously detected 
for pancreas and liver (Fig. 4B). Strikingly, 4 of these were overlapping in these two 
tissues, PDIA4 TMED2, SRPR, SEC61B (Fig. 4B) which belonged to the folding and 
transport subsystems. Interestingly, it was earlyer reported that the expression level of 
extreme genes ERO1LB, and SEL1L, foldases with strong disulfide isomerase activity, 
was pancreas-specific (Tufo et al, 2014). This correlates with the putative 
exceptionally high flux of secreted proteins with disulfide sites (Fig. 5). On the other 
hand, we considered PDIA4 as an interesting example of tissue-specific fine-tuning of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2016. ; https://doi.org/10.1101/070870doi: bioRxiv preprint 

https://doi.org/10.1101/070870
http://creativecommons.org/licenses/by-nc-nd/4.0/


a secretory pathway subsystem, because it was shared as an extreme gene by the 
pancreas, the liver and the kidney (with higher expression in kidney and liver). These 
tissues featured among the highest numbers of over-expressed tissue-specific secreted 
or membrane proteins enriched with disulfide bonds (Fig. 6B). Consistent with 
processing of disulfide bonds, PDIA4 was expressed in all tissues, but the expression 
level of this isoenzyme was significantly higher in these three tissues (Fig 6B). As a 
second example, SRPR, SSR4, TMED2, SEC61B, and SEC61G are involved in the 
translocation and trafficking subsystems. TMED2 is an established specific protein for 
the pancreas (Blum et al, 1996), and has been shown to play a critical role in cargo 
detection from ER (COPII vesicle-mediated) and to regulate exocytic trafficking from 
the Golgi to the plasma membrane (Dominguez et al, 1998; Luo et al, 2011; 
Stepanchick & Breitwieser, 2010).  
 
Therefore, tuning the expression level of specific gene(s) contribute to the tissue 
specialization of the secretory pathway function in connection with enriched specific 
PTMs load or by running the transport system efficiently.  We therefor suggest tissue-
specific roles for most of the detected extreme genes in liver, pancreas and kidney.  
 
Brain - the cerebrum, the cerebellum and the pituitary gland 
Focusing on the secretome of brain sub-regions, the cerebrum, the cerebellum and the 
pituitary gland clustered together and yet displayed an evident degree of specificity 
for their corresponding secreted and membrane proteins (Fig. 5). Most brain enriched 
proteins, especially for the cerebrum and the cerebellum, were membrane proteins 
(Fig. 5). Most of brain tissues enriched proteins had multiple N-glycosylation and/or 
disulfide sites (Fig 5). Correspondingly, among the extreme genes detected for brain 
sub-regions, for instance, FBXO2 and ACAP3 were shared extreme genes across the 
three sub-regions. ACAP3 is presumed to be a GTPase activator and FBXO2 is 
presumed to recognize and bind denatured glycoproteins (in the ERAD pathway), 
preferentially those of high-mannose type, which are strongly represented among 
brain membrane proteins. Considering that dysregulation in proper O-mannosylation 
in brain has been linked with serious congenital diseases (Haltiwanger & Lowe, 
2004), we speculate that FBXO2 could play a key role in the quality control of brain 
membrane protein mannosylation. The cerebellum had four exclusive extreme genes, 
belonging to post-Golgi trafficking (CLTC, RAB15), trafficking regulation (PAK1) 
and protein folding (DNAJC5). Interestingly, in the pituitary gland, an active 
endocrine tissue, we detected two extreme genes shared with the pancreas which both 
belong to the translocation subsystem (SSR4 and SEC61G). As both tissues have high 
flux of secretory proteins and high expression of these proteins may play an important 
role in enabling a high translocation rate of hormones from the cytoplasm to the ER. 
 
