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The availability of gene expression data at the single cell level makes it possible to probe the molecu-
lar underpinnings of complex biological processes such as differentiation and oncogenesis. Promising
new methods have emerged for reconstructing a progression ’trajectory’ from static single-cell tran-
scriptome measurements. However, it remains unclear how to adequately model the appreciable level
of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework
called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR)
that infers progressions from static single-cell transcriptomes by employing a continuous parametriza-
tion of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data
that highlight genes with expression and co-expression patterns that are associated with the inferred
progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolving
co-expression networks. We benchmark the method on simulated data to show that it yields accu-
rate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human
fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differenti-
ation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring
of gene-gene co-expression relations across the progression, the method reveals the rise and fall
of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new tran-
scription factors in neural differentiation including putative co-factors for the multi-functional NFAT
pathway.

Introduction

Understanding the dynamics of gene expression progression in a cell population as it traverses
a biological process such as differentiation has been an outstanding problem in modern cell
biology. These dynamics are characterized not only by the changes in cell-to-cell gene ex-
pression levels, but by the rewiring of gene regulatory networks as the cells transform from
one transcriptional state to another. Tracking these gene regulatory changes would pinpoint
coordination of biological function as gene modules are turned on or off throughout the pro-
gression.

Single-cell transcriptomics has given important insights into gene expression dynamics,
revealing the stochastic nature of gene expression and characterizing in detail the behavior of
small genetic networks.1–4 In their initial incarnation, these measurements were confined to
demanding microscopy protocols that assayed gene expression levels through time of only a
handful of genes. In recent years, advances in flow cytometry, microfluidics, and sequencing
technologies have enabled the interrogation of up to the whole transcriptome in hundreds to
thousands of cells.5–7 Application of these techniques to biological processes such as develop-
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ment provide snapshots of cell states through time and space.
Many computational methods have emerged to infer trajectories of connected state tran-

sitions from the static samplings of single-cell transcriptomes. The goal of these methods is to
provide a pseudotemporal ordering of cells in which neighboring cells are similar to each other,
capturing an overall biological progression. These approaches have been successfully applied
to elucidate complex transcriptional patterns and regulators in myoblast differentiation,8 B
cell development,9 and haematopoiesis.10 Nevertheless, cell orderings alone give little insight
into the state of gene regulatory networks across time. In addition, while most methods use
strategies to tackle biological and technical noise, none account for the dynamic, heteroscedas-
tic nature of the data. Further, only a few take into consideration uncertainties in pseudotime
assignments,11 making error estimates difficult to evaluate.

To address these challenges we propose a strategy, Single Cell Inference of MorphIng Tra-
jectories and their Associated Regulation (SCIMITAR), for inferring gene expression network
dynamics throughout biological progression from static, single-cell transcriptomes. SCIMITAR
gives a detailed, fully probabilistic description of the expression trajectory that, in contrast
with previous methods, explicitly accounts for heteroscedastic noise in the data. In addition,
it tracks the changes of gene-gene expression correlations at each point in the progression.
The probabilistic nature of SCIMITAR transition models allows for evaluating the shape of
the multivariate gene expression distribution as a function of biological progression, which we
show can be used to pinpoint co-regulatory cell states.

We benchmarked SCIMITAR’s inference capabilities in two scenarios. First, we tested its
ability to infer cell ordering and network rewiring from simulated transcriptomic measurements
where the underlying cell behavior was known. Second, we asked whether SCIMITAR could
yield insights in the developmental trajectory of human fetal neurons by analyzing recently
published fetal brain single-cell measurements. A likelihood ratio test designed for SCIMITAR
revealed 36 genes that significantly varied throughout the progression but that were missed by
standard differential expression between cell groups including genes in cornerstone develop-
mental pathways such as the hypoxia inducible factor 1 α (HIF1α), nuclear factor of activated
T cells (NFAT), and androgen receptor (AR) pathways. Further, by tracking SCIMITAR co-
expression matrices across pseudotime we were able to detect the evolution of co-regulatory
states, gene modules, and genes that gained and lost connectivity throughout the trajectory.

