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1Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada4

2Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N5

6N5, Canada6

?Correspondence and requests for materials should be addressed to S.A.B.7

(sarisbro@uottawa.ca).8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2017. ; https://doi.org/10.1101/070102doi: bioRxiv preprint 

sarisbro@uottawa.ca
https://doi.org/10.1101/070102
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

Abstract9

Recent history has provided us with one pandemic (Influenza A/H1N1) and two severe10

viral outbreaks (Ebola and Zika). In all three cases, post-hoc analyses have given us11

deep insights into what triggered these outbreaks, their timing, evolutionary dynamics,12

and phylogeography, but the genomic characteristics of outbreak viruses are still unclear.13

To address this outstanding question, we searched for a common denominator between14

these recent outbreaks, positing that the genome of outbreak viruses is in an unstable15

evolutionary state, while that of non-outbreak viruses is stabilized by a network of cor-16

related substitutions. Here, we show that during regular epidemics, viral genomes are17

indeed stabilized by a dense network of weakly correlated sites, and that these networks18

disappear during pandemics and outbreaks when rates of evolution increase transiently.19

Post-pandemic, these evolutionary networks are progressively re-established. We finally20

show that destabilization is not caused by substitutions targeting epitopes, but more likely21

by changes in the environment sensu lato. Our results prompt for a new interpretation of22

pandemics as being associated with evolutionary destabilized viruses.23

Keywords: Ebola virus, Influenza virus, Zika virus, outbreak, pandemic, correlated evo-24

lution25
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Introduction26

Over the past few years, humanity has been affected by three major zoonotic events, with27

an Influenza pandemic in 2009 [1], an Ebola virus outbreak in 2014-16 [2], and a Zika out-28

break in 2015-16 [3]. In all these examples, the epidemiological and evolutionary dynamics29

of the pathogens involved, i.e., their phylodynamics [4], were meticulously reconstructed.30

For instance, in the case of Ebola, an initial phylogenetic study showed evidence that31

the outbreak originated from a single zoonotic event in an unknown animal reservoir [2],32

and that the resulting epidemic then spread to the largest and closest neighboring cities33

following the gravity model [5, 6], with some exceptions [7]. However, in this general34

context of severe outbreaks, we still do not quite fully understand what characterizes the35

evolutionary dynamics of the viruses during such events.36

Recently, in an attempt to understand the genomic determinants of antigenic proper-37

ties and drug resistance in influenza viruses, we described a novel algorithm to uncover38

pair of amino acids in a protein that evolve in a correlated manner [8]. We found that39

influenza A viruses show extensive evidence for correlated evolution, to such an extent40

that some amino acids evolve correlatively with more than one other site, hereby forming41

dense (undirected) networks (see also [9]). We furthermore uncovered that some of these42

pairs of sites are known to be epistatically interacting – specifically, experimental studies43

show that a mutation at one of these sites lowers viral fitness, which is then restored by a44

compensatory mutation [10]. Moreover, we showed that similar networks of sites can be45

found in the Ebola virus, with some of these sites also involved in episodes of adaptive46

evolution [11]. In light of these results, we here hypothesized that during an outbreak47

or a pandemic, these networks of tightly correlated sites might be transiently disrupted,48

hereby leading to a virus that is, from an evolutionary point of view, destabilized.49
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Such a network destabilization would require that some of the intrinsic properties50

describing these networks change in a similar manner across different viruses. One way of51

studying these properties is by resorting to the theory used in social networks analysis, and52

more generally developed in graph theory [12]. In our case, a network is made of nodes,53

that are amino acid sites in viral proteins, and a link between two amino acids means54

that these two sites show statistical evidence for evolving in a correlated manner. Both55

the structure of this network, and the pattern of connections among its nodes, influence56

its behavior: for instance, scale-free networks, where node connectivity follows a power57

law, are extremely robust to disruptions [13], just like dense networks [14], while the most58

connected nodes are also the most important ones in protein-protein interaction networks59

