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Abstract 

 

A major challenge in cancer treatment is predicting the clinical response to anticancer 

drugs for each individual patient.  For complex diseases, such as cancer, characterized by high 

inter-patient variance, the implementation of precision medicine approaches is dependent upon 

understanding the disease process at the molecular level.  While the ‘omics’ era provides unique 

opportunities to dissect the molecular features of diseases, the ability to apply it to targeted 

therapeutic efforts is hindered by both the massive size and diverse nature of the ‘omic’ data.  

Recent advances with Deep Learning Neural Networks (DLNN), suggests that DLNN could be 

trained on large data sets to efficiently predict therapeutic responses. We present the application 

of Association Rule Mining (Market Basket Analysis) in combination with Deep Learning to 

integrate and extract knowledge in the form of easily interpretable rules from the molecular 

profiles of 689 cancer cell lines and predict pharmacological responses to 139 anti-cancer drugs. 
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The proposed algorithm achieved superior classification and outperformed Random Forests 

which currently represents the state-of-the-art classification process. Finally, the in silico pipeline 

presented introduces a novel strategy for identifying drug combinations with high therapeutic 

potential. For the first time, we demonstrate that DLNN trained on a large pharmacogenomic 

data set can effectively predict the therapeutic response of specific drugs in specific cancer types, 

from a large panel of both drugs and cancer cell lines. These findings serve as a proof of concept 

for the application of DLNN to predict therapeutic responsiveness, a milestone in precision 

medicine. 
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Predicting the clinical response to therapeutic agents is a major challenge in cancer 

treatment.  Ultimately, the ability to generate genomic informed personalized treatment with high 

efficacy is dependent upon identifying molecular disease signatures and matching them with the 

most effective therapeutic interventions. While the advent of multiple platforms providing 

“omic” data permits scientists to dissect the molecular events that are known to drive 

carcinogenesis 1 and alter major downstream processes, such as gene expression 2, effectively 

translating the growing wealth of 'οmic' data into a personalised treatment strategy required by 

precision medicine, has been daunting and without noteworthy success 3. 

  The successful identification of effective anti-cancer drugs has been primarily hindered 

by the lack of reliable preclinical models.  Although cancer cell lines do not have the 

complexities of cancers, as they evolve in their normal tissue environment 4, new technologies 

provide a wealth of information regarding the enormous degree of genomic heterogeneity across 

cancers, helping us to define the role that this diversity may play in understanding the wide 

variation in treatment responses 5. In light of this newfound understanding of the significance of 

cancer genomic heterogeneity, recent efforts have resulted in large panels of cancer cell lines 

with information defining their genetic constitution, molecular markers and responsiveness to 

therapeutic compounds. This information allows us to identify the genomic determinants of the 

clinical response to specific drugs. It has been recently reported that oncogenic alterations in a 

large panel of tumors from ‘The Cancer Genome Atlas’ (TCGA) and other studies are conserved 

across the large panel cell-lines 6. Three large scale cell panels containing pharmacogenomic data 

have been made available to the public domain: a) the 'Cancer Cell Line Encyclopedia' (CCLE) 

7, b) the Genomics of Drug Sensitivity in Cancer (GDSC) 8 and c) the NCI-60 9.  To identify 

predictive biomarkers, these consortia have analysed the molecular profiles of over 1000 cancer 
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cell lines and drug profiles for a large number of anticancer drugs.    

The availability of these large data sets of cell-line panels along with the availability of 

new computational technologies has propelled a recent surge of interest to perform parallel 

analyses across cell lines, to extract information and define predictive biomarkers.  However, 

while large data sets of pharmacogenomic profiles have been compiled with detailed molecular 

features and drug responsiveness, well validated computational approaches to define biologically 

relevant rules and generate algorithms that can accurately predict the responsiveness to a specific 

therapeutic drug are lacking. Although data mining algorithms are supposed to analyse large 

volumes of data and uncover hidden relationships of potential clinical significance, today’s 

complex “omic” data sets have been proven too multi-dimensional to be effectively managed by 

classical Machine Learning algorithms.  Deep Learning neural networks (DLNN), on the other 

hand, have the ability to “understand” complexity and multidimensionality and have been 

effectively applied in various fields (e.g. image analysis, text mining, etc.) with increased 

classification accuracy compared to classical computation methods 10. DLNN is based on the 

modelling of high-level neural networks in flexible, multilayer systems of connected and 

interacting neurons, which perform numerous data abstractions and transformations 11. In a 

recent surge of interest, DLNN has been effectively applied to extract features from various large 

and complex data sets, including predicting drug-target interactions 12, drug toxicity in the liver 

13 and pharmacological properties of drugs 14, among others.  Together, studies using the DLNN 

architecture demonstrate that it is well suited for complex biological data because it can 

automatically construct complex features and allows for multi-task learning 15.  

 

We designed a bioinformatics pipeline with multiple layers of molecular profiling information by 
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utilising the publically available pharmacogenomic profiles, in order to produce an expert system 

that, with demonstrated efficiency, could predict pharmacological responses to a large number of 

drugs over a broad panel of cancer-cell-lines (Figure 1).   

Specifically, we performed feature selection in the form of association rules and utilized the 

selected features to train multiple state-of-the art DLNN to predict pharmacological response in a 

blind set. The association rules are treated as a novel meta-dataset and are utilised in the form of 

paradigms for knowledge extraction.  To our knowledge, this is the first time that the DLNN 

framework is systematically applied to predict drug efficacy against cancer.  

 

 

Results 

 

1. Dataset compilation: To initiate a bioinformatics pipeline to predict drug response based on 

molecular profiles of multiple cancer cell types, we generated a large-scale pharmacogenomics 

dataset for 689 cancer cell lines and 139 anti-cancer drugs (Supplementary methods – Main 

Dataset).  The new pharmacogenomics compilation was achieved by merging data from CCLP 

and GDSC. We used GDSC 8 as our drug response data source for 139 therapeutic compounds, 

which provided IC-50 values for each compound, as well as information on tissue origin. 