Results

Uncovering the full probability distribution progression underlying static
single-cell measurements with SCIMITAR

Recently, there has been an explosion of single-cell transcriptomic data in various biomedical
contexts and systems. A projection of the data from three such studies (refs8,10,12) in Fig 1A
using a locally linear embedding reveals that these datasets are characterized by distinct
groups of many cells interspersed with cells that fall along what appear to be isolines between
groups. This structure suggests a model that combines distributions for cell population density
and evolving cell states with heteroscedastic noise. One such model that could describe these
data is a continuous mixture of Gaussian distributions with constraints that allow only for
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smooth, continuous changes in parameters over the course of the progression. We call such
a model a Morphing Gaussian Mixture (MGM, see Methods and Fig 1B). The MGM has a
mean function, µ : [0, 1]→ Rn that threads through the data and is equipped with a covariance
matrix function Σ : [0, 1] → Rn×n that defines a Gaussian distribution at each point in the
progression, with n being the number of genes. The mean and covariance matrix functions
vary continuously throughout the [0, 1] interval, defining a probability P (x|µ,Σ, t) for each cell
gene expression vector x and pseudo time-point t ∈ [0, 1]. To ease inference, these mean and
covariance functions can be parametrized with different functional classes, such as polynomials,
splines, or Gaussian processes (see Methods). This probabilistic structure maps samples to a
smooth curve and allows points to veer away stochastically by modeling the structure of
the changing biological and technical noise. P (x|µ,Σ, t) captures the uncertainty of a cell
mapping to a particular pseudotime due to the changing covariance nature of the MGM. A
key advantage of this approach is that it replaces standard, grouped differential gene expression
analysis or differential co-expression analysis with a more sensitive test for potential gene-gene
regulatory relationships that change throughout the progression. Details of the MGM model
as well as inference of its parameters from data are given in the Methods section.

Benchmarking SCIMITAR in simulated data

To test our strategy, we asked whether SCIMITAR could infer the underlying cell ordering
and co-expression networks of simulated data where the ground truth was available. We tested
SCIMITAR’s cell order inference capabilities in two settings in which noise was added to
the system: 1) the noise is uncorrelated to the underlying trajectory and 2) the noise is
correlated with the trajectory. The first setting, adding noise uncorrelated with the trajectory,
tests robustness of the method in the presence of genes that are unrelated to the biological
progression and that confound ordering inference. The second setting tests how biological and
technical noise intrinsic to the system, including gene-gene correlated noise that change over
time, affect cell ordering inference.

For the first setting, we simulated data closely following the simulation procedure described
in ref.9 We simulated data in which 3 genes defined the true cell state and 7 genes represented
unrelated (uncorrelated) expression programs to the simulated progression. Simulations in
this scenario then, 3 dimensions of the data were ”signal” while 7 were ”noise”. To obtain the
three-dimensional trajectory, we performed a random walk for 600 steps and sampled a ’cell’
from a standardized normal distribution centered at the current point in the walk. We then
added seven dimensions of Gaussian noise. We generated several datasets with an increasing
noise magnitude (quantified as the standard deviation times the range of the trajectory). We
then used SCIMITAR to model these data and obtain the model’s optimal cell ordering. We
used SCIMITAR with three different functional classes (see Methods): third degree polyno-
mials, cubic splines, and Gaussian Processes with a squared exponential correlation function
(GP). We compared SCIMITAR’s performance with the cell orderings inferred by two popular
methods, Monocle8 and Wanderlust,9 and used the Pearson correlation coefficient to compare
the approaches (see Fig 2A). The best overall performers were all SCIMITAR models, with
Wanderlust coming in close second and Monocle performing slightly worse possibly due to its
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assumption of linearity in its dimensionality reduction step in agreement with previous stud-
ies.13 All methods were susceptible to the noisy dimensions uncorrelated with the trajectory.

For the second test that adds noise correlated with the trajectory, we simulated a curve,
µsim traversing a 10-dimensional space using 10 randomly-generated quadratic polynomials.
The correlated noise was simulated from the evolution of randomly generated Watts-Strogatz
networks and an additional set of quadratic polynomials with 6 different settings of signal-
to-noise ratios (see Supplemental Methods for a detailed description of this benchmark). We
found all methods performed similarly (Fig 2B), suggesting that noise intrinsic to the system,
including gene-gene statistical dependencies, equally confounds any cell ordering inference
method.