[15]. Such properties can be derived by summarizing a network with different statistics,60

such as the number of connections that a particular node has (its degree), or the shortest61

distance between each pair of nodes (the average path length).62

In order to contrast the evolutionary dynamics of pandemic versus non-pandemic63

viruses, we here used these statistics to assess the stability of these networks of amino64

acids that evolve in a correlated manner. We predicted that viral evolutionary dynamics65

are weakened during a pandemic. As these dynamics often lead to complex networks66

of interactions [9, 11], we more specifically tested how the structure of these correlation67

networks is affected during an outbreak. We show that during a pandemic, the evolution-68

ary dynamics of viral genes are severely disrupted, but also that they are progressively69

restored after the pandemic.70
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Results71

Networks of correlated sites are destabilized during outbreaks. In search for72

evolutionary differences between regular epidemics and severe outbreaks, we first con-73

trasted the glycoprotein precursor (GP) sequences of the Ebola virus that circulated74

before and during the 2014/2016 outbreak. For this, we identified with a Bayesian graph-75

ical model [16] the pairs of nucleotides that show evidence for correlated evolution in each76

data set, before and during the outbreak. As in previous work [9, 11], we found that77

these pairs of sites form a network. A first inspection of these networks of correlated sites78

revealed a striking difference between pre-2014 and outbreak sequences: in particular at79

weak correlations, the pre-2014 interaction networks are very dense and involve most sites80

of GP, while only a small number of sites are interacting in outbreak viruses (Figure 1).81

Furthermore, at increasing correlation strengths, outbreak networks become completely82

disconnected faster: at posterior probability Pr = 0.80 some sites still interact in pre-83

2014 proteins, while all interactions have disappeared from Pr = 0.60 in outbreak proteins84

(Figure 1). Similar patterns for the Influenza (at two antigenes, the hemagglutinin [HA]85

and the neuraminidase [NA]; Figures S3-S4) and Zika viruses (polymerase NS5; Figures86

S5) suggest that during a severe outbreak, an evolutionary destabilization of viral genes87

occurs, especially among sites that entertain weak interactions.88

Destabilization affects weakly correlated sites. To further investigate this desta-89

bilization hypothesis, we analyzed the structure of these networks with the tools of social90

network analysis and graph theory [12]. Again, we found a consistent pattern when con-91

trasting regular and outbreak viruses: at weak to moderate interactions (Pr ≤ 0.50),92

outbreak viruses have networks of smaller diameter, shorter path length, and reduced93

eccentricity (Figure 2a-c, columns 1-5). All these patterns point to fewer connected sites94
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in outbreak viruses. Betweenness is smaller for outbreak viruses (except Ebola), and95

transitivity tends to be larger (except Zika). These last two measures also suggest that96

interactions among sites are weakened in outbreak viruses. Other networks statistics failed97

to show a clear pattern (Figure S6): in particular, there were no clear differences in terms98

of degree, centrality or homophily – all properties that are not directly related to network99

stability.100

Post-outbreak re-stabilization. Should these weak interactions play a critical role in101

the stabilization of viruses outside of pandemics, we would expect to observe the strength-102

ening of all network statistics as years go by after the pandemic. To test this prediction103

and estimate how long this re-stabilization process can take, we analyzed in a similar104

way all influenza seasons in the Northern hemisphere following the 2009 pandemic (until105

2015-16). Consistent with our prediction, both HA and NA genes show a gradual transi-106

tion between a typical pandemic state to a regular state in two-to-three seasons (Figure107