Information on total gene mRNA expression, number of DNA copies and mutational status was 

obtained from the Cosmic Cell-line project (CCLP) 16.  CCLP was preferred as a data source 

since it provides profiles on 1,015 cancer cell lines and is not limited to the mutational status of 

genes (1,600), as is the case with CCLE. Although NCI-60 contains the largest number of 

therapeutic compounds tested for pharmacologic activity, it was excluded as a data source, as the 
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number of cell-lines presented is very low compared to the other resources used. This diminishes 

the effectiveness of NCI-60 to serve as a preclinical platform that can, at least, partially simulate 

clinically relevant tumour complexity (Figure 2). 

 

2. Association Rule Mining: Given their molecular profiling data, both large cell-line panels 

(CCLE and GDSC) have been utilized in attempts to identify biomarkers for predicting drug 

response of specific cancer cell lines 7, 8.  Previous efforts to define biomarkers of drug response 

primarily utilize elastic net regression, a penalized linear modelling technique, to identify 

cooperative interactions among multiple genes and transcripts across the genome and define 

response signatures for each drug 16. While efficient, this algorithm suffers certain limitations 

since when used for feature selection, as described in previous studies 7, 8, the derived results are 

simple  associations between a single gene and drug response.  If, however, one wishes to 

explore the relevance of a more complex feature-space relationship (two or three-way 

interactions among simple features in all possible combinations) to the drug response, the 

process is convoluted. This is primarily due to the fact that these algorithms are supervised 

learning algorithms not being able to evaluate all possible combinations of a large number of 

features against a response variable.  Associations are looked for only in the context of a 

predefined formula, such as Drug-Response, as compared to all genes being used as features 

(Drug-Response ~ All-Genes). The ability to evaluate all combinations of complex feature-to-

feature interactions in relation to a response variable is not feasible within the design of the 

supervised learning algorithm without further implementation. Furthermore, multi-feature 

models generated by such algorithms are difficult to interpret in terms of biological relevance. 

When utilised as a classifier to predict whether a sample will be resistant or sensitive to a drug 
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given its molecular profile, the elastic net algorithm does not perform optimally.  This is due to 

the fact that at the core of the elastic net algorithm lays linear regression, as opposed to non-

linear classifiers, such as Kernel-based models and Random-Forests. The later have been shown 

to outperform the elastic net algorithm in the task of actually predicting drug response, as 

demonstrated in a recent proof-of-concept study on a panel of 53 breast cancer cell lines 

evaluated for pharmacological response against 28 anticancer drugs17.  

2a. Apriori Algorithm: To overcome the primary limitations of the elastic net algorithm for 

feature selection, we applied a method used by large businesses to analyse the enormous volume 

of transaction data and discover all possible associations between the data features, namely 

Market Basket Analysis or Association Rule Mining. Previous studies moved along the same 

lines to produce easily interpretable logical rules out of imilar pharmacogenomic datasets 6, 18 but 

the methods utilised in these studies were again supervised. Association Rule Mining being a 

totally unsupervised method records all the associations among the data features in the form of 

easily interpretable rules, making knowledge extraction and meta-analysis a more 

straightforward process. Specifically, we applied the Apriori algorithm 19 to extract statistically 

significant associations from all of the possible combinations of the features from the main 

dataset (tissue of origin, gene expression, mutation status, CNV plus drug response), in order to 

generate a large rule-set, containing all tissue-to-gene, tissue-to-drug, gene-to-gene, gene-to-drug 

and drug-to-drug associations. The main bottleneck in the application of association rule mining 

in this study is the computationally intensive requirements.  While this will likely improve as 

computing power increases, due to hardware limitations, we maintained only the tissue-to-drug, 

gene-to-drug and drug-to-drug associations for the present study. Gene-to-gene associations, 

which constitute an enormous RAM intensive rule-set, were discarded. Details and metrics of the 
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Apriori algorithm can be found in the Supplementary Methods Section, Association Rule 

Mining - Apriori Algorithm.   

  

2b. Dynamic Thresholding - Separating true rules from the noise: We devised a procedure 

that we named Dynamic Thresholding in order to select statistically significant rules by 

controlling the false discovery rate (FDR) to less than 5%. Dynamic Thresholding is based on 

running the Apriori algorithm on a permuted version of our initial dataset (refer to 

Supplementary Methods - Dynamic Thresholding).  The biological relevance of the rules 

generated, were examined in separate paradigms, as we show below. 

 

 

 

3. Rule Verification 

 

3a. Paradigms: To validate the biological relevance of our statistically significant association 

rules, we examined whether known predictors of drug response are present in our rule set and 

whether drugs of a given target are present in sensitivity-associated rules along with the given 

target, if mutated or over-expressed. 

 

Paradigm 1: We demonstrate that over-expressed NAD(P)H dehydrogenase 1 (NOQ1) and 

MDM2, a p53 inhibitor, which are known predictors of sensitivity for the drugs 17-AAG 

(Tanespimycin) and Nutlin-3, respectively 20, 21, are present in our rule-set (Supplementary Table 

1 - 1-way). Additionally, the ABCB1 gene whose product is the protein Multidrug-Resistance-1 
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(MDR1), was found in our rule set to be linked with resistance to multiple drugs only when is 

over-expressed, while when suppressed it is linked only with sensitivity (Supplementary Table 1 

- 1-way).   

 

Paradigm-2:Two k-mean clustering schemes (see Supplementary Methods) of the 1000 rules 

with the largest support (k=50) for the sensitivity response-state of drugs associated with (a) the 

BRAF gene (Targets: BRAF & MEK inhibitors) (Supplementary Table 2 – Drug_Targets) and 

(b) the PIK3CA gene (PIK3CA, AKT & mTOR inhibitors) (Supplementary Table 2 – 

Drug_Targets) revealed that the mutated BRAF and PIK3CA genes were both present in the 

respective rule-clusters, as the most frequently occurring features (Figure 3, Supplementary 

Table 1- 1-way). In other words, cell-lines bearing the BRAF and PIK3CA mutation showed a 

non-random high-frequency trend of sensitivity to the respective drugs targeting these gene 

products. Additionally, the BRAF-clustering revealed that the melanoma cell-lines were highly 

sensitive to BRAF and MEK inhibitors, a “prediction”, which can be verified in the literature 

with studies showing that combined BRAF and MEK inhibition is, actually, one of the most 

effective treatments for melanomas22. We subsequently repeated the two aforementioned 

clustering schemes from the top-lift 1000 rules for BRAF and PIK3CA (Supplementary Figure 1, 

