
  

  

Abstract— Cancer's cellular behavior is driven by alterations 
in the processes that cells use to sense and respond to diverse 
stimuli. Underlying these processes are a series of chemical 
processes (enzyme-substrate, protein-protein, etc.).  Here we 
introduce a set of mathematical techniques for describing and 
characterizing these processes.   

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER  

Cancer can be characterized by aberrations in regulatory 
mechanisms and signal transduction processes that alter how 
cells sense and respond to diverse stimuli. While a 
quantitative understanding of the mechanistic details of how 
these aberrations drive oncogenesis remains elusive, 
computational modeling and simulation can provide some 
unique insights and predictions into how regulatory and 
metabolic processes ultimately give rise to diverse 
phenotypes (e.g. metastasis).  Models of these processes may 
ultimately play a role in both understanding them, and in 
understanding how to impact them (e.g. through therapeutic 
intervention).  One promising modeling approach represents 
the diverse aspects of cellular control, ranging from protein-
protein interactions to enzyme processing of metabolites as 
networks of coupled chemical reactions. 

II. QUICK GUIDE TO THE METHODS 

A. Differential equations for reaction networks 
The dynamics of reaction networks are modeled by 

systems of ordinary differential equations (ODEs) tracking 
the time evolution of chemical concentrations for the species 
in the network. This allows the study of the properties of the 
dynamics (e.g. stability of steady states, existence of 
multiple steady states, etc.), using theoretical results of 
dynamical systems, or numerical simulations.   

The most common way to construct ODEs from reaction 
networks is via the law of mass-action kinetics, under which 
the rate of a reaction is proportional to the concentration of 
each reactant1 (the proportionality factor is a positive 
number called the rate constant).   Every reaction network 
has a corresponding mass-action ODE system. To illustrate, 
consider reaction network (1) of an overall reaction 
𝑆1 + 𝑆2 → 𝑃, under a mechanism for enzyme catalysis 
corresponding to unordered substrate binding2 [1]: 

 
 

 

1 To be exact, proportional to a power of the reactant concentration given 
by its stoichiometry. For example, the rate of a dimerization 2𝐴 → 𝐵 is 𝑘𝑐!!. 

2 This mechanism is involved in cyclin-dependent kinase-catalyzed 
phosphorylation reactions that play important roles in the cell cycle [2]. 
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                                        𝐸 + 𝑆1 ⇌ 𝐸𝑆1            𝐸 + 𝑆2 ⇌ 𝐸𝑆2       
                                        𝑆2 + 𝐸𝑆1 ⇌ 𝐸𝑆1𝑆2 ⇌ 𝑆1 + 𝐸𝑆2                   (1) 
                                                                          𝐸𝑆1𝑆2 → 𝐸 + 𝑃 

Network (1) includes seven species E, S1, S2, ES1, ES2, 
ES1S2, P and nine reactions among them (four reversible 
pairs and one irreversible reaction), whose rate constants are 
denoted by 𝑘!,… , 𝑘!. The corresponding mass-action system 
of ODEs is given in (2), and is obtained by collecting in the 
time derivative of each species the contribution of all 
reactions to the concentration of that species. For example, E 
is being produced in reaction 𝐸𝑆1 → 𝐸 + 𝑆1; this reaction 
has rate 𝑘!𝑐!"! and we include this term in the expression 
of    𝑑𝑐!/𝑑𝑡 (the time derivative of concentration 𝑐! of E). On 
the other hand, E is consumed in the reaction 𝐸 + 𝑆1 →
𝐸𝑆1, therefore the rate 𝑘!𝑐!𝑐!! of this reaction is added with 
negative sign in the expression of 𝑑𝑐!/𝑑𝑡. Note that 
reactions not involving E (e.g. 𝑆2 + 𝐸𝑆1 → 𝐸𝑆1𝑆2) do not 
affect the concentration 𝑐!, and do not contribute terms to 
the expression of 𝑑𝑐!/𝑑𝑡. We assume additionally that 
substrates S1 and S2 are being supplied to the reaction 
environment at constant rates 𝐹!! and 𝐹!!, and we include 
these inflow (supply) rates into the expressions of  𝑑𝑐!!/𝑑𝑡 
and 𝑑𝑐!!/𝑑𝑡 respectively. (In mass-action models, the 
inflow rates are always positive constants.) Moreover, the 
substrates S1, S2 and the product P are also being 
transported out of the reaction environment (or degraded) at 
rates 𝜉!!𝑐!!,   𝜉!!𝑐!! and 𝜉!𝑐! proportional to their 
concentrations (this is always the form of outflow rates in 
mass-action models, and the positive constants 𝜉!!, 𝜉!! and 
𝜉! are called outflow coefficients). The outflow terms are 
included with negative signs in the expressions of 
𝑑𝑐!!/𝑑𝑡  ,𝑑𝑐!!/𝑑𝑡  and 𝑑𝑐!/𝑑𝑡  respectively.  