Testis 
The testis had the highest number of tissue-specific proteins that are client of the 
secretory pathway (n=172), mostly located on the membrane (n=113) (Fig. 5). These 
proteins featured multiple disulfide and/or N-glycosylation sites. Most of these 
proteins (58%) enriched GO terms are associated with testis-specific processes, like 
spermatogenesis and sperm-egg recognition (Fisher’s exact test p <0.001). Genes 
including GGA1, CUL1, HYOU1 and GIT1 were detected as extreme genes in testis. 
GGA1 encodes a member of the Golgi-localized gamma adaptin ear-containing 
protein, ARF-binding (GGA) protein family, and regulates the trafficking of proteins 
between the trans-Golgi network and the lysosome (Boman et al, 2000; Puertollano et 
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al, 2001). The CUL1 is a component of multiple SCF (SKP1-CUL1-F-box) E3 
ubiquitin-protein ligase complexes that mediates the ubiquitination of proteins in cell 
cycle progression, signal transduction and transcription (Chew et al, 2007; 
Goldenberg et al, 2004). HYOU1 encodes a heat shock protein 70 family member. 
This gene has alternative transcription start sites whose cis-acting segment in the 5' 
UTR is involved in stress-dependent induction, resulting in the accumulation of this 
protein in the endoplasmic reticulum (ER) under hypoxia. This accumulation has been 
suggested to play a pivotal role in protein folding (Meunier et al, 2002; Ozawa et al, 
1999). GIT1 was a shared extreme gene between testis and cerebrum. It has been 
suggested to serve as a scaffold to convey signaling information which control vesicle 
trafficking, adhesion and cytoskeletal organization (Manabe et al, 2002). Altogether, 
these genes seemed to be critical for folding and trafficking subsystems, which is 
consistent with the notion that the testis featured the highest number of clients of the 
secretory pathway. 
 
Blood cells  
Blood cells were characterized by 34 membrane and 14 secreted tissue-specific 
proteins. Strikingly, while none of the membrane proteins have O-linked 
glycosylation sites, 12 out of the 14 secreted proteins in blood cells carry O-
glycosylation sites (Fig. 5). In any other tissue except the liver, very few tissue-
specific secreted or membrane proteins had O-glycosylation sites (Fig. 5). Gene 
Ontology enrichment analysis of these genes identified GO terms related to the 
defense response to Gram-positive bacteria (Fisher’s exact test p < 0.001). Blood cells 
had 6 exclusive extreme genes that belonged each to a specific subsystem ranging 
from ER glycosylation, protein folding to post-Golgi trafficking (Fig. 4B). Also, 
blood cells shared the least number of extreme genes with other tissues, in a 
analogous fashion as the skeletal muscle. For instance, MGAT1 is a 
glycosyltransferase involved in ER glycosylation. STX10 and STX17 are soluble N-
ethylmaleimide-sensitive factor-attachment protein receptors (SNAREs) involved in 
vesicular transport from the late endosomes to the trans-Golgi network (Tang et al, 
1998). STX17 has been recently shown to be involved in autophagy through the direct 
control of autophagosome membrane fusion with the lysosome membrane (Diao et al, 
2015), which is consistent with the specialization of defense response of blood cells 
against bacterial infections. 
 
Skeletal muscle  
The skeletal muscle has a relatively small specific secretome (Fig. 5). Only 12 genes 
were assigned as secretory proteins, of which 9 were membrane proteins, carrying 
multiple N-glycosylation and few disulfide sites (Fig. 5). The molecular function of 
these genes is linked to the regulation of ion transport. The low number of secreted or 
membrane proteins in skeletal muscle seemed at odds with the earlier finding that it as 
one of the tissues with the highest number of extreme genes (N = 11, Fig 4B). Upon 
closer inspection, the extreme genes with highest expression (RAB12, OPTN, RAB10, 
and USO1 in Fig 4C) are all involved in vesicle trafficking steps. Among these genes 
OPTN had the highest expression. It has been shown to play an important role in the 
maintenance of the Golgi complex, in membrane trafficking, in exocytosis, through 
its interaction with myosin VI and Rab8 (Sahlender et al, 2005; Vaibhava et al, 2012). 
To date, no tissue-specific activity has been reported in skeletal muscles for OPTN. 
Interestingly, RAB12, another extreme gene in the skeletal muscle, was found to 
interact with OPTN according to a reconstruction of the human protein-protein 
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interaction network (K Sirohi et al, 2013). This concordance provides yet another 
example on how fine-tuning the expression of a defined subsystem appears to 
correlate with the properties required by the tissue-specific secretome or membrane 
proteome.  
 