Supplementary Table 1- 1-way). The BRAF top-lift clustering again revealed melanoma 

sensitivity to BRAF and MEK inhibitors (Supplementary Figure 1a), while the PIK3CA top-lift 

clustering scheme revealed a significant and unique association of chronic myeloid leukaemia 

with sensitivity to the drug AZD8055, which is a dual inhibitor of mTORC1 and mTORC2 

(Supplementary Figure 1b). This “prediction” is confirmed in the literature, where AZD8055 was 

found to be effective in all patient samples, and within the six most selective drugs in all cases 23. 
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The rules clustering also revealed that AZD8055 would be effective in lymphoblastic leukaemia 

along with several other drugs, namely Rapamycin, MK-2206 and GDC-0941 (Supplementary 

Figure 1b). Particularly, MK-2206, an Akt inhibitor, showed significant potency in treating T-cell 

acute lymphoblastic leukemia 24, whereas GDC-0941,  a pan class I PI3K inhibitor, was found to 

be effective against primary T-ALLs from wild-type and Kras(G12D) mice 25.   

 

Paradigm-3: In order to mine the association rules for tissue specific drug sensitivity and 

resistance we created two subsets, both containing tissue type at the Left Hand Side (LHS) of the 

rules and drugs' sensitivity and resistance response-status at the Right Hand Side (RHS) of the 

rules. These subsets were clustered and visualized, as described above (k=50) (Figure 4, 

Supplementary Table 1 - 1-way). A pattern that we immediately note is the presence of multiple 

drug-resistance rules in small-cell lung carcinoma (SCLC) (Figure 4a, Supplementary Table 1 - 

1-way), a non-frequent lung cancer type (15% of total cases) 

[http://www.cancer.gov/types/lung/hp/small-cell-lung-treatment-pdq]. Patients with SCLC 

respond very well to front line chemotherapy, but early clinical recurrence are due to tumours 

which are unresponsive to different anticancer agents. By examining the sensitivity clustering 

visualisation (Figure 4b, Supplementary Table 1- 1-way), we observe that SCLC presents 

sensitivity to only two therapeutic substances, namely ABT-263 (BCL-family inhibitor) and 

KIN001-135 (IKK Inhibitor) (Supplementary Table 2). Sensitivity of SCLC cells to ABT-263 is 

confirmed in the literature 26, through the promotion of cell apoptosis.  

 

Paradigm 4: In the Tissue of origin – Drug Sensitivity view (Figure 4b, Supplementary Table 1- 

1-way) we note that the 5 rules with the highest support in melanoma indicate sensitivity to 3 
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MEK inhibitors (CI-1040, RDEA119 and PD0325901) and to 2 BRAF inhibiotrs (SB590885 and 

PLX4720) (Supplementary, Table 1 - 1-way). Today, the Standard of Care for BRAF mutant 

melanoma patients is a combination of BRAF and MEK inhibition 27.  With our algorithm, when 

we accessed information related to the drug response of melanoma cell-lines from the 2-way 

rules (Supplementary Table 1 - 2-way), we observe that confidence and lift increases in all rules 

that in addition to Tissue=melanoma, also contain ‘BRAF=Mut’ at the LHS and Sensitivity to 

BRAF inhibitors at the RHS, confirming the fact that sensitivity to BRAF inhibitors is increased 

by the presence of the BRAF mutation.          

 

Paradigm 5: The following two paradigms indicate how the association rules, when allowing for 

interactions (2-way), can be used to gain further insight in the molecular mechanisms of drug 

resistance in SCLC and identify potential points of intervention. 

 

Paradigm 5a: With the 1-way rules (Supplementary Table 1 - 1-way), we observe statistically 

significant resistance to Sunitinib (a multi-kinase inhibitor) with a lift-value of 2.46 in 10 out of 

46 Small Cell Lung Cancer (SCLC) cell-lines (22%). With the 2-way rules (Supplementary Table 

1 - 2-way), we note that Growth hormone releasing hormone (GHRH) over-expression greatly 

increases the lift-value to 6.1, since resistance to Sunitinib is observed in 7 out of 13 SCLC cell-

lines over-expressing GHRH (54%). Inhibiting GHRH activity using antagonists wields high 

anti-tumor activity by impending cell proliferation 28. Furthermore GHRH activity has been 

linked to drug-resistance in triple negative breast cancer 29. Moreover, the 2-way rules indicate 

that GHRH over-expression significantly contributes to the resistance of SCLC to CGP-082996 

and XMD8-85, which are CDK4 and ERK5 inhibitors, respectively. By including interactions in 
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association rule mining, we are able to infer in this particular example that GHRH antagonists 

could be potentially used in combination therapy schemes with specific chemotherapeutic agents 

for the effective treatment of SCLC.  

 

Paradigm 5b: With the 1-way rules (Supplementary Table 1 - 1-way), we observe statistically 

significant resistance to Obatoclax-Mesylate, a BCL-family inhibitor, with a lift-value of 2.87 in 

14 out of 46 SCLC cell-lines (30.4%). With the 2 -way rules (Supplementary Table 1 - 2-way), 

we note that SMAD3 down-regulation greatly increases the lift-value to 8.4, since resistance to 

Obatoclax-Mesylate is observed in 8 out of 9 SCLC cell-lines under-expressing SMAD3 

(88.9%). SMAD3 is known to promote apoptosis through transcriptional inhibition of BCL-2 30. 

SCLC cell lines under-expressing SMAD3 clearly possess increased levels of BCL-2, which 

correlates well with the phenotype of resistance to a BCL-2 inhibitor, such as Obatoclax-

Mesylate. In this example, association rule mining precisely elucidated a specific part of the 

resistance mechanism of SCLC to BCL-family inhibitors, by highlighting a unique molecule that 

presents high mechanistic relevance to BCL-inhibition.    

