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Abstract

Summary

We created ResistoMap — a Web-based interactive visualization of the presence
of genetic determinants conferring resistance to antibiotics, biocides and heavy
metals in human gut microbiota. ResistoMap displays the data about more than
1600 published gut metagenomes of the world populations including both healthy
subjects and patients. Multiparameter display filters allow visual assessment of
the associations between the meta-data and proportions of resistome. The ge-
ographic map navigation layer allows to state hypotheses regarding the global
trends of antibiotic resistance and correlate the gut resistome variations with the
national clinical guidelines on antibiotics application.

Availability and implementation

ResistoMap is publicly available at http://resistomap.datalaboratory.ru

Introduction

Microbial drug resistance is a global problem of healthcare caused by the extensive
uncontrolled use of antibiotics in medicine and agriculture: it is predicted that to-
ward 2050 around 10 million people will die annually due to the reasons connected
with drug resistance [1]. Although the main concern are resistant pathogens, the
global microbial chanels of gene exchange existing between the unrelated micro-
bial taxa allows the commensal microbes to share the resistance genes with the
opportunists [2].

Human gut microbiota is being increasingly viewed at as a clinically important
reservoir of drug resistance [3]. Among other human-associated communities,
this one is the largest and most tightly regulating the host health. The pool of
antibiotic resistance (AR) genes that is increased in abundance during antibiotic
treatment becomes a “tinderbox”: the transmission of these genes to a pathogen
has dire conseqeuences for both the subject and the society [4].

Semi-quantitative analysis of the functional composition of microbiota using
“shotgun” metagenomics allows to assess the relative abundance of the AR genes
in human microbiota (by counting the reads aligned to each gene sequence) [5, 6]
and thus provide a personal prediction for the individual capacity of microbiota to
contributing to the on-set of resistant pathogens. Vast volumes of metagenomes
have been published that provide the opportunity to estimate the variation of
resistome between the subjects, populations of the world as well as clinical cohorts.
However, there is a lack of visual tools for exploratory analysis of such data;
moreover, no unified actual database of gut resistome exists.

Here we are present ResistoMap, an interactive tool for comprehensive visu-
alization of the gut resistome in the populations of the world. The displayed
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features include not only the relative abundance of the AR genes but also of the
AR-conferring mutations as well as of the genes conferring the resistance to bio-
cides and heavy metals. ResistoMap is a perspective tool for exploring the global
landscape of gut resistome in order to identify the national traits in antibiotic
intake, correlating the resistome composition with various external and generate
biomedical hypotheses that can help to control the drug resistance on the global
scale.

Implementation

Navigation

ResistoMap contains two main interactive work fields — a geographic map and a
heatmap.

The heatmap displays the median relative levels of the determinants confer-
ring resistance to each of the antibiotic groups (columns) in each of the selected
cohort of subjects (rows). The values were precomputed by classifying the gut
metagenomic reads from 12 publicly available studies (see Metagenomic data).
The number of the metagenomes included in the cohort is displayed on the left
from the heatmap below the color key.

The heatmap contains four vertical sections corresponding to different types
of resistome quantification:

1. levels of the AR-conferring genes;

2. levels of the mutations in the target genes;

3. levels of the genes conferring resistance to biocides (total);

4. levels of the genes conferring resistance to heavy metal (total).

Using the drop-down lists at the top of the screen, a user can choose the antibi-
otic group of interest, the study(-ies) and/or the country(-ies) to be displayed at
the heatmap. For filtering the cohort, the user can use “Pool by” checkboxes that
allow to stratify the cohorts by the country of origin, gender, age and diagnosis
(where applicable).

Metagenomic data

The datasets for the analysis of resistome included 1638 gut metagenomes from
the individuals from 12 studies covering 15 countries [7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18]. For each metagenome, additional factor including the country of
origin, gender, age and clinical status were considered (where available).

Using ResistoMap, one can estimate the global variation of the resistance po-
tential to different groups of antibiotics and explore the associations between spe-
cific drugs and the clinical factors and other meta-data. For instance, the Danish
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gut metagenomes tend to demonstrate the lowest resistome among the European
groups, whereas the French samples have the highest levels, particularly, of the
fluoroquinolones. It is in agreement with the fact that France has the highest
total antibiotic use within Western Europe [19], while Denmark and Germany
are countries where the use of antimicrobial drugs is moderate in both health-
care and agriculture [20]. On the other hand, Chinese and Russian populations
appear to have increased levels of resistome — likely to more relaxed respective
regulations, frequent prescription of wide-spectrum antibiotics as well as over-
the-counter availability of the antibiotics without the prescription [21, 22]. The
lowest levels of microbiota resistome are observed in Amerindians from Venezuela
who have no documented contacts with Western people. Strikingly, 1-month old
childrens from Singapore have the highest resistome among all groups — this fact
might be associated with the potential antibiotic treatment of the newborn.

Some of the results obtained using ResistoMap are in agreement with the ear-
lier analyses performed for smaller collection of datasets and mirror certain aspects
of national specifics of antibiotic use. Moreover, the analysis reveals certain novel
trends that await further interpretation from the clinical perspective. We suggest
that the exploratory analysis of global gut resistome using ResistoMap will gain
new insights approaching the development of efficient antibiotic stewardship and
agricultural use of antimicrobial substances.

Methods

Data processing

The reference nucleotide sequences of the resistance-conferring genes were taken
from the CARD database v.1.0.5 [23]. The metagenomic reads were mapped to the
reference set using Bowtie2 [24] using the parameters -k 1 (best hit) (for Illumina
reads) and Bowtie [25] using the parameters -v 3 -k 1 (for SOLiD reads [10]).
The relative abundance for each gene was calculated by normalizing the gene
coverage by gene length and the total number of the reads in the metagenome
(gene abundance = count/(L ∗ N)). The resistance potential to each group of
antibiotics (according to CARD) was calculated as the sum of the abundance of
all the genes conferring resistance to these drugs.

For the analysis of the potential resistance caused by mutations in the target
genes, we used SAP (single amino-acid polymorphism) table [26]. For the genes
folP, gyrA, gyrB, parC, parE and rpoB, all possible nucleotide and amino-acid
sequences were taken from PATRIC database [27]. For every gene, a multiple
alignment was performed by applying MUSCLE v3.8.31 [28] to all of its amino-acid
sequences to identify the positions that can potentially confer drug resistance. The
metagenomic reads were mapped to the gene sequences using Bowtie2 software
using the parameters -k 1 (best hit). The relative abundance for each gene was
calculated as described above. The relative abundance of the potentially resistant
mutants among the microbial populations were calculated as the gene relative
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abundance multiplied by the share of the SAPs potentially conferring resistance:
mutant gene abundance = gene abundance∗alt/(alt+ref). Then the resistance
potential to each group of antibiotics was calculated by summing.

The reference amino-acid sequences of genes providing resistance to heavy
metals and biocides were taken from BacMet database [29]. The metagenomic
reads were mapped to the reference set using DIAMOND [30] with the param-
eters -k 1 (best hit). Gene abundance were calculated by normalizing the gene
coverage by gene length and the total number of the reads in the metagenome
(gene abundance = count/(L∗N)). The relative abundance for each gene and the
total resistance potential to each of the metals or biocides group were calculated
as described above.
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Bergström, Carl Johan Behre, Björn Fagerberg, Jens Nielsen, and Fredrik
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