bioRxiv preprint doi: https://doi.org/10.1101/070177; this version posted August 18, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Phenome-wide Heritability Analysis of the UK Biobank

Tian Ge“*?, Chia-Yen Chen®** Benjamin M. Neale>**, Mert R. Sabuncu™”, and Jordan W.

Smoller®®”
'Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital / Harvard Medical
School, Charlestown, MA 02129, USA;

2Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts

General Hospital, Boston, MA 02114, USA;
3Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA;

4Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General

Hospital, Boston, Massachusetts 02114, USA;

>Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, MA 02138, USA.

*MRS and JWS contributed equally to this work.

Correspondence to: jsmoller@hms.harvard.edu (JWS) or tgel@mgh.harvard.edu (TG)



https://doi.org/10.1101/070177
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/070177; this version posted August 18, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Abstract

Heritability estimation provides important information about the relative contribution of genetic and
environmental factors to phenotypic variation, and provides an upper bound for the utility of genetic risk
prediction models. Recent technological and statistical advances have enabled the estimation of additive
heritability attributable to common genetic variants (SNP heritability) across a broad phenotypic spectrum.
However, assessing the comparative heritability of multiple traits estimated in different cohorts may be
misleading due to the population-specific nature of heritability. Here we report the SNP heritability for 551
complex traits derived from the large-scale, population-based UK Biobank, comprising both quantitative
phenotypes and disease codes, and examine the moderating effect of three major demographic variables
(age, sex and socioeconomic status) on the heritability estimates. Our study represents the first
comprehensive phenome-wide heritability analysis in the UK Biobank, and underscores the importance of

considering population characteristics in comparing and interpreting heritability.
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Introduction

The heritability of a trait refers to the proportion of phenotypic variance that is attributable to genetic
variation among individuals. Heritability is commonly measured as either the contribution of total genetic
variation (broad-sense heritability, H?), or the fraction due to additive genetic variation (narrow-sense
heritability, h?) (Visscher et al., 2008). A large body of evidence from twin studies has documented that
essentially all human complex traits are heritable. For example, a recent meta-analysis of virtually all twin
studies published between 1958 and 2012, encompassing 17,804 traits, reported that the overall narrow-
sense heritability estimate across all human traits was 49%, although estimates varied widely across
phenotypic domains (Polderman et al., 2015). Over the past decade, the availability of genome-wide
genotyping has enabled the direct estimation of additive heritability attributable to common genetic
variation (“SNP heritability” or héNp) (Lee et al., 2011; Yang et al., 2010, 2011). These estimates provide a
lower bound for narrow-sense heritability because they do not capture non-additive genetic effects such as
dominance or epistasis, and contributions (e.g., from rare variants) that are not assayed by most
genotyping microarrays and are not well tagged by genotyped variants. Nevertheless, estimates of SNP
heritability can provide important information about the genetic basis of complex traits such as the
proportion of phenotypic variation that could be explained by common-variant genome-wide association

studies (GWAS).

However, heritability is not a fixed property of a phenotype but depends on the population in which it is
estimated. As a ratio of variances, it can vary with population-specific differences in both genetic
background and environmental variation (Visscher et al., 2008). For example, twin data have documented
variations in the heritability of childhood 1Q by socioeconomic status (Turkheimer et al., 2003), highlighting
that different environment may have different relative contributions to the variance of a phenotype. In
addition, heritability estimates for a range of complex phenotypes have been shown to vary according to
the sex and age distributions of the sampled populations (Polderman et al., 2015). Identifying variables that
may affect the heritability of complex traits has implications for the design of GWAS, highlighting subgroups
and environmental conditions in which common-variant contributions may be diminished or magnified. To
date, however, studies of complex trait heritability and the effect of modifying variables have largely
examined individual phenotypes. Assessing the comparative heritability of traits estimated in independent
samples may be misleading because of population-specific differences in genetic and environmental

variance that may be operating in different cohorts.
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The UK Biobank (http://www.ukbiobank.ac.uk) provides a unique opportunity to estimate and compare the

heritability of traits across a broad phenotypic spectrum in a single population sample. The UK Biobank is a
large prospective population-based cohort study that enrolled 500,000 participants aged 40-69 years
between 2006 and 2010 (Sudlow et al., 2015). The study has collected a wealth of phenotypic data from
guestionnaires, physical and biological measurements, and electronic health records as well as genome-
wide genotype data. Here we used a computationally efficient approach to estimating heritability for 551
complex traits, comprising both quantitative phenotypes and disease categories. We then examined how
heritability estimates are modified by three major demographic variables: age, sex and socioeconomic
status (SES). Our results underscore the importance of considering population characteristics in comparing
heritability, and may inform efforts to apply genetic risk prediction models for a broad range of human

phenotypes.