 

 

4. Prediction of Drug-Response 

 

4a. Train & Test datasets for Machine Learning: To predict drug response through machine 

learning, we split the main data-set into two subsets, referred to as training set and test set and 

consisting of approximately 2/3 and 1/3 of the main data-set, respectively. The detailed 

description of the sets construction is presented in the relevant Supplementary Methods section - 
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Prediction of drug-response. (Supplementary Figure 2) 

4b. Deep Learning: For our drug response classification framework, we applied DLNN 11 

enhanced by Bagging Ensemble Learning31. Although its performance has not been tested in 

drug response prediction, we selected the Deep Learning Framework because it has redefined the 

state-of-the-art in many applications ranging from image recognition to genomics 11. In particular 

we chose to use the open-source DLNN framework provided by H2O.ai (http://www.h2o.ai/). 

This is a cluster ready framework, which allows for the machine learning part of our pipeline to 

be readily deployable to a high performance-computing environment. In order for machine 

learning to be able to perform well on the blind-set (test-set), it is critical to select only the most 

relevant features for training the classifier, for example features that are highly correlated with 

drug response. If a large number of irrelevant features are used for training, the classifier will be 

trained on noise, and although it will produce excellent results on the training set, it will perform 

poorly on the blind-set. This problem is referred to as over-fitting and in the application of 

‘omics’ information, where the number of features (in our case, gene expression, mutation status, 

etc) vastly outnumbers the total number of cases, over-fitting is inevitable.  

 

Previous reports have used elastic-net (as discussed above) 32 as a feature reduction technique. To 

address this challenge and select the most relevant features, we utilised the rule-set generated by 

Association Rule Mining, as performed on the training-set alone. (Supplementary Table 3). The 

deep learning classifiers (one classifier per drug and per drug-response-state) were trained on the 

training set using as training features the ones selected by the Association Rule Mining procedure 

and as response the respective drug-response. Each classifier’s performance was then assessed on 

a blind-set (the test-set), where we provided only the specific features upon which the classifiers 
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predicted the drug response, which was then compared to the actual drug-response value. We 

repeated the classification task utilising Random Forests, as the classification framework, which 

produced top prediction performance 17, allowing us to compare the performance of the DLNNs 

with a state-of-the-art framework. Random Forests is a highly adaptive tree-based machine 

learning tool, that has been applied for prediction and classification for genomic data, and 

unsupervised learning 33.  The classification performance in all cases was quantified through 

ROC-Curve analysis. Technical details are presented in the respective Supplementary Methods 

Section.  

 

By using the genes involved in the association-rules as features and the DLNN as a machine-

learning framework, we constructed classifiers that would be able to predict whether a cell-line 

would be sensitive or resistant to a given drug based on its molecular profile. In agreement with a 

previous study 6, since this is a dataset comprised of many cancer cell-lines from different tissues 

of origin, we observe that the vast majority of predictive features are gene expression levels. 

Additionally we noted that the information of tissue of origin significantly improved the 

prediction performance. To evaluate the classification efficiency of our classifiers, we applied a 

series of metrics, namely Area Under the Curve (AUC) of the  Receiver Operating Characterstic 

(ROC)-curve, Sensitivity, Specificity, Accuracy, Positive Predictive Value (PPV), Negative 

Predictive Value (NPV) and  False Positive Rate (FPR). The results for all our classifiers are 

reported in Supplementary Table 4. According to the widely accepted AUC-based classification 

quality grading scale, classifiers that produce AUCs 0.90 - 1 are considered excellent, 0.80 - 0.90 

are good, 0.70 - 0.80 are fair, 0.60 - 0.70 are poor classifiers, while classifiers with an AUCs 

below 0.6 are considered failed or random classifiers 34. Out of a total of 278 classification tasks, 
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corresponding to 139 drugs each with two responses (sensitivity and resistance), our pipeline 

produced 276 classifiers (see Supplementary Methods - Prediction of drug-response). Out of the 

276 trained and tested DLNN classifiers, approximately 1% were excellent, 17% good, 54% fair, 

24% poor and 4% random classifiers as opposed to 0%, 10%, 47%, 33% and 9% for the Random 

Forests using the AUC classification quality grading scale  (Figure 5a, Supplementary Table. 4). 

More specifically, of the Random Forest classifiers an equal to or better than a fair quality grade 

(AUC>0.7) was achieved by 57% of the classifiers, whereas this quality grade (e.g. equal to or 

better than fair) was achieved by 72% of the DLNN classifiers, indicating a superior 

performance of DLNN over Random Forest classification quality. Of the remaining performance 

metrics, Random Forests outperformed the DLNNs only in sensitivity. On the other hand, 

DLNNs were more specific, more accurate, with higher Positive Predictive Value and lower 

False Positive Rate than the respective Random Forests classifiers, indicating the overall 

superiority of the DLNN classifiers (Figure 5b, Supplementary Table 4).  

 

 

5. Drug-Clustering 

 

5a. Drug combinations against multiple targets belonging to inter-linked or overlapping 

signalling cascades are strong candidates for presenting synergistic effects 35. Our aim was to 

create a clustering scheme based solely on the presence of specific genes derived from the rule-

set connected to a specific drug-response. To this end, we produced two individual clustering 

schemes: 1) one for drug-sensitivity (Figure 6, Supplementary Figure 3) and 2) one for drug 

resistance (Supplementary Figure 3). All dendrograms can be accessed in HTML format in the 
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folder ‘/Figures/Dendrograms/’ at the Github repository (see Supplementary Methods - Data 

Availability). For details on clustering refer to Supplementary Methods - Drug-clustering. 