In addition to solving the cell ordering problem, SCIMITAR models track evolving gene-
gene correlations. We used the correlated noise simulations to test the accuracy of SCIMITAR’s
gene network rewiring inference. To this end, we compared the covariance functions inferred by
the polynomial, spline, and GP SCIMITAR versions. We measured the concordance of trends
between each entry of the predicted matrix functions Σpred

ij (t) and the corresponding entry of
the simulated values Σsim

ij (t) using the Pearson correlation coefficient (see Fig 2C). The spline
version of SCIMITAR produced the highest correlation coefficients while all versions were
substantially better than randomly-generated covariance matrix functions. Closer examination
of the three functional classes revealed that the GP version tended to overfit the data locally,
closely following local covariance structure even in regions where a few samples were present
while the polynomial version lacked the flexibility to model some complex twists and turns in
evolving true covariance structures. The spline version struck a balance between smoothing
inferences in intervals of the trajectory with few samples and maintaining flexibility to capture
non-linear trends. We therefore chose to use the spline functional class for SCIMITAR models
in the remainder of this study.

A differentiation model for human fetal neurons

In a previous study, Darmanis et al. obtained a transcriptomic map of the adult and fe-
tal brain using single-cell RNA-seq measurements.14 One of the findings of the study was a
continuous transition the between fetal replicating and quiescent neurons. We applied SCIM-
ITAR to infer cell ordering and network rewiring of these data to elucidate key regulatory
changes across the differentiation process. We downloaded these data from the gene expres-
sion omnibus (series identifier GSE67835) and obtained the subset corresponding to all fetal
neurons. We focused on all transcription factors that were expressed in at least 10% of the
cells, log-transformed the data and controlled for cell-cycle effects using scLVM.15 We then
fit SCIMITAR to the data and visualized the results in a two-dimensional locally linear em-
bedding (see Fig 3A). The visualization suggested a single linear trajectory that traversed
the fetal replicating and quiescent neurons which was captured by the SCIMITAR model.
To obtain progression associated genes, we used a likelihood ratio test tailored for SCIMI-
TAR models with dynamic noise (see Methods). The test revealed 92 genes with expression
that was significantly psuedotemporal-dependent (see Fig 3B). To obtain global insights from
these genes, we used hierarchical clustering with the Pearson correlation similarity metric to
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group them into 5 groups and performed Gene Ontology and KEGG pathway enrichment tests
on each group (see color groups in Fig 3B). Early-expressed genes (red and green clusters)
were associated with glucocorticoid receptors, heat shock factors, and signal transduction;
genes expressed in the middle of the progression (yellow and pink clusters) were enriched with
Maf-like proteins and cytokines; and the late-expressed genes (cyan cluster) had apoptosis,
neurogenesis, and alternative splicing enrichment. These enrichments correspond to multiple
observations in the literature. For example, heat shock factor proteins are well known to be
involved in early neurodifferentiation16 while glucocorticoid receptors and Maf-like proteins
are found to be expressed at different stages in hippocampal and developmental neurogenesis,
respectively.17,18 Further, neurodifferentiation has been found to be particularly enriched for
alternative splicing events.19

We then compared SCIMITAR’s progression associated genes to those obtained using an
ANOVA differential expression test between cells grouped according to their fetal replicating
or quiescent annotations. SCIMITAR uncovered 36 genes missed by ANOVA, most of which
were highly expressed in the middle of the progression, a detail that is lost when grouping cells
into two groups. These missed genes implicate different pathways whose genes were engaged
in progression dynamics. For example, five genes, BHLHE40, SMAD3, SP1, and SMAD4, of
the hypoxia inducible factor 1 α (HIF1α) pathway, involved in neural development,20 were
revealed to follow an ordered progression by the SCIMITAR model but missed using grouped
ANOVA differential expression (see Fig 3C). SCIMITAR revealed that the progression asso-
ciated genes of this pathway were mostly active in early stages of differentiation. SCIMITAR
also illuminated two other pathways: the Nuclear factor of activated T-cells (NFAT) and the
Androgen receptor pathway which is critical for neural stem cell fate commitment21,22 (see
Fig 3C).