Material and Methods

Participants and Data Sources. This study utilized data from the baseline assessment of the UK Biobank, a
prospective cohort study of 500,000 individuals (age 40-69 years) recruited across Great Britain during
2006-2010 (Sudlow et al., 2015). The protocol was approved by the Research Ethics Committee. The UK
Biobank collected phenotypic data from a variety of sources including questionnaires regarding mental and
physical health, food intake, family history and lifestyle, a baseline physical assessment, computerized
cognitive testing, linkage with health records, and blood samples for biochemical and DNA analysis. Details

about the UK Biobank project are provided at http://www.ukbiobank.ac.uk. Data for the current analyses

were obtained under an approved data request (Ref: 13905).

Genotyping and Quality Control. The interim release of the genotype data for the UK Biobank comprises
152,736 samples. Two closely related arrays from Affymetrix, the UK BiLEVE Axiom array and the UK
Biobank Axiom array, were used to genotype approximately 800,000 markers with good genome-wide
coverage. Details of the design of the arrays and sample processing can be found at

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=146640 and

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155583.

Prior to the release of the genotype data, stringent quality control (QC) was performed at the Wellcome
Trust Centre for Human Genetics, Oxford, UK. Procedures were documented in detail at

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580. We leveraged the QC metrics and removed
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samples that had mismatch between genetically inferred sex and self-reported sex, samples that had high
genotype missingness or extreme heterozygosity not explained by mixed ancestry or increased levels of
marriage between close relatives, and one individual from each pair of the samples that were 3" degree or
more closely related relatives. We restricted our analysis to subjects that were self-reported white British
and confirmed by principal component analysis (PCA) to be Caucasians. We further filtered out genetic
markers that had high missing rate (>1%), low minor allele frequency (<1%), significant deviation from
Hardy-Weinberg equilibrium (p<le-7), and subjects that had high missing genotype rate (>1%). 108,158
subjects (age 40-73 years; female 52.84%) and 486,175 SNPs remained for analysis after QC.
Supplementary Figure 1 shows the age distribution of the subjects that passed QC. The genetic similarity
matrix was computed using all genotyped autosomal SNPs. All genetic analyses were performed using

PLINK 1.9 (https://www.cog-genomics.org/plink2) (Chang et al., 2015).

Phenotypic Variables. We analyzed every trait available to us that had a sufficient sample size to produce a
heritability estimate with its standard error smaller than 0.1. The traits can be classified into the following
11 domains: cognitive functions, early life factors, health and medical history, life style, physical measures,
psychosocial factors, sex-specific factors and sociodemographics. For continuous traits, we excluded
samples that were more than 5 standard deviations away from the population mean to avoid extreme
outliers and data recording errors. We only analyzed binary traits that had prevalence greater than 1% in
the sample, so that we had enough power to get reliable heritability estimates. We typically binarized
categorical variables at a meaningful threshold close to the median and then analyzed them as binary traits.

For the specific cutoff-points used to binarize each categorical variable, see Supplementary Table 1.

We also analyzed a large number of self-reported illness codes and hospital in-patient diagnosis codes. Self-
reported cancer and non-cancer illness codes were obtained through a verbal interview by a trained nurse
at the UK Biobank assessment center on past and current medical conditions. Hospital in-patient diagnoses
were obtained through medical records and were coded according to the International Classification of
Diseases version-10 (ICD-10). Disease codes for each domain (self-reported cancer, self-reported non-
cancer illness, and ICD-10) were organized in a hierarchical tree structure; codes closer to the root of the
tree are often less specific and have larger prevalence, while codes closer to the leaves are more specific
but have lower prevalence. We analyzed every disease code that had prevalence greater than 1% in the
sample. We also employed a data-driven approach to determine if a disease is sex-specific. More
specifically, if the sample prevalence of a disease in males was more than 100 times larger than the sample

prevalence in females, we defined the disease as male-specific and the analysis was restricted to males. The
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same approach was used to find female-specific diseases. See Supplementary Table 2 for all the disease

codes we analyzed.