When we examine the two circular dendrograms, it is clear that they bear no-resemblance to each 

other meaning that the differentiated genes in the cell-lines that are resistant to a specific drug are 

diverse from the differentiated genes in the cell-lines that are sensitive to the same drug. To 

confirm this observation, we created a table describing the number of genes involved in 

sensitivity and resistance for each drug (Supplementary Table 5, ‘Genes overlap’). We were then 

able to calculate the overlap between all possible combinations as well as whether the magnitude 

of the overlap was random or over/under represented (p-value)(Supplementary Table 5, ‘p-

values’). Given the size of the sensitivity and resistance gene-sets for each drug, this calculation 

was accomplished by Monte-Carlo simulation, as described in the Supplementary Methods. This 

calculation highly correlates with the produced dendrograms, as drug-response-states, that cluster 

together, present statistically significant over-represented gene-set overlaps (Supplementary 

Table 5), and allowed us to assign a p-value to each dendrogram relationship. We isolated all of 

the above information related to the sensitivity and resistance states only of each drug and report 

them in Supplementary Table 5 (‘comparison sens & res per drug’). We note a very low overlap 

among the gene-sets involved in the sensitivity and resistance states of any given drug, indicating 

that the pathways involved in sensitivity and resistance for any given drug are diverse which is in 

perfect agreement with our prediction strategy, where we use different models from predicting 

sensitivity and resistance for each drug.  When we closely examined the sensitivity dendrogram 

clustering structure, we note that it was highly relevant to the drugs' target (Figure 6), indicating 

that drugs with the same target tend to cluster in close proximity to one another. Additionally, the 

sensitivity-status clustering appears to capture the broader relationships among the drugs. For 
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instance, we observe that there is a branch populated not only by BRAF but also by MEK 

inhibitors which practically belong to the same pathway (Figure 6)36. Likewise, we also note that 

PI3K, AKT and mTOR inhibitors were clustered together (Figure6). In contrast, when we 

examine the resistance dendrogram we note that clustering is less relevant to the drug targets in 

comparison to the sensitivity dendrogram meaning that the molecular cascades implicated in 

drug resistance are diverse from the ones that are being targeted by the drug. To determine 

whether drug clustering translates to highly correlated activity of closely clustered drugs 

(sensitivity dendrogram) across the cell-lines, we extracted the drug-to-drug rules from our total 

rule-set (Supplementary Table 6 – Sens_Sens) which examines whether sensitivity responses of 

the cell lines to certain drugs are correlated to others.  We clearly observe that the rules with the 

largest support had their Lift and Confidence values inversely correlated to the clustering 

distance in the dendrogram. This means that drugs which are connected in these rules tend to 

cluster closer in the sensitivity denrogram (Figure 6b), implying that the corresponding genes 

are involved mechanistically in producing a drug sensitive environment.  

 

5b. Suggestion of a Rule for the determination of drug partners with high potency: Based 

on drug clustering, we propose a drug-pair selection strategy for combination therapy using the 

following rule: Candidates with a high probability for presenting synergistic effect are those that: 

a) target different molecules, b) are located close together in the sensitivity dendrogram with 

their proximity also confirmed in the drug-to-drug association rules and c) cluster far-away from 

each other in the gene-based resistance dendrogram.  This rule is based on the fact that drug 

sensitivity is dependent upon proximal gene-signalling cascades, while at the same time it is 

difficult for a cancer cell to develop resistance to both drugs, since their resistance mechanisms 
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are diverse, as indicated by their distance from each other on the resistance dendrogram.   

 

 

5c. Paradigms supporting the Drug-Partner Rule 

Paradigm-1: In a recent study, evidence was presented that SCLC which is resistant to ABT-263, 

a Bcl-family inhibitor, can be effectively sensitized with the addition of AZD8055, a mTOR 

inhibitor 26. They provide evidence of significant tumour regression of an ABT-263 resistant 

SCLC patient-derived xenograft model after receiving combination therapy with both drugs. 

Examination of the sensitivity dendrogram, shows that ABT-263 lies in close proximity (on same 

main branch) to AZD8055, along with GDC0941 and AZD6482, which are PI3K inhibitors, 

hence part of the same pathway (PI3K/AKT/mTOR). Additionally, ABT-263 and AZD8055 show 

distant clustering on the resistance dendrogram, as predicted by our drug-partner rule 

(Supplementary Figure 3). 

 

Paradigm-2: Based on the drug-partner rule paradigm, Bcl-family inhibitors have the potential 

of synergy with PI3K inhibitors. This hypothesis is supported in the literature, where it is 

demonstrated that combination treatment with PI3K and Bcl-Family inhibitors led to a 

significant increase in PARP cleavage and cell death in all Renal Carcinoma cell lines 37. As 

described above, BRAF and MEK inhibitors which are closely clustered in the sensitivity 

dendrogram and remotely clustered in the resistance dendrogram (Figure 6, Supplementary 

Figure 3), have  shown to produce very promising results for melanoma treatment when 

combined together 35. 
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Discussion 

 

We present an in silico pipeline that utilises a large cancer cell-line dataset (689 cell lines) with 

diverse genomic features (>39,000 features) and responses to a diverse number of drugs (139), to 

extract knowledge in the form of easily interpretable rules and then by combining these rules 

with the sate-of-the-art Deep Learning framework to accurately predict drug responses. We also 

demonstrate that prediction of sensitivity and resistance responses must by handled by different 

models since the genes that drive these responses are diverse. Furthermore, we suggest a 

strategy, based on the drug sensitivity and resistance clustering to select the most potent 

candidates for drug-combination therapy.  

 

Validation of the proposed algorithm, demonstrates high classification power with superior 

specificity and accuracy, compared to Random Forests which is considered the current state-of-

the-art process. In a personalised medicine setup, the molecular profile of the patient’s tumour 

would be introduced in the pipeline and the later, as an expert system, would predict the drug 

response for a large screen of drugs allowing clinicians to select the best candidates for mono- or 

combination therapy. These candidates would then be tested on patient-derived primary 3D 

cancer cell cultures38 and/or on xenograft models 39. The most efficient combination would then 

be applied in the form of a therapeutic scheme directly on the patient with constant monitoring 

for administration of personalised dosing. 