We note that SCIMITAR’s progression associated genes did not include 7 genes from the
ANOVA list, false positives for which the variance was too large or where the statistic was
skewed by outliers in an otherwise lowly expressed gene. Nevertheless, three genes that seem to
be be differentially expressed by manual inspection (BCL11B, AFF1, and REST) were found
by ANOVA but missed by SCIMITAR, presumably due to a small subset of cells driving the
change between groups.

Evolving co-expression networks reveal defined co-regulatory states

We then used SCIMITAR’s inferred covariance functions to track changes in gene-gene con-
nectivity across the progression. We sampled 100 correlation matrices at regular intervals from
the covariance function, restricting the matrices to genes deemed progression associated. We
calculated a global distance matrix between networks using Frobenius distance to assess their
similarities and plotted the similarity values across pseudotime (see Fig 4A). As expected,
the strongest similarities were between networks that were neighbors in pseudotime. How-
ever, three network clusters could be appreciated in the matrix, suggesting three different
co-regulatory states. We obtained the consensus network of each state by averaging the net-
work members of the cluster. Then, we ranked each gene by comparing their co-expression
degree in each state to their co-expression degrees in the other two states using z-scores.
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The top 20 genes that gained the most connectivity in each state are listed in Fig 4B. All
of the gain-of-connectivity genes include genes that have been established as key players in
neurodifferentiation, such as PAX6, DLX1, and NEUROD6 and were enriched with neurode-
velopmental and neurogenesis GO terms.

To track highly connected gene modules of each state that significantly changed their con-
nectivity, we obtained gene modules for each co-regulatory state using affinity propagation
(with a dampening parameter of 0.5), finding 27 gene modules in total. We annotated these
modules by gene set enrichment and ordered them across pseudotime (see Fig 4C). This anal-
ysis revealed a coordinated functional response across the trajectory: modules in state 1 were
annotated with neural stem cell commitment, immune response, and protein trafficking, while
state 2 was enriched with embryonic development, neuron regulation, and pallium develop-
ment. State 3 had more diverse enrichments, from morphogenesis to membrane organelles,
suggesting a stage when cells start taking on mature neuron roles depleted of differentiation
potential. Importantly, this analysis pinpointed an NFAT-associated module to be most active
in co-regulatory state 2 (see Fig 4D). Most NFAT co-factors involved in neural development are
still unknown.23 The uncovered NFAT-associated module provides putative candidates for this
function. The full list of modules and their gene networks can be found in the Supplemental
Results (see below).

Discussion

An outstanding goal of systems biology is to understand the principles under which the gene
regulatory circuitry of a cell changes during a biological process. Single-cell transcriptomes
offer a fast way to obtain transcriptome-wide snapshots of these processes. When properly
analyzed, these data can be used to recover the principal trends of the biological progression,
but current methods do not model the dynamic gene-to-gene correlations in expression that
are the hallmarks of the underlying regulatory circuitry. Here, we presented SCIMITAR, a
strategy that leverages morphing Gaussian mixtures to track biological progression and model
the rewiring of these gene networks from static transcriptomes. SCIMITAR models account
for heteroscedastic noise and increase the statistical power to detect progression-associated
genes when compared to traditional differential expression tests. Further, the models allow for
detecting modes in co-expression structure in the trajectory: defined co-regulatory states that
represent potential metastable and transitionary cell states. We note that Gaussian mixtures
with non-diagonal covariance matrices suffer from the curse of dimensionality, which we have
tried to control for by using shrinkage estimators. Exploring the robustness of other types of
regularized estimators such as the graphical LASSO would be a logical next step to improve
confidence in the inferred morphing mixture models.

SCIMITAR is part of a recent wave of probabilistic methods for cellular trajectory recon-
struction from single-cell measurements.11,24 These types of models present several advantages,
such as assigning uncertainty estimates of cell orderings and providing a natural way for map-
ping new samples to a trained model — a necessary task for building queryable trajectory
maps with multiple progressions. Although SCIMITAR as presented cannot model branched
cellular trajectories such as those corresponding to multiple cell fate decisions, the framework
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can be readily extended by replacing the single-curve parametrization of the mixtures with a
branching structure, which deserves further investigation.