2, column 5-6, respectively).108

Non-genetic sources of destabilization. To understand what the potential sources of109

this destabilization are, we assessed the involvement of viral antigenic determinants / epi-110

topes. Should mutations accumulating in such epitopes be responsible for destabilization,111

we would expect (i) that weak interactions in non-pandemic viruses involve mostly epi-112

topes, and (ii) that pandemics be associated with the disappearance of these interactions113

at epitopes first. Figure 3 shows no evidence supporting this hypothesis (X2 = 0.0663,114

df = 1, P = 0.7967): non-pandemic viruses show a small number of predicted epitopes115

in their interaction network, that do not act as central hubs of these networks, while116

pandemic viruses may actually show an enrichment in interacting epitopes. This suggests117

that non-genetic factors are likely responsible for the initial destabilization of the genome118
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of pandemic viruses. Changes in their ecology / environment (vector) cannot be ruled119

out.120

Discussion121

To understand how evolutionary dynamics are affected during a viral outbreak, we com-122

pared non-outbreak and outbreak viruses. Based on the hypothesis that non-outbreak123

viruses are in a stable evolutionary equilibrium, and that such a stability is mediated by124

correlated evolution among pairs of sites in viral genes, we reconstructed the coevolution125

patterns in genes of non-outbreak and outbreak viruses. In line with our prediction, we126

found that outbreak viruses exhibit fewer coevolving sites than their non-outbreak coun-127

terparts, and that these interactions are gradually restored after the outbreak, at least in128

the case of the Influenza (2009 H1N1) virus for both HA and NA.129

Two independent lines of evidence are consistent with our destabilization hypothesis.130

First, all three viruses showed temporary increases in their rate of molecular evolution131

during each outbreak [2, 3, 1]; such increases can be expected to disrupt the coevolution-132

ary structure, and hence, destabilize viral genomes. We showed that epitopes were not133

particular targets of this mutational process. This can be expected, as mutations (i) most134

likely affect sites randomly, and (ii) are quickly lost from the viral population. Second, a135

probable cause of the epidemics can be identified in all cases studied here. For Influenza,136

the 2009 pandemic was caused by a series of reassortment events that affected the two137

genes studied here, HA (triple-reassortant swine) and NA (Eurasian avian-like swine) [1].138

Such exchanges of segments can very well destabilize the evolutionary dynamics, at least of139

the implicated segments. Similarly, a zoonotic event was implicated in the Ebola outbreak140

[2], and a change of continent in the case of Zika [3, 17, 18]. These corresponding changes141
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of environment (sensu lato) might have triggered the destabilizations observed here. In142

addition to such environmental changes, it is very likely that destabilization reflects a143

complex interaction between the genetics of viruses, their demographic fluctuations and144

environmental changes.145

This argument is further supported by recent work in physics, where it was shown146

that dense networks are more resilient, i.e. resistant to small perturbations, than sparser147

ones [14]. Moreover, in their simplest example, these authors modeled abundances in148

a community of mutualistic species, where the mutualistic term describes the pairs of149

interacting species; perturbations were then applied to the system to assess resilience.150

They showed that small perturbations did not affect average abundances, which remained151

high – their ‘desirable’ state. However, above a particular perturbation threshold, a152

bifurcation occured and a new ‘undesirable’ state, at low abundances, was reached. Our153

results are consistent with a similar system behavior, where the network of correlated154

amino acids is resilient to perturbations up to a certain point, when a bifurcation to an155

‘undesirable’ state (the pandemic) occurs, and the system returns to its resilient state. One156

major difference though is that we observed a progressive return to stability in the case of157

influenza, while the resilience model suggests a second bifurcation, i.e. an instantaneous158

change, to the ‘desirable’ state [14].159

One outstanding question is about the importance of weak patterns of coevolution160

within a gene: how can it be explained that it is essentially weak correlations (around161