The power of the pipeline lies on the efficiency, expandability and ability to create easily 

interpretable rules of the Association Rule mining algorithm, and to the ability of Deep Learning 
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to capture the complex heterogeneity of tumors. It can be further expanded by increasing the 

number of cancer cell-lines, including primary cancer cell-lines, as well as by increasing the 

number of therapeutic agents analysed by the system. Additionally, the system allows integration 

of other layers of 'omic' information, including meta-genomics, proteomics, phospho-proteomics, 

interactomics and metabolomics that will further enhance the prediction and drug-clustering 

schemes. We propose that our bioinformatics pipeline is expandable and effective utilising state-

of-the-art algorithms such as Association Rule Mining and Deep Learning and can effectively be 

applied in the rapidly expanding “omics” era for devising personalised medicine schemes, as 

well as for drug discovery.  
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Figure Legends 

 

Figure 1: Schematic representation of the study design and bioinformatics pipeline. The full data 

set was constructed using the GDSC and CCLP databases. Test data and training data sets were 

created using blocked randomisation. The use and progress of each data set is depicted by 

coloured arrows; full data set (red), test set (orange) and training set (green). The training and 

test set were used for deep learning and subsequent predicting of sensitivity and resistance. The 

full data set was used for clustering and dug synergy predictions. Unsupervised association rule 

mining was used for feature selection (from >39,000 features) of pharmacogenetic data.  

Significant association rules were defined by dynamic thresh-holding. Rules derived from the 

training data set were used for deep learning. DLNN classifiers were applied for prediction of 

drug sensitivity and resistance.  Extracted information was validated using the test set. Genes 

from rules derived from the full data set were used to construct a dissimilarity matrix based on 

the Jaccard index. Drugs were then clustered and predictions for drug synergy made. 

 

Figure 2: Description of full data set and summary of main data matrix. a) Tissue of origin of the 

689 cell-lines of the data-set. b) Description of each data type used including source, number of 

features and levels. c) Summary of the main data matrix containing tissue of origin, mutation 

status, copy number variation, gene expression and drug response information for the 689 cancer 

cell-lines. The actual matrix is available as an R data object (MASTER_MATRIX.RData) that 

can be accessed from the data folder located in the Github repository (see Sup. Methods – Data 

Availability). 
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Figure 3: Group-wise Association Rules visualization by k-means clustering k=50 of 1000 1-

way rules. Columns in the figure represent the Left Hand Side (LHS) of the rules which are 

molecular features (tissue of origin, mutation status, copy number variation and gene expression) 

while rows represent the Right Hand Side (RHS) of the rules which are drug responses. The size 

of the circles corresponds to the support magnitude of the rules while the color of the circles 

corresponds to lift values of the rules. a) Rules with the largest support, for the sensitivity state of 

BRAF & MEK inhibitors. b) Rules with the largest support, for the sensitivity state of PIK3CA, 

AKT & mTOR inhibitors. 

 

Figure 4: Group-wise Association Rules visualization by k-means clustering k=50. Columns in 

the figure represent the Left Hand Side (LHS) of the rules which are molecular features (tissue of 

origin) while rows represent the Right Hand Side (RHS) of the rules which are drug responses. a) 

k-means clustering, where k=50, of all the 1-way rules containing tissue of origin and the 

sensitivity state of all drugs in the matrix. b) k-means clustering, where k=50, of  all the 1-way 

rules containing tissue of origin and the resistance state of all drugs in the matrix. 

 

Figure 5: Comparison of prediction performance between Deep Learning and Random Forests. 

a) Comparison of ROC-Analysis Areas Under the Curve (AUCs) achieved by Deep Learning & 

Random Forests. b) Comparison of Sensitivity, Specificity, Accuracy, PPV, NPV and FPR 

between Deep Learning & Random Forests. P-values were derived by the non-parametric two-

tailed Wilcoxon test. 

 

Figure 6: Drug sensitivity clustering based on the similarity of genes involved in the association 
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rules with the sensitivity state of each drug. a) Drug sensitivity dendrogram colour coded by drug 

type and with clusters of interest highlighted.  Full scalable dendrograms are available in 

supplementary materials. b) Correlation of Jaccard-distance with rule confidence and lift for 

drug-to-drug association rules (sensitivity state, Supplementary Table 6 – Sens_Sens). Detailed 

information regarding the groups and the associated drug targets is located in Supplementary 

Table 2. 

 

Supplementary Figure 1: Group-wise Association Rules visualization by k-means clustering 

k=50. Columns in the figure represent the Left Hand Side (LHS) of the rules which are 

molecular features (tissue of origin, mutation status, copy number variation and gene expression) 

while rows represent the Right Hand Side (RHS) of the rules which are drug responses. The size 

of the circles corresponds to the support magnitude of the rules while the color of the circles 

corresponds to lift values of the rules. a) k-means clustering, where k=50, of 1000 1-way rules 

with the largest lift, for the sensitivity state of BRAF & MEK inhibitors. b) k-means clustering, 

where k=50, of 1000 1-way rules with the largest lift, for the sensitivity state of PIK3CA, AKT 

& mTOR inhibitors. 

 

Supplementary Figure 2: Training and Test set compilation. The training and test subsets were 

constructed by performing blocked randomization on the original data matrix. Tissue type was 

used as the blocking factor. Two thirds of the cell lines from each tissue type were assigned to the 

training set and the remaining one third to the test set. The respective pie charts represent the 

tissue of origin information for the training and test sets. 
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Supplementary Figure 3: Representation of examples verifying the suggested rule for selecting 

potential candidates for combination therapy. Potential candidates have different molecular 

targets and reside close together to the sensitivity dendrogram, presenting at the  same time 

distant localization to the resistance dendrogram. 
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Methods 

 

All scripting, data-processing, statistical calculations have been performed with R-language for 

statistical computing 40. 

 

1. Datasets 

The dataset compilation from ‘Genomics of Drug Sensitivity in Cancer’ (GDSC - release 5.0) 

and ‘COSMIC Cell Line Project’ (CCLP) was created by the R script “script_make_data.R”.   

Tissue of origin and drug response data were obtained from: 

  ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-

5.0/gdsc_manova_input_w5.csv.  

Gene mutation data was obtained from ‘CosmicCLP_MutantExport.tsv’, gene expression data 

was obtained from ‘CCLP_CompleteGeneExpression.tsv’ and copy number variation data was 

obtained from ‘CCLP_CNV.tsv’. All the aforementioned files were downloaded from 

 http://cancer.sanger.ac.uk/cell_lines/download.  