Heritability Estimation. We consider the linear random effect model y = g + e, where an N-dimensional
trait y is partitioned into the sum of additive genetic effects g and unique (subject-specific) environmental
effects e. The covariance structure of y is cov[y| = U;K + 021, where K is the empirical genetic similarity
matrix for each pair of individuals estimated from genome-wide SNP data (Yang et al., 2010, 2011), I is an
identity matrix, aj and o2 are the total additive genetic variance captured by genotyped common SNPs and
the variance of unique environmental factors across individuals, respectively. SNP heritability is then
defined as hiyp = 02 /(02 + 0%) = g2 /07, which measures the total phenotypic variance ¢/ that can be
explained by total additive genetic variance tagged by genotyped SNPs, and is a lower bound for the
narrow-sense heritability h2. When covariates need to be incorporated into the model, i.e., y = XB + g +
e, where X is an NxXq covariate matrix and f is a vector of fixed effects, an NX(N — q) matrix U always
exists, which satisfies UTU = I, UUT = Py, UTX = 0, and Py = I — X(X"X)~1XT. Applying UT to both

sides of the model removes the covariate matrix (Ge et al., 2015).

To obtain unbiased estimates of aj and g2, we used a computationally efficient, moment-matching
approach, which is equivalent to the Haseman-Elston regression (Elston et al., 2000; Haseman and Elston,
1972; Sham and Purcell, 2001) and phenotype-correlation genetic-correlation (PCGC) regression (Golan et
al., 2014), and closely related to the LD score regression (Bulik-Sullivan et al., 2015b; Bulik-Sullivan 2015).
Specifically, we regress the empirical estimate of the phenotypic covariance onto the matrices K and I:
vec[yy"] = aZvec[K]+aZvec[I] + €, where vec[] is the matrix vectorization operator that converts a

matrix into a vector by stacking its columns, and € is the residual of the regression. The ordinary least

. . . . .. . A~ 1
squares (OLS) estimator of this multiple regression problem can be explicitly written as ; = U—yT(K -
K

)y and 62 = 1%yT(KI — 1K)y, where t = tr[K]/N, k = tr[K?]/N, and vx = N(k — 72). SNP heritability
K

~2

is then estimated as hiyp = 62/(62 + 62) = 62/62.

To estimate the sampling variance of ﬁéNP, we follow Visscher et al. (2014) and make two assumptions: (1)
the off-diagonal elements in the empirical genetic similarity matrix K are small, such that K = I and
V = covly] = 0K + oZI = o}I; and (2) the phenotypic variance ¢; can be estimated with very high

precision. We thus have var[62] = viztr[(K —tDV(K — V] ~ 205 /vk, and var[hdyp| ~ 2/v. This
K

estimator coincides with existing results in the literature (Visscher et al., 2014). We note that the
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calculation of the variance of 6; relies on an additional assumption that the trait y is Gaussian distributed
and thus may be suboptimal for binary traits. However, Visscher and colleagues have empirically shown
that this sampling variance approximation is accurate for both continuous and binary traits when the

sample size is large (Visscher et al., 2014).

For binary traits, the above calculation gives a heritability estimate on the observed scale, which is
dependent on prevalence of the trait in the population. We transformed this heritability estimate to the
underlying liability scale under the assumption of a classical liability threshold model (Falconer, 1965;
Pearson and Lee, 1901), which makes heritability estimates independent of prevalence and thus
comparable across traits. Specifically, heritability estimate on the liability scale can be obtained using a
linear transformation of the heritability on the observed scale: EﬁNP’L = cﬁéNP, wherec = K(1 —
K)/@(t)?, K is the population prevalence, t = ®~1(1 — K) is the liability threshold, @ is the cumulative
distribution function of the standard normal distribution, and ¢ is the density function of the standard
normal distribution (Dempster and Lerner, 1950; Lee et al., 2011). Since the UK Biobank is not designed to
be ascertained for particular diseases, we assumed that population prevalence is identical to sample
prevalence. The sampling variance of the heritability estimate can be transformed accordingly:

var[héyp.] = c?var[Adyp].

Statistical Analysis. In all heritability analyses, we included genotyping array, UK Biobank assessment
center, age at recruitment and top 10 principal components (PCs) of the genotype data as covariates. Other
covariates such as sex and handedness (e.g., when analyzing the grip strength of the left/right hand) were
adjusted where appropriate. See Supplementary Table 1 for the set of covariates we included in the model
when estimating the heritability for each trait. To compute PCs of the genotype data, we performed
pairwise linkage disequilibrium (LD) based SNP pruning at R*>0.02 and excluded SNPs in the major
histocompatibility complex (MHC) region (chr6:25-35Mb) and chromosome 8 inversion (chr8:7-13Mb). Top
PCs were then computed using flashPCA (Abraham and Inouye, 2014) on the pruned data, which employs
an efficient randomized algorithm and is thus scalable to large data sets with hundreds of thousands of

individuals.