Pr = 0.25) that distinguish non-outbreak from outbreak viruses? In a recent study on162

mice, four phenotypes were quantitatively analyzed following large intercrosses, and linear163

regressions on pairs of quantitative trait loci were used to detect non-additive effects, i.e.,164

epistasis; it was then shown that most epistatic interactions were weak and, critically,165

tended to stabilize phenotypes towards the mean of the population [19]. Viruses are not166
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mice, and not all the correlations that we detected are involved in epistatic interactions,167

but both this work in mice and the evidence presented here go in the same direction:168

weak interactions have a stabilizing effect on viral genes and their phenotype (regular169

epidemics). It is further possible that the intricate nature of these weak correlation net-170

works has higher-order effects [19], that in turn increase canalization and hence may help171

viruses weather modest environmental and genotypic fluctuations [20]. The elimination172

of these many weak interactions has a destabilizing effect that may be caused by or lead173

to outbreaks. Our findings call for a new interpretation of pandemics that, from an evo-174

lutionary point of view, appeared to be associated with unhealthy or diseased viruses.175

While the evidence shown here does not support the causal nature of this relationship,176

monitoring correlation networks could help forecast imminent outbreaks.177

Methods178

Sequence retrieval. Nucleotide sequences were retrieved for three viruses: Influenza179

A, Ebola, and Zika, for select protein-coding genes, chosen because they represent the180

most sequenced / studied genes for each of these viruses [11, 21, 22, 23]. All sequences181

were downloaded in May 2016 (Table S1).182

Full-length Influenza A sequences were retrieved directly from the Influenza Virus183

Resource [24]. Only H1N1 sequences circulating in humans for the hemagglutinin (HA)184

and neuraminidase (NA) genes were downloaded. These two genes are also very commonly185

studied and largely sampled in public databases [22, 23]. Two types of data sets were186

constructed: one containing pandemic and non-pandemic sequences circulating in 2009,187

the pandemic year, and one containing pandemic sequences circulating from August 1 to188

July 31 of each season in the Northern temperate region between 2009/2010 and 2015/2016189
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(seven seasons in total). Only unique sequences were retrieved.190

For Ebola, the virion spike glycoprotein precursor, GP, was retrieved because of its191

key role in the emergence of the 2014 outbreak showing evidence for both correlated and192

adaptive evolution [11] as follows. A GP sequence (KX121421) was drawn at random193

from the 2014 strain used previously [11] and was employed as a query for a BLASTn194

search [25] at the National Center for Biotechnology Information. A conservative E-value195

threshold of 0 (E < 10−500) was used, which led to 1,181 accession numbers. As most of196

these accession numbers correspond to full genomes, while only GP is of interest, we (i)197

retrieved all corresponding GenBank files, (ii) extracted coding sequences with ReadSeq198

[26] of all genes, (iii) concatenated the corresponding FASTA files into a single file, (iv)199

which was then used to format a sequence database for local BLASTn searches, and (v)200

used GP from KX121421 in a second round of BLASTn searches (E < 10−250, coverage201

> 75%).202

In the case of Zika, sequences of 252 complete genomes were retrieved from the Virus203

Pathogen Resource (www.viprbrc.org). The RNA-dependent RNA polymerase NS5 was204

specifically extracted by performing local BLASTn searches as described above. It is one205

of the most studied Zika genes [21, 27], as it is essential for the replication of the virus206

[27].207

Phylogenetic analyses. Sequences were all aligned with Muscle [28] with the fastest208

options (-maxiters 1 -diags). Alignments were visually inspected with AliView [29] to209

remove rogue sequences and sequencing errors. Phylogenetic trees were inferred by maxi-210

mum likelihood under the General Time-Reversible model with among-site rate variation211

[30] with FastTree [31]. As outbreak sequences (Ebola and Zika viruses) cluster away from212

non-pandemic sequences, we used the subtreeplot() function in APE [32] to retrieve213
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accession numbers of pandemic sequences and hence separate them from non-pandemic214

sequences with minimal manual input. FastTree was used a second time to estimate215

phylogenetic trees of the subset alignments, with the same settings as above.216

Network analyses of correlated sites. Amino acid positions (“sites”) that evolve217

in a correlated manner were identified with the Bayesian graphical model (BGM) in218