More specifically, with respect to the molecular profiling data we included mutational status for 

19426 genes, copy-number-variation status for the exons of 3744 genes and gene-expression 

status for 16444 genes. The gene mutation status is a factor consisting of 1 level, namely “Mut” 

that corresponds to all single point mutations apart from the silent ones. The copy-number-

variation status is a factor consisting of two levels, namely  “Gain” and “Loss” for gains and 

losses, respectively, while the gene-expression status is a factor that also consists of two levels 

(“over” and “under”) that correspond to z-scored gene expression levels greater and lower than 

two standard deviations from the mean, respectively. Finally the drug status is a factor consisting 
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of two levels, namely “Resistant” and “Sensitive” that correspond to z-scored IC-50 levels 

greater and lower than one standard deviation from the mean, respectively. The R-Data object 

containing the matrix is stored in the file MASTER_MATRIX.RData. 

  

2. Association Rule Mining - Apriori Algorithm  

To provide insights regarding the way the algorithm works we provide an example. Gene 

expression of Gene-A in our dataset has two levels, “over” and “under”. The Apriori algorithm 

will generate two features out of Gene-A gene expression, namely Gene-A=over & Gene-

A=under. The rules come in the form of A => B. The feature A is considered to be the Left Hand 

Side (LHS) of the rule while the feature B the Right Hand Side (RHS). For the scope of the 

current study, we only kept the rules containing drug sensitivity features on the RHS. The 

algorithm can also be utilized to mine for more complex association rules containing interactions 

on the LHS in  the form of  A , B => C which is a two-way interaction, being able to go as deep 

as the data-set and the computational resources permit.  

 

There are three basic metrics utilized by the algorithm in order to describe the power and 

significance of the rules. These metrics are Support, Confidence and Lift. Support is the 

frequency of the rule occurrence in the total dataset. Confidence is the frequency of rule 

occurrence in the cases of the dataset fulfilling the LHS of the rule. Finally Lift is a measure of 

significance. For the simple rule A => B, � �
������

 ���������
 , which, based on probability theory will 

be equal to 1 if the features A & B are  independent. For dependent features the value of Lift will 

be greater than 1 and the value being proportional to the power of the association. In order to run 

the Apriori algorithm, the user has to define minimum support and confidence values below 
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which all rules are discarded, plus the number of allowed interactions in the LHS. We initially 

ran the algorithm by setting a minimum support and confidence of 0.58%, corresponding to just 

4 out of the total of 689 cell-lines allowing for no interactions (1-way: A =>B), which is the 

minimum our computational resources permitted. Finally we ran the Apriori algoritm at 

minimum support and confidence levels of 1.02% (due to limitations in computational resources) 

allowing for one interaction (2-way: A + B => C). 

 

Dynamic Thresholding:The Apriori algorithm was ran on a permuted version of our initial 

dataset (MASTER_MATRIX_PERMUTED.RData), which was produced by randomly shuffling 

each individual column of the dataset. The permutated matrix was produced with the script 

script_make_data.R. We initially ran the algorithm with the aforementioned support and 

confidence values on the permuted dataset and we determined the Lift threshold that would 

control the false discovery rate at less than 5%. We noted, however, that for each different set of 

support and confidence values belonging to our actual rules, there was a different lift threshold 

for FDR<5% if the Apriori algorithm had run on the permuted dataset with that set of support 

and confidence values as the minimum support and confidence parameters of the algorithm 

respectively. We therefore adjusted our thresholding determination with a method we call 

Dynamic Thresholding.   Specifically, for every unique set of support and confidence values, 

we ran the Apriori algorithm on the permuted dataset using these values as the minimum support 

and confidence required by the algorithm, and we then determine the Lift threshold for which 

FDR=5%. After the completion of that process we evaluated each one of our actual rules based 

on its Lift value; if above of the specific threshold, the rule was accepted as significant, 

otherwise it was rejected. Both 1-way and 2-way rules where filtered keeping only the significant 
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rules (FDR<5%). The significant rules are available in Supplementary Table 1. The rule-set 

constitutes a novel meta-data-set, which can be utilized for knowledge extraction as per the 

paradigms that follow in the current text.  

The implementation of the Apriori & Dynamic Thresholding algorithms can be found in the 

script ‘script_dynamic_thresholding.R’.  

 

Group-wise rule visualization: The group wise Association Rules visualization presented in the 

current study utilizes k-means clustering in order to visualize data with high dimensionality and 

high scarcity and are described in detail in Hahsler et al. (2011)41 and is implemented in script 

‘script_rules_visualize.R’. 

 

3. Prediction of drug-response 

Training & Test Sets: The training and test sets were created by the R script 

“script_make_data.R”. The original z-scored gene expression levels were restored to the total 

matrix and the Training and Test subsets were constructed by performing blocked randomization 

on the original matrix.  The blocking factor was the tissue type, and two thirds of the cell lines 

from each tissue type were randomly assigned to the Training sets and the remaining one third to 

the Test set. The ratios were always rounded in favor of the Training set. If there were only two 

cases for a particular tissue type then they were evenly split between the Training and Test sets 

and if there was only one case, it was assigned only to the Training set.  Additionally, the gene-

expression factors were replaced with the original z-transformed gene expression levels. The 

Training set consisted of 458 and the test set of 231 cell-lines (TRAIN_GE_NUM.Rdata, 

TEST_GE_NUM.Rdata, Supplementary Figure 2). In both sets there were several cell-lines 
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lacking gene-expression information. These cell lines were removed. The final version of the 

Training and Test sets utilized for Deep Learning consisted of 444 and 228 cell-lines 

respectively. 

 

Feature Selection: The Apriori – Dynamic Thresholding algorithm, as described above, ran on 

the Training set alone at minimum support and confidence levels of 0.58%, in order to produce 

rules having no feedback from the Test set used for measuring the classification performance 

(Supplementary Table 3). For every drug and for each different drug response (Sensitive or 

Resistant) the genes present in the respective relevant rules having Support values greater than 

the support-values 1st quantile level were grouped and used as drug-state-specific feature subset 

along with the information on the tissue of origin (Supplementary Table. 4) for training as many 

individual classifiers. The 1st quantile condition was used because it provided better predictions 

as measured from intra-training-set k-fold cross-validation utilizing the ROC-curve AUC as the 

performance metric. For the total of the 139 drugs, each one having two states, Sensitive and 

Resistant, 278 classifiers would have been required. However two drug-state pairs, namely 

Nilotinib and WH-4-023 resistance, were not found in any rules, and therefore, there were no 

available features in order to train any classifiers. This resulted in the training of 276 classifiers 

for the DLNN and Random Forests frameworks.  

