

Edlib: a C/C++ library for fast, exact sequence
alignment using edit distance

Martin Šošić1 and Mile Šikić1,2,*

1Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR 10000 Zagreb, Croatia,

2Bioinformatics Institute, A*STAR, #07-01 Matrix, 138671 Singapore

*To whom correspondence should be addressed.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/070649doi: bioRxiv preprint

https://doi.org/10.1101/070649
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

We present Edlib, an open-source C/C++ library for exact pairwise sequence alignment using edit distance.

We compare Edlib to other libraries and show that it is the fastest while not lacking in functionality, and

can also easily handle very large sequences. Being easy to use, flexible, fast and low on memory usage, we

expect it to be a cornerstone for many future bioinformatics tools.

Source code, installation instructions and test data are freely available for download at

https://github.com/Martinsos/edlib, implemented in C/C++ and supported on Linux, MS Windows, and Mac

OS.

Contact: mile.sikic@fer.hr

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/070649doi: bioRxiv preprint

https://github.com/Martinsos/edlib
https://doi.org/10.1101/070649
http://creativecommons.org/licenses/by-nc-nd/4.0/

1 Introduction

One of the fundamental operations in bioinformatics is pairwise sequence alignment - a way to measure

either the similarity or distance between two sequences. Due to the quadratic time complexity, deterministic

algorithms that yield optimal alignment are inefficient for the comparison of long sequences. Therefore,

they are used in the very last step when the aligning substrings of the given sequences are roughly deter-

mined using heuristic methods.

Deterministic, optimal alignment algorithms are unavoidable for the resequencing of genomes when the

exact alignments of reads and reference are necessary for the successful determination of differences – es-

pecially the existence of single nucleotide variants. Owing to that, many aligners use some of the efficient

variants of these algorithms for the final phase. For example, SNAP (Zaharia et al., 2011) uses Landau-

Vishkin (Landau et al., 1986) as the core component.

The increased need for exact algorithms that could align longer segments has recently emerged as a conse-

quence of the advent of long-read sequencing technologies such as Pacific Biosciences Single Molecule

Real-Time (SMRT) sequencing technology and Oxford Nanopore Technologies (ONT), which produce

reads over 10 kbp in length.

Deterministic methods can be categorized as local, global, or semi-global (overlap) alignment methods,

regarding their scoring scheme. The basic global alignment algorithm is the dynamic programming Needle-

man-Wunsch algorithm (Needleman and Wunsch, 1970), and the basic local alignment algorithm is its var-

iation, the Smith-Waterman algorithm (Smith and Waterman, 1981). Semi-global alignment methods, quite

popular for read alignment, are similar to global alignment but they do not penalize gaps at the beginning

or/and the end of the sequences. Both Needleman-Wunsch and Smith-Waterman algorithms have quadratic

time and space complexity, so there has been a lot of work on trying to improve that. Ukkonen’s banded

algorithm (Ukkonen, 1985) reduces needed time by cleverly reducing the space of search, while

Hirschberg’s algorithm (Hirschberg, 1975) trades space for speed, reducing space complexity from quad-

ratic to linear.

An important sub-category of alignment methods is the calculation of Levenshtein distance - the minimum

number of single-character edits (insertions, deletions or substitutions) required to change one sequence into

the other (also referred as edit distance). Myers managed to exploit its special properties by developing a

bit-vector algorithm (Myers, 1999), reducing the computation time by a constant factor. Although it is one

of the fastest deterministic alignment algorithms it is quite complex to implement and does not support

global alignment. Hence, it is rarely implemented in practice. In this article, we present Edlib - our imple-

mentation of Myers’s bit-vector algorithm, extended with additional methods and features that are important

for its practical application.

2 Methods

Myers’s bit-vector algorithm transforms dynamic programming matrix so that each cell can have only a

binary value, which enables us to store multiple cells as a bit-vector into one CPU register and achieve

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/070649doi: bioRxiv preprint

https://doi.org/10.1101/070649
http://creativecommons.org/licenses/by-nc-nd/4.0/

single instruction multiple data (SIMD) parallelization. Myers additionally applies Ukkonen’s banded algo-

rithm to reduce the number of calculated bit-vectors.

The original algorithm was designed only for a semi-global alignment method where gaps at the start and

at the end of the query sequence are not penalized (we named this method HW). In Edlib, we extended

Myers’s algorithm to support the global alignment method and the semi-global alignment method where

gaps at the end of the query sequence are not penalized (we named this method SHW). For this, we came

up with extended banded algorithm that also supports SHW and global method (Supplementary Methods).

Unlike the original Myers’s implementation, it is not necessary to define the size of the band in advance.

The algorithm begins with a narrow band and widens it until find an optimal alignment.

Originally, Myers’s algorithm returns no information about the optimal alignment path – the optimal se-

quence of edit operations that need to be performed on the query sequence to transform it to the target

sequence. In Edlib, we further extended Myers’s algorithm with the finding of the optimal alignment path

for all three supported alignment methods in linear space by combining it with Hirschberg’s algorithm.