        
𝑑𝑐!
𝑑𝑡

= −𝑘!𝑐!𝑐!! + 𝑘!𝑐!"! − 𝑘!𝑐!𝑐!! + 𝑘!𝑐!"! 

                        +  𝑘!𝑐!"!!! 

        
𝑑𝑐!!
𝑑𝑡

= −𝑘!𝑐!𝑐!! + 𝑘!𝑐!"! − 𝑘!𝑐!!𝑐!"! + 𝑘!𝑐!"!!! 

                            +  𝐹!! − 𝜉!!𝑐!! 

        
𝑑𝑐!!
𝑑𝑡

= −𝑘!𝑐!𝑐!! + 𝑘!𝑐!"! − 𝑘!𝑐!!𝑐!"! + 𝑘!𝑐!"!!! 

                          +  𝐹!! − 𝜉!!𝑐!!                                                          (2) 

    
𝑑𝑐!"!
𝑑𝑡

= 𝑘!𝑐!𝑐!! − 𝑘!𝑐!"! − 𝑘!𝑐!"!𝑐!! + 𝑘!𝑐!"!!!   

      
𝑑𝑐!"!
𝑑𝑡

= 𝑘!𝑐!𝑐!! − 𝑘!𝑐!"! − 𝑘!𝑐!"!𝑐!! + 𝑘!𝑐!"!!!   
!!!"!!!

!"
  = 𝑘!𝑐!!𝑐!"! + 𝑘!𝑐!"!𝑐!! − 𝑘! + 𝑘! + 𝑘! 𝑐!"!!! 

              
𝑑𝑐!
𝑑𝑡

= 𝑘!𝑐!"!!! − 𝜉!𝑐! 
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 The differential equations (2) depend on 14 parameters 
(rate constants 𝑘!,… , 𝑘! and the  inflow/outflow rates 
𝐹!!,𝐹!!, 𝜉!!, 𝜉!!, 𝜉!). The presence of nonlinear terms in such 
a system warrants the possibility for complex behavior; 
indeed, it turns out that some choices of parameters3 give 
rise to  bistability, i.e. there are two distinct steady states, 
both compatible with the same amount of enzyme (for 
example, such that 𝑐! + 𝑐!"! + 𝑐!"! + 𝑐!"!!! = 1). For the 
particular choice of parameters, there are two stable steady 
states (depicted as red dots in Fig. 1) and one unstable steady 
state (green dot in Fig.1).  

Figure 1.  Examples of  trajectories for S1, S2, P 
concentrations. Figure taken from [1]. 

The two stable steady states are reached from initial 
concentrations in their respective basins of attraction, and  
switching between them is possible, for example, by a  
temporary disturbance in a substrate supply rate.  

Numerical simulation may reveal bistability of a network 
for given values of parameters (rate constants, 
inflow/outflow rates, enzyme total concentrations). In 
practice however, there are often no good estimates for 
parameter values, and sampling a vast parameter space in 
search of interesting behavior is almost an impossible task. 
However, in many cases, one can answer questions like “are 
there parameter values that give rise to bistability for a 
certain network?” without numerical simulation, but rather 
based on a body of theoretical work termed reaction network 
theory. 