SpiderMonkey [16] as implemented in HyPhy [33]. Briefly, ancestral mutational paths219

were first reconstructed under the MG94×HKY85 substitution model [34] along each220

branch of the tree estimated above at non-synonymous sites. These reconstructions were221

recoded as a binary matrix in which each row corresponds to a branch and each column222

to a site of the alignment. A BGM was then employed to identify which pairs of sites223

exhibit correlated patterns of substitutions. Each node of the BGM represents a site and224

the presence of an edge indicates the conditional dependence between two sites. Such225

dependence was estimated locally by a posterior probability. Based on the chain rule for226

Bayesian networks, such local posterior distributions were finally used to estimate the full227

joint posterior distribution [35]. A maximum of two parents per node was assumed to228

limit the complexity of the BGM. Posterior distributions were estimated with a Markov229

chain Monte Carlo sampler that was run for 105 steps, with a burn-in period of 10,000230

steps sampling every 1,000 steps for inference. Analyses were run in duplicate to test for231

convergence (Figures S1-S2).232

The estimated BGM can be seen as a weighted network of coevolution among sites,233

where each posterior probability measures the strength of coevolution. Each probability234

threshold gives rise to a network whose topology can be analyzed based on a number235

of measures [12] borrowed from social network analysis and graph theory. We focused in236

particular on six statistics: average diameter, the length of the longest path between pairs237
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of nodes; average betweenness, measures the importance of each node in their ability to238

connect to dense subnetworks; assortative degree, measures the extent to which nodes239

of similar degree are connected to each other (homophily); eccentricity, is the shortest240

path linking the most distant nodes in the network; average strength, rather than just241

count the number of connections of each node (degree), strength sums up the weights of242

all the adjacent nodes; average path length, measures the shortest distance between each243

pair of nodes. All measures were computed using the igraph R package ver. 1.0.1 [36].244

Thresholds of posterior probabilities for correlated evolution ranged from 0.01 (weak) to245

0.99 (strong). LOESS regressions were then fitted to the results.246

Epitope analyses. Epitopes were predicted using the NetCTL 1.2 Server [37]. Briefly,247

Cytotoxic T lymphocyte (CTL) epitopes are predicted based on a neural network algo-248

rithm trained on a database of human MHC class I ligands. Epitopes can be predicted249

for 12 MHC supertypes (A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, B62),250

that are broad families of very similar peptides for which independent neural network251

models have been generated. As such, we ran the epitope prediction for each supertype252

independently, on non-outbreak and outbreak viruses. Circos plots were generated with253

the circlize R package ver. 0.3.10 [38]. Scripts and sequence alignments used are available254

from github.com/sarisbro.255
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Figures361

Figure 1. Correlation network of pre-outbreak and outbreak Ebola viruses. Networks of
correlated sites in the GP protein are shown in each panel. The top row shows networks for the viruses
circulating before the 2014 outbreak (blue); the bottom row shows networks for outbreak viruses (red).
Each column shows networks for different strengths of correlation, from weak (Pr = 0.05) to strong
(Pr = 0.95). Nodes represent animo acid sites, and edges correlations. Node sizes are proportional to
diameter.

Figure 2. Network properties between pandemic and non-pandemic viruses. Results are
shown for Ebola (column 1), Zika (2) and Influenza viruses: for HA and NA circulating in 2009 in (3)
and (4), respectively, and for pandemic viruses circulating between the 2009-10 (deep red) and the
2015-16 (deep blue) season in (5) and (6). Pandemic viruses are show in red, while non-pandemic ones
are in blue. Shading: 95% confidence envelopes of the LOESS regressions. Five network measures are
shown: (a) diameter, (b) average path length, (c) eccentricity, (d) betweenness, and (e) transitivity.

Figure 3. Interacting residues in pandemic and non-pandemic viruses. Results are shown
for Ebola at weak correlations (Pr = 0.20). Coevolving positions in the alignment are identified with
arabic numbers; for those that are predicted to be epitopes, supertypes (A1, A2, etc.) are shown.
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