To examine how heritability estimates are modified by sex, we estimated heritability for each non-sex-
specific trait in males and females separately. To test if heritability estimates are significantly different by
sex, we assumed that the two SNP heritability estimates to be contrasted, EA and le, are independent and

approximately Gaussian distributed, and computed the z-score of their difference: z = (EA — EB)/
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J$e2 + seZ, where $23 and $e% are standard error estimates of h, and hy, respectively. A p-value can then
be computed as p = 2 - ®(—|z|), where ® is the cumulative distribution function of the standard normal

distribution.

To examine whether SNP heritability estimates vary with age, we used a sliding window approach and
estimated heritability for every age range of 10 years (i.e., 40-49 years, 41-50 years, ..., 64-73 years) by
stratifying samples. We assessed whether heritability estimates exhibited a linear trend with age by fitting a
regression model, Fli = a + age,y + €, Wwhere ﬁﬁ is the heritability estimate in the k-th age range, agey is
the mean of the age range, a is an intercept, y is the slope and ¢ is the residual of the regression, and
testing whether y is significantly different from zero. We weighted heritability estimates by the inverse of
their standard errors when fitting the regression model, and thus put more emphasis on estimates with
better precision. We only analyzed physical and cognitive measures, and did not consider disease codes

and medical history in age stratification analyses because age at recruitment does not reflect disease onset.

Similarly, we used a sliding window approach to estimate the SNP heritability for each trait from the
bottom 1/3 quantile to the top 1/3 quantile of the Townsend deprivation index at recruitment, a measure
of material deprivation within the population of a given area. For traits that do not reflect the status of
participants at the time of recruitment (e.g., medical history and early-life factors), we have implicitly made

an assumption that the SES of participants had not changed dramatically throughout their lives.

To account for multiple testing in our stratification analyses, we corrected the p-values using the effective
number of independent traits we analyzed. Specifically, for each stratification analysis (sex, age and SES),
we calculated the Pearson correlation coefficient for each pair of the traits using their overlapping samples.
The correlation between traits that had no sample overlap, e.g., male- and female-specific factors, was set
to zero. We then conducted a principal component analysis (PCA) to the constructed phenotypic
correlation matrix, and estimated the effective numbers of independent traits that explained 99% of the
total phenotypic variation in sex, age and SES stratification analyses to be 400, 31 and 440, respectively.
Finally, we multiplied uncorrected p-values by the corresponding effective number of independent traits to

obtain corrected p-values.
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Results

We report the heritability for 551 traits that were made available to us through the UK Biobank and had
sufficient sample sizes to achieve accurate heritability estimates (standard error of the heritability estimate
smaller than 0.1). These traits can be classified into 11 general phenotypic domains: cognitive function (5
traits), early life factors (7 traits), health and medical history (60 traits), hospital in-patient main diagnosis
ICD-10 codes (194 traits), life style and environment (88 traits), physical measures (50 traits), psychosocial
factors (40 traits), self-reported cancer codes (9 traits), self-reported non-cancer iliness codes (79 traits),
sex-specific factors (14 traits), and sociodemographics (5 traits). Figure 1 shows the percentage of each
domain that makes up the 551 traits we analyzed. Using the top-level categories and chapters of the self-
reported disease and ICD-10 coding tree, we can further break down self-reported non-cancer iliness codes
and ICD-10 codes into different functional domains (Supplementary Figure 2). We note that since we only
analyzed disease codes that had prevalence greater than 1% in the sample, distribution of the disease traits
across functional domains was highly skewed. For example, we investigated a large number of
gastrointestinal and musculoskeletal traits, while diseases that have low prevalence in the sampled

population such as psychiatric disorders were not well represented.