Inspired by the SSW Library (Zhao, 2013), we reduced a problem of finding the path for HW and SHW to

finding the path for global alignment, which both simplifies the implementation and improves the compu-

tation speed (Supplementary figure 1).

We implemented Edlib as both C/C++ library and a stand-alone application. Supported operating systems

are MS Windows, Linux, and Mac OS.

3 Results

We compared Edlib to SeqAn library (Döring et al., 2008), Parasail library (Daily, 2016) and original My-

ers’s implementation.

We chose SeqAn to be the center of our comparison since it is one of the most advanced sequence alignment

libraries currently available and the only C/C++ library that has all the methods supported by Edlib. Döring

et al. (2008) show that SeqAn is the library with the fastest implementation of sequence alignment using

edit distance (they also combine Myers’s bit vector algorithm with Hirschberg’s algorithm), and to our

knowledge, there are no developments up to now showing otherwise.

Comparison was done against SeqAn v2.1.1 and Parasail v1.0.3, which were the latest releases at the mo-

ment of writing this article.

The tests were performed on Linux, Intel Core i7-4710HQ 2.5 Ghz with 16GB RAM. As test data, we used

real DNA sequences ranging from 10-5000 kbp in length and their artificially mutated versions, in order to

show how the similarity and length of aligned sequences affect performance.

The run times for finding the global alignment edit distance (no alignment path) are displayed in Table 1.

Results show that Edlib is 2.5-250 times faster than SeqAn, and 12-3500 times faster than Parasail, the

difference being the largest when the sequences are large and similar. Additionally, we ran similar tests

(Supplementary Table 1, Supplementary Table 2, Supplementary Table 3) for the semi-global methods

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/070649doi: bioRxiv preprint

https://doi.org/10.1101/070649
http://creativecommons.org/licenses/by-nc-nd/4.0/

where Edlib also outperformed both SeqAn and Myers’s implementation, while Parasail does not support

the semi-global methods. Finally, we also ran a test for the finding of alignment path (Supplementary table

2), however, SeqAn failed to produce results, and Parasail and Myers do not support the finding of alignment

path.

As can be seen from the results, Edlib exhibits significant improvement in speed with increase of sequence

similarity, in contrast to other libraries. This is due to our implementation of the banded algorithm, which

significantly reduces search space for similar sequences.

Table 1. Edlib, SeqAn, and Parasail run time comparison of finding global alignment edit distance for dif-

ferent sequence lengths and similarities.

Seq. sizes Similarity Edlib SeqAn Parasail

106 × 106 99.3% 0.4s 112s 1397s

106 × 106 92.5% 8.5s 112s 1419s

106 × 106 81.3% 15s 112s 1330s

106 × 106 64.0% 32s 112s 1459s

106 × 106 51.1% 29s 112s 1461s

105 × 105 99.3% 0.011s 1s 4.8s

105 × 105 92.9% 0.044s 1s 4.8s

105 × 105 82.4% 0.21s 1s 4.8s

105 × 105 66.2% 0.43s 1s 4.8s

105 × 105 53.9% 0.4s 1s 4.8s

The similarity of two sequences was calculated as 1 − 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 / min (𝑙𝑒𝑛𝑔𝑡ℎ𝑞𝑢𝑒𝑟𝑦 , 𝑙𝑒𝑛𝑔𝑡ℎ𝑡𝑎𝑟𝑔𝑒𝑡). Two dif-

ferent DNA sequences were used for these tests. We artificially mutated them to achieve different similarities. Myers’s

implementation is not included in this comparison as it does not support global alignment.

Acknowledgements

The authors would like to thank Ivan Sović for valuable help with testing Edlib and providing comments on

the manuscript.

Funding

This work has been supported in part by Croatian Science Foundation under the

project UIP-11-2013-7353 "Algorithms for Genome Sequence Analysis”.

Conflict of Interest: none declared.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/070649doi: bioRxiv preprint

https://doi.org/10.1101/070649
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

Daily, J. (2016) Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.

BMC Bioinformatics, 17, 1-11.

Döring, A. et al. (2008) SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinformatics,

9, 11.

Hirschberg, D.S. (1975) A linear space algorithm for computing maximal common subsequences. Commun.

ACM, 18, 341–343.

Landau, G.M. et al. (1986) An efficient string matching algorithm with k differences for nucleotide and

amino acid sequences. Nucleic acids research, 14, 31–46.

Myers, G. (1999) A fast bit-vector algorithm for approximate string matching based on dynamic

programing. Journal of the ACM (JACM), 46, 395–415.

Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the search for similarities in the

amino acid sequence of two proteins. J. Mol. Biol., 48, 443–453.

Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular subsequences. J. Mol. Biol.,

147, 195–197.

Ukkonen, E. (1985) Algorithms for approximate string matching. Inform. Control, 64, 100–118.

Zaharia, M. et al. (2011) Faster and more accurate sequence alignment with Snap. arXiv, 1111.5572.

Zhao, M. et al. (2013) SSW Library: an SIMD Smith-Waterman C/C++ library for use in genomic

applications. PloS One, 8, e82138.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/070649doi: bioRxiv preprint

https://doi.org/10.1101/070649
http://creativecommons.org/licenses/by-nc-nd/4.0/