Conclusion 
 
Although Uhlen et al (2015) has recently showed that secreted and membrane 
proteins to a large extent are tissue-specific, the secretory pathway itself, as an 
elaborated and complex machinery responsible for processing and transporting the 
secretome and membrane proteome, appeared to be ubiquitously expressed, with few 
components (13%) found to be selectively expressed in certain tissues. This 
contradiction was addressed in this study, because there are obvious different 
physiological and morphological pressures in the various human tissues, which 
demand for tissue- specific functions of the secretory pathway. Gene expression is a 
dominant form of biological regulation that contributes to confer tissue-specific 
functionality to diverse cell processes. Signaling pathways, regulatory loops and 
biological interactions are also important players in defining the tissue specificity of 
the secretory pathway, yet modulation of gene expression is a fundamental form of 
regulation which has not been systematically explored before (Keller & Simons, 
1997; Rodriguez-Boulan & Nelson, 1989). Our knowledge on regulation of secretion 
is comprehensive in certain tissue, for example the secretory pathway has been 
thoroughly studied in the pancreas or the kidney, as tissues specialized for the 
production and regulation of insulin and renin respectively, two critical hormones in 
human physiology (Davis & Freeman, 1976; Fu et al, 2013; Itoh et al, 2003; Poy et al, 
2004). However, there has not been any study that compare the expression level of the 
secretory pathway in these tissues as opposed to other tissues, how this might 
correlate to the properties of tissue-specific secreted and membrane proteins, nor how 
this extends from individual component to subsystems to the pathway level.  
 
Here, we discovered that while most of the secretory pathway components (86%) 
were classified to be expressed in all tissues, tissue-specific modulation of these 
components in the form of extreme gene correlated with the properties of proteins 
secreted or exported to the membrane specific for each tissues. The idea of using 
subsystems rather than a gene centric comparison allowed us to find extreme genes 
for each tissue. With this in mind, a subsystem like translocation which contained 
only “expressed in all” genes in should not be regarded a housekeeping functional 
module. Analyzing its components’ expression using two independent data sets (HPA 
and GTEx), we found for example that SRPR, a protein in the signal recognition 
particle (SRP) receptor, was an extreme gene specific for the stomach, pancreas, liver 
and salivary gland.  This and other examples provide strong evidence on the tuning of 
a specific component with respect to the average expression of the other components.  
 
While we did not find previous reports on tissue-specific expression and function for 
most extreme genes, the high load of secreted protein in tissues with many extreme 
genes is consistent with the idea to provide efficient loading of the secreted proteins 
on the ER. We also found that PTMs properties specific to a tissue 
secretome/membrome showed a functional association with the subsystem presenting 
an extreme gene for that tissue, typically components enriched with PTMs or 
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transport steps. The PDIA4 gene was an excellent example of this case (Fig 4B and 
Fig. 7). While PDIA4, a specific foldase with disulfide isomerase activity, was a 
shared extreme gene in the folding subsystem between pancreas, kidney and liver, its 
expression level was even higher in liver and kidney, consistent with the larger 
number of secreted proteins with disulfide bonds in these tissues. As we discussed 
earlier there are many other extreme genes for which their function and existing 
literatures are strengthening the presence of their tissue-specific fine-tuning, but for 
the first time we show the evidence for such tuning of specific secretory pathway 
subsystems. A key question which remains to be explored is whether tissue-specific 
fine tuning is the result of tissue specialization through evolution or the presence of 
regulatory programs specific to each tissue to fine-tune the control of its secretory 
pathway.  
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Figure legends 
 
Figure 1. Expression of the secretory pathway and its clients across human 
tissues. (A) the schematic representation of the core secretory pathway functional 
modules. The black arrow indicates processes related with processing proteins while 
arrows with red and green shows in order the unfolded protein response(UPR) targets 
and transport steps (B) The properties and functional modules of the reconstructed 
human secretory pathway, for a total of 575 components. (C) The expression 
categories of human secretory pathway genes based on GTEx and HPA data. (D) The 
expression categories of human secreted or membrane protein-encoding genes based 
on GTEx and HPA. Only protein with N-terminal signal peptide are included. 
Proteins were grouped according to localization. 
 
Figure 2. Hierarchical clustering of between-tissue correlation coefficients for 
the expression of secretory pathway genes in the “expressed in all” category. 
Heatmap of the hierarchical clustering of 30 human tissue pairwise correlation 
(Pearson correlations) using the expression profiles of their secretory pathway genes 
belonging to “expressed in all” category. The subclusters discussed in the text body 
are shown with distinct colors for the dendrogram clades.  
 