Table 1 lists the top heritable traits in each domain (the most heritable trait and traits with heritability
estimates greater than 0.30). Supplementary Tables 1 and 2 show the heritability estimates, standard error
estimates, sample sizes, covariates adjusted, prevalence in the sample (for binary traits) and other relevant
information for all the traits we analyzed. Common genetic variants appear to have an influence on most
traits we investigated, although heritability estimates showed heterogeneity within and across trait
domains. Complex traits that exhibited high SNP heritability (larger than 0.40) included human height
(0.685+/-0.004), skin color (very fair/fair vs. other, 0.556+/-0.008), ease of skin tanning (very/moderately
tanned vs. mildly/occasionally/never tanned, 0.454+/-0.006), comparative height at age 10 (taller than
average, 0.439+/-0.007; shorter than average, 0.405+/-0.008), rheumatoid arthritis (0.821+/-0.046),
hypothyroidism/myxedema (0.814+/-0.017), malignant neoplasm of prostate (0.426+/-0.093), and diabetes
diagnosed by doctor (0.414+/-0.016), among others. On the other end of the spectrum, traits such as
duration of walks/moderate activity/vigorous activity, frequency of stair climbing, ever had stillbirth,
spontaneous miscarriage or termination, painful gums, stomach disorder, fracture, injuries to the
head/knee/leg, and pain in joint had zero or close to zero heritability estimates, indicating that their
phenotypic variation is largely determined by environmental factors, or there is widespread heterogeneity

or substantial measurement error in these phenotypes. Heritability estimates for several phenotypes,
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including diseases with known immune-mediated pathogenesis (rheumatoid arthritis, psoriasis, diabetes,
hypothyroidism), were markedly reduced when the MHC region was excluded from analysis

(Supplementary Table 4), and thus need to be interpreted with caution (see Discussion).

A substantial fraction of the phenotypes we examined were based on self-report illness codes or diagnostic
(ICD-10) codes, which may be noisy and have low specificity. However, the SNP heritability estimates for 14
pairs of self-reported illness and ICD-10 codes that represent the same or closely matched diseases were
largely consistent and had a Pearson correlation of 0.78 (Table 2), indicating that both phenotypic

approaches captured useful variations in these phenotypes.

Heritability analysis stratified by sex identified a number of traits whose heritability showed significant
difference in males and females after multiple testing correction (Figure 2). For example, the analyses of
diastolic and systolic blood pressure, and self-reported hypertension and high blood pressure provided
consistent evidence that the heritability of blood pressure related traits and diseases is significantly higher
in females than in males. Adjusting for the current smoking status as a covariate in the model produced
virtually identical heritability estimates of these traits and the differences between females and males

remained significant.

A majority of physical measures showed decreasing heritability with age (Supplementary Table 3). More
specifically, 33 out of 50 physical measures had a significant decreasing trend in heritability estimates after
accounting for multiple testing correction (mean slope of the 33 traits -0.0035, i.e., heritability estimates
decrease by 3.5 percent per decade). The age-varying SNP heritability estimates and their standard errors
for 12 traits that showed both significant slopes and significantly different heritability estimates between

the first (40-49 years) and last age range (64-73 years) are shown in Figure 3A.

When we stratified heritability by the Townsend deprivation index, education (has college or university
degree or not) was the only trait on which SES had a significant moderating effect after multiple testing

correction. Figure 3B shows that the heritability of education increases with increasing SES.
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Discussion

Estimating the heritability of complex, polygenic traits is an important component of defining the genetic
basis of human phenotypes. In addition, heritability estimates provide a theoretical upper bound for the
utility of genetic risk prediction models (Chatterjee et al., 2016). We calculated the common-variant
heritability of 551 phenotypes derived from the UK Biobank. Three aspects of our work are particularly
notable. First, we implemented a computationally efficient method that enabled us to calculate the most
extensive population-based survey of SNP heritability to date. Second, we demonstrate that common
genetic variation contributes to a broad array of quantitative traits and human diseases in the UK
population. Third, we find that the heritability for a number of phenotypes is moderated by major
demographic variables, demonstrating the dependence of heritability on population characteristics. We

discuss each of these advances below.

Classical methods to estimate SNP heritability rely on the restricted maximum likelihood (ReML) algorithm
(Yang et al., 2010, 2011), which can give unbiased heritability estimates in quantitative trait analysis and
non-ascertained case-control studies, and is statistically efficient when the trait is Gaussian distributed
(Golan et al., 2014). However, ReML is an iterative optimization algorithm whose computational complexity
scales cubically with the sample size, and thus can be difficult to apply when analyzing data sets with
hundreds of thousands of subjects. In the present study, we used a moment-matching method, which is
equivalent to the Haseman-Elston regression (Elston et al., 2000; Haseman and Elston, 1972; Sham and
Purcell, 2001) and phenotype-correlation genetic-correlation (PCGC) regression (Golan et al., 2014). The
method produces unbiased SNP heritability estimates for both continuous and binary traits, and has much
lower computational and memory demand than the ReML algorithm. Once the genetic similarity matrix has
been computed, the method takes approximately 20 mins to complete the main heritability analysis and all
the stratification analyses for a trait with 100,000 subjects using a single core of the (dual CPU) Intel Xeon
5472 3.0GHz processor and 7 Gb of virtual memory. The moment-matching method is theoretically less
statistically efficient than the ReML algorithm (i.e., produces larger standard error on the point estimate)
when analyzing quantitative traits, but the power loss is expected to be small (Visscher et al., 2014) and the

current sample size is large enough to give accurate heritability estimates for most traits in the UK Biobank.