Methods

Morphing Gaussian Mixtures: correlated gene progression modeling with
no dimensionality reduction

Single-cell transcriptomic measurements are high-dimensional, with the number of variables
measured typically ranging from a few markers (generally no less than 48) to the full transcrip-
tome that can be upwards around 30000 transcripts. However, not every gene or transcript is
relevant to the biological system of interest and most are not expressed at all. Further, due to
the underlying gene regulatory networks, the expression patterns of many genes are correlated
and the strength of this correlation changes throughout the progression as the regulatory sys-
tem changes from one cell state to the next. These biological constraints put the data in some
low-dimensional manifold, a property that is used in various ways by cell ordering algorithms
to justify reducing the dimensionality of the dataset to a manageable number of dimensions.
Monocle, for example, reduces the data’s dimensionality to 2 dimensions using independent
component analysis and performs its calculations on a lower dimensional manifold. While the
procedure captures general aspects of the trajectory, 2 dimensions is generally not enough to
capture all of the relevant variability of the data and the reduction leads to loss of information
that can impact trajectory reconstruction (see e.g. our benchmarks in the Results sections and
other benchmarks in13,24). Other methods, such as Wanderlust, reduce the dimensionality in a
more principled way through nearest-neighbor calculations but forego capturing the changes
in gene-gene expression correlations over time. To address both of these shortcomings, we
introduce a model that retains the dimensionality of the dataset and tracks gene-gene cor-
relations throughout the trajectory. To this end, we extended Gaussian graphical models to
accommodate time-dependent changes in the mean and covariances of the model with time
being a latent variable.

Gaussian graphical models are one of the dominant frameworks for analyzing gene expres-
sion data, where the data is assumed to follow a multivariate Gaussian distribution defined
by a mean vector and a covariance matrix. Modeling the data becomes more challenging in
the presence of population structure where several different populations, each with its own
distribution, are intermixed. Gaussian mixture models, which posit that the data comes from
a finite combination of multivariate Gaussians, have been used successfully in this scenario.25

In static single-cell expression from a group of cells continuously undergoing a biological pro-
cess, such as differentiation, the boundaries between populations are blurred and the data is
best described as a continuous transformation between the first and last states. We model
this transformation by assuming that the data comes from a continuous Gaussian mixture,
parametrized by timepoints within the progression (the so-called pseudotime), which are un-
known. Let X be the data, p the number of genes, µ : [0, 1] → Rp,Σ : [0, 1] → Rp×p the mean
and covariance functions of the evolving populations that are time dependent, and γ a prob-
ability distribution on the [0, 1] interval representing cell population density at each pseudo
time-point. Then the probability of the data given the model M = {µ,Σ, γ} can be written as:
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P (X|M) =

∫ 1

0
γ(t)P (X|µ(t),Σ(t)) (1)

Here, t stands for the pseudotime in the progression. This model, which we name the
morphing Gaussian mixture model (MGM), differs from other mixture models in that we
require the mean and covariance structures to be described through continuous functions and
generalize other related models such as principal curves by inferring local covariance structure
in addition to the mean curve. The changing covariance structure allows the model to both keep
the dimensionality of the dataset and track co-expression changes throughout the progression.

To fit the model to the data, we use a maximum likelihood approach. As previously defined,
the parameters in the MGM model are difficult to infer, since optimization of the likelihood
function requires searching the space of all continuous functions. Additionally, the positive-
definite requirement on Σ(t) makes fitting the matrix function difficult. Therefore, we recast
the problem of fitting Σ(t) into fitting its pseudotime-dependant Cholesky decompositions:
Σ(t) = C(t)TC(t), ∀t and impose a functional form to the µ(t) and C(t) functions. We consider
three different functional classes: polynomials, Gaussian processes with squared exponential
correlation models, and cubic, De Boor smoothing splines, a special case of Gaussian processes.

To fit the parameters of the model, we employ coordinate ascent. In the first step, we are
given a fixed set values for M and we calculate, for each sample x, the optimal pseudotime
topt in the [0, 1] interval for which P (x|µ(topt),Σ(topt)) is maximized. In the second step, given
optimal pseudotime values, we calculate the cell density γ by fitting kernel density estimator
to the assigned pseudo time-points. Finally, in the third step, given density weights γ and
pseudotime assignments, we find the µ and Σ functions that best fit the data. To achieve
this, we approximate µ(t) and C(t) locally by obtaining optimal values at the pseudo time-
points 0, 0.1, 0.2, ..., 1.0, inferring the local mean and covariance using each data point weighted
by their probabilities as given by γ, and leveraging these values to fit functions from the
desired functional class (e.g. a polynomial, spline, or Gaussian process). Because we may
have considerably less samples than genes, we use the Ledoit-Wolf-type estimator in the R
corpcor package to fit the covariance at each pseudo time-point. We repeat this procedure
until convergence, as evaluated by the Pearson correlation coefficient of current and past
pseudotimes, with stopping criterion r > 0.9. As initial values for pseudotime assignments to
our optimization routine, we use a de-noised one-dimensional locally linear embedding.26