Figure 3. Correlation of the expression in pancreas vs. other tissues for 
“expressed in all” genes grouped by secretory pathway subsystems (A) Multi-line 
plot for Pearson correlation coefficients of the gene expression profiles of each 
subsystem in pancreas versus other tissues. Only “expressed in all” genes were 
included. Each line represents a different subsystem. (B) Correlation between the 
expression of “expressed in all” genes in the translocation (red dots) or GPI-
biosynthesis (blue dots) subsystems between the cerebrum and the pancreas. 
 
Figure 4. Detecting the tissue specific activity of secretory pathway genes 
“expressed in all” tissues. (A) The kernel density plot of tissue-pairs correlation 
coefficients calculated for genes in each subsystem assigned to the “expressed in all” 
category. (B) The binary heat map for the detected tissue-specific extreme genes 
(columns) in each subsystems of the secretory pathway across 30 tissues (rows). 
Some tissues and their corresponding extreme genes are shown with the same color. 
The total number of detected extreme genes per subsystem is summarized as 
horizontal bar plot next to the heatmap. (C,D) Multi-line plot of the FPKM values for 
the extreme genes in the skeletal muscle and the pancreas (black lines). Each line 
represents a tissue. (E,F) The number of the detected extreme genes per subsystems 
and each tissue. 
 
Figure 5. Hierarchical clustering of human tissue specific secretome and 
membrome expression and their properties. Each row represents a tissue and each 
column a tissue-specific secreted or membrane protein-encoding gene. Z-scores are 
scaled FPKM values for the expression of a given gene in a given tissue versus other 
tissues. The annotation bars above the heatmap provide information regarding the 
expression category, number of disulfide, N-linked or O-linked glycosylation sites, 
GPI-anchored sites and localization. The number of the sites are discretized to 
separate low, medium and high number of PTM sites.  
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Figure 6. Tissue-wise expression of the tissue-specific secretome and membrome 
and correlation between their number of disulfide bonds and expression of 
secretory pathway components in the PDI gene family. (A) The double side 
horizontal dot plots summarize the expression level of the tissue-specific secretome 
and membrome in each tissue(left side) and the expression level of the PDI gene 
family(right side), foldases and isomerases responsible for the proper folding of 
proteins with disulfide bonds. The number of disulfide bonds for each protein is 
proportional to the dot size. Expression is in log10 FPKM and genes with FPKM > 
1000 were shown in red. (B) The scatter plots depicting the expression values of the 
PDIA4  and ERO1LB in 30 tissues against the total sum of the FPKM values of the 
tissue-enriched secreted proteins multiplied by the corresponding number of the 
disulfide bonds of each encoded proteins.  
 
Figure 7. The schematic illustration of pancreas specific extereme genes involved 
in translocation and folding steps. The detected extreme genes shown as eclipse 
with their color mapper to their FPKM values in the pancreas. The color for each 
eclipse is adjusted to the FPKM values (as shown above each object). The genes are 
involved in translocation subsystem and protein folding (with disulfide isomerase 
activity) subsystems.  
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Supplementary figures 
 
Fig S1. Comparing gene expression distribution of the secretory pathway across 
human tissues using boxplot in HPA and GTEx data sets. 
Fig S2. Hierarchical clustering of the secretory pathway components expression 
profiles obtained for 32 human tissues from HPA data sets. The tissues are clustered 
based on the Pearson correlation coefficients distance matrix.   
Fig S3. Clustering of the human tissues based on their whole transcriptome data 
quantified in GTEx data sets. 
Fig S4. Clustering of the tissues based on genes expression profiles in the tissue-
eevated categories obtained from GTEx data sets. 
Fig S5. Correlation analysis of pancreas secretory pathway subsystems based on HPA 
data sets.  The multi-line plot displays the correlations coefficients of the gene 
expression profiles (expressed in all) belonging for each subsystem in pancreas with 
their counter parts in other tissues. The x- and y-axis in order indicate the tissues and 
correlations scores. The color code for each subsystem is depicted above the plot. 
Fig S6. (A) summarizing the secretory pathway genes based on their subsystem and 
expression categories (B) tissue-enriched genes of the secretory pathway and their 
corresponding subsystem and tissues. 
 