The moment-matching method is also closely related to the recently developed LD score regression
approach, which estimates the SNP heritability of a trait using GWAS summary statistics (Bulik-Sullivan et
al., 2015b). Specifically, the two methods are mathematically equivalent if (1) the out-of-sample LD scores

estimated from the reference panel and the in-sample LD scores estimated from individual-level genotype
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data are identical; (2) the intercept in the LD score regression model is constrained to 1 (i.e., assuming that
there is no confound and population stratification in the data); and (3) a particular weight is used in the LD
score regression (more specifically, the reciprocal of the LD score, which is close to the default setting in the
LD score regression software) (Bulik-Sullivan, 2015). Here, since we have constrained our analysis to white
British (Caucasians) and have accounted for potential population stratification by including top PCs of the
genotype data as covariates, both methods should produce similar estimates. Compared to LD score
regression, our method can avoid conducting a large number of GWAS in stratification analyses and is thus
more flexible in this aspect, while LD score regression can be more flexible if we need to meta-analyze
heritability estimates from the UK Biobank and other cohorts, partition heritability by functional annotation
(Finucane et al., 2015), or estimate the genetic correlation between UK Biobank variables and other
complex traits or diseases on which large-scale GWAS results are available (Bulik-Sullivan et al., 2015a;
Zheng et al., 2016). To summarize, we have used a method that balances statistical efficiency and

computational burden, and is flexible to achieve our main goal in this study.

We found that a large number of traits we examined display significant heritability. For traits whose
heritability has been intensively studied, our estimates are generally in line with prior studies. For example,
twin and pedigree studies have estimated the heritability of human height and body mass index (BMI) to be
approximately 80% and 40-60% (see e.g., Macgregor et al., 2006; Silventoinen et al., 2003, 2008; Visscher
et al., 2008), respectively, although recent studies have shown that heritability may be overestimated in
family studies due to, for instance, improper modeling of common environment, assortative mating in
humans, genetic interactions, and suboptimal statistical methods (Golan et al., 2014; Visscher et al., 2010;
Zaitlen et al., 2013, 2014; Zuk et al., 2012). Using genome-wide SNP data from unrelated individuals, it has
been shown that common SNPs explain a large proportion of the height and BMI variation in the
population, although SNP heritability estimates are lower than twin estimates (Vattikuti et al., 2012; Yang
et al., 2010, 2011). Specifically, the first genome-wide complex trait analysis (GCTA, also known as the
GREML method) estimated the SNP heritability of human height to be 0.45 using relatively sparse
genotyping data (approximately 300,000 SNPs) and showed that the estimate could be higher if imperfect
LD between SNPs and causal variants are corrected (Yang et al., 2010). A more recent study leveraging
whole-genome sequencing data and imputed genetic variants concluded that narrow-sense heritability is
likely to be 60-70% for height and 30-40% for BMI. Here, we estimated the heritability of human height and
BMI to be 0.685+/-0.004 and 0.274+/-0.004, respectively, which are comparable to the expected range.

Heritability estimates of other complex traits of interest, such as age at menarche in girls (0.239+/-0.007),
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diastolic (0.184+/-0.004) and systolic (0.156+/-0.004) blood pressures, education (has colleague or
university degree or not, 0.294+/-0.007), neuroticism (0.130+/-0.005), smoking (ever smoked or not,
0.174+/-0.006), asthma (0.340+/-0.010) and hypertension (0.263+/-0.007) were also more modest and

lower than twin estimates (Poldermann et al., 2015).