Visualization of the data and SCIMITAR models

To visualize the data and models, we use 2-dimensional locally-linear embeddings, with num-
ber of neighbors set to 80% of the number of samples. We plot SCIMITAR means by sampling
100 equidistant points across the mean function and projecting to the embedding. To obtain
a projection of the SCIMITAR model’s probability density function, we obtain 1000 sam-
ples from the model, evenly spaced across pseudotimes in the [0, 1] interval, project to the
embedding, and plot a 2-dimensional kernel density estimator of the 1000 points.
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A progression association statistical test

To obtain genes whose expression is progression-dependent, we use a likelihood ratio test to
compare the SCIMITAR model of each gene’s progression and the null hypothesis where the
expression of the gene is ’flat-lined’, i.e. does not track with the model’s path. Specifically, we
calculate the statistic:

LR = log(Lnull(µ̂, σ̂))− log(Lscim(µ,Σ)) (2)

Where Lscim, Lnull are the likelihood functions of the SCIMITAR and null models, respec-
tively, with the null distribution defined as a normal distribution centered at the empirical
mean µ̂ and standard deviation σ̂ of all the data representing the case where the data is in-
dependent of the progression. To assess whether the null hypothesis should be rejected, we
obtain the distribution of LR under the null hypothesis using parametric bootstrapping with
1000 samples and compare the resulting ratios to the LR of the data. We use the Benjamini-
Hochberg procedure to correct for multiple comparisons, setting an FDR cutoff of 5%.
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Figures

Fig. 1. A. Survey of three different single-cell transcriptomic studies. From left to right: murine haematopoiesis
by Guo et al., early blood development by Moignard et al., and myocyte differentiation by Trapnell et al.
B. Overview of the SCIMITAR method. Trajectory modeling with dynamic and correlated noise of static
transcriptomes of asynchronous cells is achieved by iterating through optimal cell ordering and inference of a
continuous set of Gaussian distributions in a morphing mixture of Gaussian models (see Methods in text).
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Fig. 2. SCIMITAR in silico benchmark. A. Cell ordering results for three functional classes of SCIMITAR (a
third degree polynomial, a cubic spline, and Gaussian processes with squared exponential correlation model)
and two state-of-the-art methods Monocle and Wanderlust in a setting with noise uncorrelated to the trajec-
tory. B. Cell ordering results for noise correlated with the trajectory. C. Evaluation results of network rewiring
across biological progression for SCIMITAR’s three functional classes and random covariance functions.

Fig. 3. A. SCIMITAR model for fetal neuron differentiation, projected to a 2-dimensional locally linear em-
bedding. The data is plotted as circles in blue (fetal replicating neurons) and green (fetal quiescent nuerons)
while the SCIMITAR model’s mean is plotted in black and its projected PDF is plotted in orange. B. Nor-
malized SCIMITAR model means for genes that were deemed progression associated across the progression,
clustered into five different clusters using expression correlation throughout psuedotime. C. Expression levels
of several genes from three central neurodifferentiation pathways: the HIF1α, NFAT, and Androgen Receptor
(AR) pathways that were pinpointed by SCIMITAR associated progression tests.
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Fig. 4. A. Similarity matrix between co-expression matrices fitted in the SCIMITAR fetal neuron differentia-
tion model across pseudotime. Three different co-regulatory states can be appreciated in the matrix, marked in
blue, green, and red. B. Top 20 genes with the most gain-of-connectivity in each co-regulatory state alongside
their log co-expression degree. C. Evolution of annotated modules. Each column is a module and each row
is a gene annotation — enrichments are shown as −log(p − value) in the heatmap. Column colors denote
co-regulatory state. An NFAT-associated module of state 2 is highlighted in the red matrix
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