 

Deep Learning: Deep Learning Neural Networks (DLNN) were constructed using the H2O.ai 

platform [http://www.h2o.ai/] each consisting of 3 hidden layers with 100 neurons in each layer 

using Maxout with Dropout as the activation function and class balancing. Further parameters for 

the DLNNs were:  number of epochs=200, input dropout ratio=0.1, hidden dropout ratio=0.3. 
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Internal performance metrics were acquired using 3-fold cross-validation. Deep Learning is 

implemented in the script 

‘script_h2o_deep_learning_predictor_with_features_random_sampling_GE_NUM.R’. The 

H2O.ai platform was selected because it provides a cluster-ready framework for immediate and 

on-demand scaling-up.   

Each DLNN was utilized in a bagging-ensemble learning scheme, where for each feature subset 

multiple training rounds were performed. In each Training round, if the feature subset number 

was greater than 200, only a maximum of 200 features were randomly selected. If the feature 

subset number was lower than 200 then 3 training rounds were performed, each containing 75% 

of the feature subset, which was for each time was randomly selected. At the end of each 

Training round, the DLNN was asked to predict the probabilities for the Test set. The Test-set 

predicted probabilities from each Training round were averaged to produce the final Test-set 

predicted probabilities (row-wise, hence for each Test-set cell-line) using a weighted averaging 

scheme, the weight being the ROC-curve area under the curve (AUC) calculated from the 

Training step of each round based on 3-fold cross-validation. After the completion of the Test-set 

prediction, the classification performance was measured by calculating the Area Under the Curve 

(AUC) of the ROC-curve, Sensitivity, Specificity, Accuracy (ACC), Positive and Negative 

Predictive Values (PPV & NPV) and False Positive Rate (FPR) of the prediction by utilizing the 

ROCR-package 42 ( Supplementary Table 4 – ‘Deep Learning’). For all the calculations of the 

aforementioned metrics apart from the AUC, the selected class-discriminating threshold was the 

one maximizing the Matthews correlation coefficient 43. 

 

Random Forests: Random Forest classifiers were constructed again using the H2O.ai platform. 
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Each classifier consisted by number of trees equal to half the number of features utilized for 

training 44. Class balancing and 5-fold cross validation was used. The exact parameters can be 

found in   

‘script_h2o_deep_learning_predictor_with_features_random_sampling_GE_NUM.R’. For 

Random Forests we utilized exactly the same bagging scheme as for the DLNNs. The 

classification performance was measured as described in the previous section (Supplementary 

Table 4 – ‘Random Forests’). 

 

We did not use any further optimisation steps such as forward selection or backward elimination 

for model optimisation and hyper-parameter optimization to avoid over-fitting and hence report 

unbiased results. 

 

4. Drug-clustering 

Clustering were based upon the genes involved in the sensitivity or resistance state of each drug 

as extracted from the 1-way rules of the aforementioned Apriori algorithm (Supplementary  

Table 5 - Genes). The top 100 rules ranked by support and top 100 rules ranked for Lift for each 

drug and response, were combined. These rules were then converted into a binary matrix 

(data/Binary Matrix.RData @ GitHub) where 1 denotes the presence of a rule and 0 denotes the 

absence (Binary Matrix.RData). From this matrix a dissimilarity matrix was calculated using the 

vegdist function and the Jaccard index 45 from the R package ‘vegan’46. Hierarchical cluster 

analysis was then performed using the hclust function from the R package stats using the average 

clustering method40. The resulting cluster denrodrograms are displayed in a circular format using 

D3: Data-Driven Documents (Bostock et al, 2011) 47. The html versions of the three 
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dendrograms can be accessed thourgh GitHub ‘/Figures/Dendrograms’.  

 

Monte-Carlo Simulation: Drug Resistance – Sensitivity gene-set overlap: For every drug and 

each drug state (Sensitive or Resistant) the number of genes participating in statistically 

significant association rules was measured (Supplementary  Table 5 - Genes). The gene-set 

overlap for all the combinations of the drug/drug-state pairs was also measured (Supplementary 

Table 5 – ‘Genes overlap’). The probability that an observed overlap between two drug/drug-

state pairs was due to chance alone was evaluated with 100 rounds of Monte-Carlo simulation. 

More particularly, for each round a number equal to the number of genes participating in the 

statistically significant association rules for each drug/drug-state was randomly sampled from the 

total pool of genes participating in all the significant association rules (18216 genes). The 

random sampling was weighted by the frequency of occurrence of each gene in the sum of the 

significant association rules; hence a gene participating in numerous rules will have a greater 

probability of being picked in comparison to a gene participating in just a few rules. At the end 

of each round, the overlap between the randomly sampled gene-sets of the particular drug/drug-

state pair under examination was recorded. At the end of the 100-round Monte-Carlo simulation, 

the distribution of the 100 measured overlaps (which was found to be normal by the 

Kolmogorov-Smirnov test for normality) was utilized to calculate the p-value of the actual 

overlap between the particular drug/drug-state pair (Supplementary Table 5 – ‘p-values’). This p-

value represents the probability of the actual overlap to belong to the distribution of the 

randomly generated overlaps; hence the actual overlap being due to chance alone. If the actual 

overlap is located at the far right side of the random distribution the overlap is characterized as 

over-represented and statistically significant; hence non-randomly relevant. In contrast, if the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2016. ; https://doi.org/10.1101/070490doi: bioRxiv preprint 

https://doi.org/10.1101/070490
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

actual overlap is located at the far left side of the random distribution the overlap is characterized 

as under-represented and statistically significant; hence non-randomly distant (scripts/ 

script_measure_gene_overlaps_of_drugStates.R @ GitHub).                    

 

5. Data Availability 

All scripts, data objects, figures and tables have been deposited and can be accessed at the public 

GitHub repository (folder: ‘Vougas_DeepLearning’)  

(https://github.com/kvougas/Vougas_DeepLearning) 
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