Heritability is, by definition, a ratio of variances, reflecting the proportion of phenotypic variance
attributable to individual differences in genotypes. Because the genetic architecture and non-genetic
influences on a trait may differ depending on the population sampled, heritability itself may vary. Examples
of this have been reported in the twin literature. In one well-known study, Turkheimer and colleagues
(Turkheimer et al., 2003) reported that the heritability of 1Q is moderated by SES in a sample of 320 7-year-
old twin pairs of mixed ancestry. In that study, the heritability of IQ was essentially 0 at the lowest end of
SES but substantial at the highest end. Subsequent studies of twins at varying ages have produced mixed
results (Bates et al., 2013; Hanscombe et al., 2012; Kirkpatrick et al., 2015; Turkheimer et al., 2015).
However, in our analysis, using SNP data, we observed no moderating effect of SES (as measured by the
Townsend deprivation index) on the heritability of cognitive traits (including fluid intelligence), possibly due
to the age range of participants in the UK Biobank (middle and old age) in contrast to many previous
studies targeting childhood or early adulthood. On the other hand, the heritability of education did show
significant interactions with SES, with increasing heritability at higher SES levels. Prior evidence has
suggested that education has substantial genetic correlation with IQ and may be a suitable proxy
phenotype for genetic analyses of cognitive performance (Rietveld et al., 2014); thus our results may

indirectly support earlier studies of the SES moderation of 1Q heritability.

With two exceptions, significant sex differences we observed indicated greater heritability for women
compared to men. Our results are consistent with findings from some twin studies but not others. For
example, we found that women exhibited significantly greater heritability for measured waist
circumference and blood pressure. Twin studies have also reported greater female heritability for waist
circumference (Zillikens et al., 2008) but no substantial sex difference in heritability of blood pressure
(Hottenga et al., 2005; Polderman et al., 2015). A substantial difference between the heritability of
rheumatoid arthritis (RA) in males compared to females was observed, although the MHC region has a large
impact on the SNP heritability estimates of autoimmune diseases, and thus this finding needs to be
interpreted with caution (see discussion below). While RA is known to be more common in women, a twin
analysis found no sex difference in heritability among Finnish and UK twin pairs, though power was limited

in that analysis (MacGregor et al., 2000). Intriguingly, greater heritability was observed among men for the
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personality trait of miserableness, a component of neuroticism, suggesting that environmental factors may

be more influential for this trait among women or that measurement error differs by sex.

We examined age effects on heritability for a subset of variables and found that a number of physical
measurements indexing body size, adiposity, height, as well as systolic blood pressure and lung function,
showed declining heritability with age. Age-related declines in heritability may reflect the cumulative effect
of environmental perturbations over the lifespan. Prior twin studies of age effects on the heritability of
anthropometric traits in adults have had inconsistent results (Brown et al., 2003; Ortega-Alonso et al.,
2009; Schousboe et al., 2004). A recent meta-analysis of 32 twin studies documented a non-monotonic
relationship between BMI heritability and age (from childhood to late adulthood), with a peak around age
20 and decline thereafter (Min et al., 2013). An age-related decline in indices of body size may reflect a
decreasing contribution of genetically-regulated growth processes over the lifespan. However, our results
were restricted to middle and older age groups so that we are unable to assess the entire trajectory of
heritability. Some but not all studies have also suggested varying or declining heritability with age for blood
pressure and lung function, as we found here (Brown et al., 2003; Coultas et al., 1991; Hottenga et al.,

2006; McClearn et al., 1994; Menni et al., 2013; Vinck et al., 2001; Wang et al., 2015).

Our results should be interpreted in light of several limitations. First, the phenotypes were limited to those
for which we had sufficient data to estimate heritability with adequate precision. Therefore, diseases with
low prevalence in the sampled population were not well represented in our analysis. We also assumed in
our analysis that the population prevalence of a binary trait is identical to the observed sample prevalence,
but diseases such as schizophrenia and stroke are naturally under-ascertained and thus their sample
prevalence is often lower than population prevalence. In addition, we note that since we used medical
history to define cases and controls, the prevalence of many diseases we investigated reflected lifetime
prevalence, which may be different from cross-sectional prevalence used in other studies. Second, a
substantial fraction of the phenotypes we examined were based on self-report or diagnostic (ICD-10) codes,
which may or may not validly capture the phenotypes they represent, although a head-to-head comparison
of the heritability estimates between self-reported illness and ICD-10 codes showed largely consistent
results. Prior research evaluating phenotypes derived from electronic health records indicate that greater
phenotypic validity can be achieved when diagnostic codes are supplemented with text mining methods
(Castro et al., 2015; Ford et al., 2016; Liao et al., 2015; Perlis et al., 2012). The specificity of the disease
codes may also be improved by leveraging the medication records in the UK Biobank. Third, we binarized