 
Fig S7. The kernel density plot of the tissue-pairs correlation coefficients (R, x-axis) 
calculated separately for subsystems having tissue elevated genes (excluding tissue-
enriched category). 
Fig S8. The scatter plots depicting the expression values of the PDIA2, ERP27, 
PDIA5, and PDIA3 in 30 tissues against the total sum of the FPKM values of the 
tissue-enriched secreted proteins multiplied by the corresponding number of the 
disulfide bonds of each encoded proteins.  
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Materials and Methods 
Transcriptome datasets 
We obtained the FPKM values for the human tissues from analysis that has been 
performed by Uhlén et al between (Uhlén et al, 2016) on comparing the recently 
published RNA-Seq data generated by the Genotype-Tissue Expression (GTEx) 
consortium(Bahcall, 2015; Melé et al, 2015) and HPA consortium(Uhlén et al, 2015). 
In these datasets cutoff of 1 FPKM is used to indicate the presence or absence of 
transcripts for each gene in a tissue. We also used the categorizes defined in their 
paper. All human protein-coding genes were classified into (i) genes with an elevated 
expression in one or several tissues, (ii) genes expressed in all analyzed tissues, (iii) 
genes with mixed expression found in several, but not all tissues, and (iv) genes not 
detected in any tissues. The elevated genes were further stratified into “tissue 
enriched”, “group enriched”, or “tissue enhanced”(Uhlén et al, 2016). We used the 
GTEx data sets as the main expression datasets in our analysis, which its 
measurements are for 20344 genes across 32 human tissues. The GTEx data is based 
on measurements for 1641 samples from 175 individuals representing 43 sites: 29 
solid organ tissues, 11 brain sub regions, whole blood, and two cell lines: Epstein-
Barr virus–transformed lymphocytes (LCL) and cultured fibroblasts from the 
skin(Melé et al, 2015). The data from HPA(Uhlén et al, 2015) were used in parallel to 
analyze the consistency.  
 
 
Interactome data. For protein-protein interaction data, we used the CCSB database for 
humans generated by Rolland et al (2014)(Rolland et al, 2014), which includes ∼
14000 high-quality binary protein-protein interactions.  
 
Protein Complexes. Protein complex information retrieved from a census of human 
soluble protein complex data generated by Havugimana et al (2012)(Havugimana et 
al, 2012), which is a network of 13993 high-confidence physical interactions among 
3006 stably associated soluble human proteins. 
Data processing, correlation analysis and visualization 

we used “plyr”, “tidyr”, and “dplyr” R (https://www.r-project.org/) packages for all 
data processing steps and correlations analysis.  The “pheatmap” and “ggplot2” 
packages used for visualization of the clustering results and plotting. 
 
 
Detection of the extreme genes 
To detect the extreme genes in each subsystem we used the Grubbs test(Grubbs, 
1950) using “outliers” package in R. The outliers (extreme genes) are collected for all 
the subsystems across tissues. The Grubbs test assumes the input data has normal 
distribution, however the gene expression in the subsystems violate this assumption. 
To avoid the false positives in the detection we run the test based on both HPA and 
GTEx data and we only select the genes that are detected as outliers using both data 
sets. The genes also filtered based on the corresponding calculated p-value < 0.05 
using standard t-test. The intersect of between the significant extreme genes based on 
HPA and GTEx are reported as the reliable set of extreme genes for each subsystem 
for different tissues. The final tissue- extreme genes binary matrix was visualized by 
pheatmap package in R. 
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Secretory pathway network reconstruction 
To collect the core components of the human secretory pathway, using the biomart 
package in R, first we obtained the orthologs of 163 components of our previously 
reconstructed secretory pathway model in yeast(Feizi et al, 2013). In addition, the 
additional components were added up to 575, based on comprehensive literature 
survey and and KEGG secretion-related pathways including protein processing in the 
endoplasmic reticulum (ko04141) and SNARE interactions in vesicular transport 
(ko04130)(EV1). By integrating the draft pathway with the CCSB human binary 
interactome network, we reconstructed a generic network of the human secretory 
pathway including 15 subsystems (Fig. 1A). The subsystems definition were adopted 
from our previously work on yeast secretory pathway genome scale model(Feizi et al, 
2013).  
 

Human secretome analysis 
Defining the human secretome.  
We parsed the human UniProt GFF file to extract the selected seven secretory features 
for the human proteome, including the following: Signal Peptide, N-glycosylation 
sites, O-glycosylation sites, Disulfide bound, GPI-anchored, Transmembrane domain, 
Localization. This information integrated with correlation analysis of the  secretome 
and membrome analysis to find out the tissue specific enrichment of the specific 
PTMs.  
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