B.  Reaction network theory. 

Beginning with groundbreaking work of Horn, Jackson and 
Feinberg [3,4,5], reaction network theory addresses the 
question: “What behaviors of a reaction network are a 
function of its structure, and are robust to different choices 
of kinetics?” This question has a natural extension which is 
practically very important: “How can reaction networks be 
controlled in order to encourage/rule out certain behaviors?” 
The early work of Horn, Jackson and Feinberg solved a 
number of difficult problems on chemical reaction network 
behavior, for systems with mass-action kinetics. 

Recently there has been an explosion of interest in 
reaction network theory, fueled by the growth of systems 

 
3 For example, k1 = 93.43, k2 = 2539, k3 = 481.6, k4 = 1183, k5 = 1556, k6 = 
121192, k7 = 0.02213, k8 =1689, k9 = 85842, 𝜉!! = 𝜉!! = 𝜉! = 1, FS1 = 
2500, FS2=1500. The values are taken from [1], and they were used to draw 
Fig. 1.  
 

biology, and the development of new and powerful 
mathematical techniques. A very fruitful area of research has 
been in identifying conditions for multiple positive steady 
states in reaction networks [1,6,7,8,9]. In particular, the 
cycle structure of the SR graph [1] or DSR graph [7] 
associated to a network may rule out bistability for any 
choice of rate constants. The DSR graph is a directed labeled 
bipartite graph resembling the schematic of the reaction 
network. It turns out that the DSR graph of network (1), 
depicted in Fig.2, cannot rule out the possibility of multiple 
positive steady states. While this is not enough to insure that 
bistability is possible, further theory [6] shows that in fact 
there are choices of parameters for which bistability occurs.   

Methods like these show an intimate relationship between 
network structure and bistability, and provide some 
surprising and counterintuitive results. For example, Table 1 
shows how bistability can be induced by subtle differences 
in enzyme catalysis mechanisms for the same overall 
reaction (for example, 𝑆 → 𝑃 in entries 3 and 4). The 
webserver CoNtRol [10] implements a series of theoretical 
methods [8] testing the possibility for bistability in reaction 
networks. Another powerful software is the Chemical 
Reaction Network Toolbox [11].  

Figure 2. The DSR graph of network (1), generated using the 
software CoNtRol [10] 

Other questions in reaction network theory have also 
witnessed notable progress:  oscillations [12,13]; global 
stability and global convergence, i.e., informally  speaking, 
the question of when all initial conditions lead to the same 
stable behavior [14–18]; persistence, i.e., whether some 
reactant concentrations can decrease to zero despite positive 
initial concentrations [14,15,19,20].    

TABLE 1. Examples of enzymatic networks and their 
capacity for bistability. Table taken from [1]. 

 

Entry  Network                 Remark                      Bistability 

1 E+S !ES→E+P 
Elementary enzyme catalysis 
underlying Michaelis-Menten 
kinetics: S→P 

N 

2 E+S !ES→E+P, E+I !EI Elementary enzyme catalysis with 
competitive inhibition: S→P N 

3 E+S !ES→E+P, ES+I !ESI Elementary enzyme catalysis with 
uncompetitive inhibition: S→P N 

4 
E+S !ES→E+P, E+I !EI 
ES+I ! ESI !EI+S 

Elementary enzyme catalysis with 
mixed inhibition: S→P Y 

5 
E+S1 !ES1 
S2+ES1 ! ES1S2→E+P 

Two-substrate enzyme catalysis 
with ordered substrate-binding 
S1+S2→P 

Y 

6 
E+S1 !ES1       E+S2 ! ES2 
S2+ES1 ! ES1S2→  S1+ES2 
ES1S2 →E+P 

Two-substrate enzyme catalysis 
with un-ordered substrate-binding 
S1+S2→P 

Y 

!
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