categorical (multinomial or ordinal) variables to facilitate analysis, but this might not optimally represent
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variation in these variables with respect to heritability. Fourth, as heritability can be population specific, our
estimates may not generalize to other settings or ancestry groups. Finally, heritability estimation always
relies on a number of assumptions on the genetic architecture. For example, the method we used here, as
well as the established GCTA and LD score regression approaches, implicitly assumes that the causal SNPs
are randomly spread over the genome, which is independent of the MAF spectrum and the LD structure,
and the effect sizes of causal SNPs are Gaussian distributed and have a specific relationship to their MAFs.
Although it has been shown that SNP heritability estimates are reasonably robust to many of these
modeling assumptions (Speed et al., 2012), the estimates can be biased if, for instance, causal SNPs are
rarer or more common than uniformly distributed on the MAF spectrum, or are enriched in high or low LD
regions across the genome. For example, the heritability estimates for some autoimmune diseases such as
psoriasis and rheumatoid arthritis dropped dramatically when the MHC region (chr6:25-35Mb) was
removed when constructing the genetic similarity matrix, indicating, as expected, that causal variants for
these diseases are disproportionally enriched in the MHC region. Supplementary Table 4 lists all the traits
whose heritability estimates decreased by 0.2 or more when the MHC region was taken out, and thus need
to be interpreted with caution. Methods to correct for MAF properties and region-specific LD heterogeneity
of causal variants have been proposed (Lee et al., 2013; Speed et al., 2012; Yang et al., 2015). For example,
we can stratify MAF and LD structure into different bins, compute a genetic similarity matrix within each
bin, and fit a mixed effects model with multiple variance components (Lee et al., 2013; Yang et al., 2015).
This approach can give heritability estimates that are robust to properties of the underlying genetic
architecture, but has the downside of increased computational burden and reduced statistical power. A
different direction to explore is to estimate SNP heritability using imputed data (in contrast to the genotype
data here), which might capture more genetic variation from rare variants, or common variants that are not
well tagged by the genotyped SNPs, and thus lead to increased heritability estimates. Here, as the first
study to screen all UK Biobank variables and provide overview on the distribution of SNP heritability across
different trait domains, and to examine the effect of potential modifying variables on heritability estimates,
we used a straightforward and classical modeling approach that is most widely used. To obtain more
insights into the genetic architecture and find the most appropriate model for each individual trait, more

systematic investigation is needed.

In sum, using an efficient computational approach, we provide estimates of the SNP heritability for 551
complex traits across the phenome captured in the population-based UK Biobank. We further identify

phenotypes for which the contribution of genetic variation is modified by demographic factors. These


https://doi.org/10.1101/070177
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/070177; this version posted August 18, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

results underscore the importance of considering population characteristics in comparing heritability,
highlight phenotypes and subgroups that may warrant priority for genetic association studies, and may

inform efforts to apply genetic risk prediction models for a broad range of human phenotypes.
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Tables and Figures
Tables 1: The heritability estimates, standard error estimates, sample sizes, covariates adjusted, prevalence

in the sample (for binary traits) and other relevant information for the top heritable traits in each

phenotypic domain.

Tables 2: A head-to-head comparison of SNP heritability estimates for the self-reported illness codes and

ICD-10 codes that represent the same or closely matched diseases.
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Figure 1: The number of traits in each of the 11 phenotypic domains that make up the 551 traits analyzed in
the UK Biobank: cognitive function (5 traits), early life factors (7 traits), health and medical history (60
traits), hospital in-patient main diagnosis ICD-10 codes (194 traits), life style and environment (88 traits),
physical measures (50 traits), psychosocial factors (40 traits), self-reported cancer codes (9 traits), self-

reported non-cancer illness codes (79 traits), sex-specific factors (14 traits), and sociodemographics (5

traits).
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Figure 2: Traits in the UK Biobank that show significantly different SNP heritability estimates in females and
males. The heritability estimates of rheumatoid arthritis, endocrine/diabetes and wheat products intake
reported here are based on genome-wide SNPs and will be markedly reduced when the major
histocompatibility complex (MHC) region (chr6:25-35Mb) is excluded from analysis, and thus need to be

interpreted with caution.
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Figure 3: (A) The age-varying heritability estimates and their standard errors (shaded region) for the 12
traits whose heritability significantly decreases with age; (B) The stratified heritability estimates and
standard errors (shaded region) of education (has college or university degree or not), on which the
socioeconomic status (SES) measured by the Townsend deprivation index has a significant moderating

effect.
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