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Stéphane Aris-Brosou1,2,?, Neke Ibeh1 and Jessica Noël13
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Abstract12

Although viral outbreaks and pandemics have plagued humans and other organisms for13

billions of years, such events are not only still impossible to predict, but the ultimate14

reasons why outbreaks happen are not understood. Based on recent viral outbreaks15

and pandemics (Ebola, Zika and Influenza), we searched for a common denominator to16

these events, positing that the genome of outbreak viruses is far from an evolutionary17

equilibrium, which is ultimately maintained by a dense network of correlated substitutions.18

We show here that genes of outbreak viruses are characterised by destabilised correlation19

networks, a result that might improve outbreak surveillance.20
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1 Introduction23

Viruses are engaged in a form of arms race with their host, in which each endeavours to24

outpace the other [1]. Regular epidemics can therefore be seen as an equilibrium situation,25

where neither the virus nor the host populations are at risk of extinction. Such a stable26

evolutionary strategy can however be broken when the virus becomes extremely virulent,27

which can lead to a severe outbreak or even a pandemic. Recent history is rich in such28

instances with an Ebola virus outbreak in 2014 [2], a Zika outbreak since 2015 [3], and an29

Influenza pandemic in 2009 [4]. Despite all of these instances, we still do not know what30

causes outbreaks and pandemics. The question we address here is whether we can find31

commonalities to these three outbreaks, while still setting them apart from non-pandemic32

or “regular” viruses.33

As theory tells us that regular epidemics are the result of a dynamic equilibrium [5],34

we posit that outbreaks are the results of a disequilibrium, not just in their population dy-35

namics but also at the genomic level. More specifically, we suggest that outbreaks involve36

destabilised viral genomes, where evolutionary stability is maintained by compensatory37

mutations, that can be epistatic or not, but that result in signals of correlated evolution.38

We predict that such signals are weakened during an outbreak. As these signals often lead39

to complex networks of interactions [6, 7], we test how the structure of these correlation40

networks is affected during an outbreak. We show that during an outbreak, viral genes41

are destabilised.42
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2 Material and methods43

(a) Sequence retrieval44

Nucleotide sequences were retrieved for three viruses: Ebola, Zika, and Influenza A, for45

select protein-coding genes, chosen because they represent the most sequenced genes for46

each of these viruses. All sequences were downloaded in May 2016 (table S1).47

For Ebola, the virion spike glycoprotein precursor, GP, was retrieved as follows. A48

GP sequence (KX121421) was drawn at random from the 2014 strain used previously49

[7] and was employed as a query for a BLASTn search [8] at the National Center for50

Biotechnology Information. A conservative E-value threshold of 0 (E < 10−500) was used,51

which led to 1,181 accession numbers. As most of these accession numbers correspond52

to full genomes, while only GP is of interest, we (i) retrieved all corresponding GenBank53

files, (ii) extracted coding sequences with ReadSeq [9] of all genes, (iii) concatenated the54

corresponding FASTA files into a single file, (iv) which was then used to format a sequence55

database for local BLASTn searches, and (v) used GP from KX121421 in a second round56

of BLASTn searches (E < 10−250, coverage > 75%).57

In the case of Zika, sequences of 252 complete genomes were retrieved from the Virus58

Pathogen Resource (www.viprbrc.org). The RNA-dependent RNA polymerase NS5 was59

specifically extracted by performing local BLASTn searches as described above.60

Full-length Influenza A sequences were retrieved directly from the Influenza Virus61

Resource [10]. Only H1N1 sequences circulating in humans for the hemagglutinin (HA)62

and neuraminidase (NA) genes were downloaded. Two types of data sets were constructed:63

one containing pandemic and non-pandemic sequences circulating in 2009, the pandemic64

year, and one containing pandemic sequences circulating from August 1 to July 31 of65

each season in the Northern temperate region between 2009/2010 and 2015/2016 (seven66
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seasons in total). Only unique sequences were retrieved.67

(b) Phylogenetic analyses68

Sequences were all aligned with Muscle [11] with fastest options (-maxiters 1 -diags).69

Alignments were visually inspected with AliView [12] to remove rogue sequences and se-70

quencing errors. Phylogenetic trees were inferred by maximum likelihood under the Gen-71

eral Time-Reversible model with amongst-site rate variation [13] with FastTree [14]. As72

outbreak sequences (Ebola and Zika viruses) cluster away from non-pandemic sequences,73

we used the subtreeplot() function in APE [15] to retrieve accession numbers of pan-74

demic sequences and hence separate them from non-pandemic sequences with minimal75

manual input. FastTree was used a second time to estimate phylogenetic trees of the76

subset alignments, with the same settings as above.77

(c) Network analyses of correlated sites78

Amino acid positions (“sites”) that evolve in a correlated manner were identified with the79

Bayesian graphical model (BGM) in SpiderMonkey [16] as implemented in HyPhy [17].80

Briefly, ancestral mutational paths were first reconstructed under the MG94×HKY85 sub-81

stitution model [18] along each branch of the tree estimated above at non-synonymous82

sites. These reconstructions were recoded as a binary matrix in which each row corre-83

sponds to a branch and each column to a site of the alignment. A BGM was then em-84

ployed to identify which pairs of sites exhibit correlated patterns of substitutions. Each85

node of the BGM represents a site and the presence of an edge indicates the conditional86

dependence between two sites. Such dependence was estimated locally by a posterior87

probability. Based on the chain rule for Bayesian networks, such local posterior distribu-88
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tions were finally used to estimate the full joint posterior distribution [19]. A maximum89

of two parents per node was assumed to limit the complexity of the BGM. Posterior dis-90

tributions were estimated with a Markov chain Monte Carlo sampler that was run for91

105 steps, with a burn-in period of 10,000 steps sampling every 1,000 steps for inference.92

Analyses were run in duplicate to test for convergence (figures S1-S2).93

The estimated BGM can be seen as a weighted network of coevolution amongst sites,94

where each posterior probability measures the strength of coevolution. Each probability95

threshold gives rise to a network whose topology can be analysed based on a number96

of measures [20] borrowed from social network analysis. We focused in particular on six:97

average diameter: length of the longest path between pairs of nodes; average betweenness:98

measures the importance of each node in their ability to connect to dense subnetworks;99

assortative degree: measures the extent to which nodes of similar degree are connected100

to each other (homophyly); eccentricity: is the shortest path linking the most distant101

nodes in the network; average strength: rather than just count the number of connections102

of each node (degree), strength sums up the weights of all the adjacent nodes; average103

path length: measures the shortest distance between each pair of nodes. All measures104

were computed using the igraph package [21]. Thresholds of posterior probabilities for105

correlated evolution ranged from 0.01 (weak) to 0.99 (strong). LOESS regressions were106

then fitted to the results.107

3 Results108

In search for differences between regular epidemics and severe outbreaks, we started off109

by contrasting GP sequences of the Ebola virus that circulated before and since 2014. A110

visual inspection of the networks of correlated sites revealed a striking difference between111
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pre-2014 and outbreak sequences, in particular at weak correlations: while in pre-2014112

networks interactions are very dense and involve most sites of the GP protein, only a113

small number of sites are interacting in outbreak viruses (figure 1). Furthermore, with114

increasing strengths of interactions, outbreak networks become completely disconnected115

faster: at posterior probability P = 0.80 some sites still interact in pre-2014 proteins,116

while all interactions disappear from P = 0.60 in outbreak proteins (figure 1). Similar117

patterns for the Influenza (both HA and NA) and Zika viruses (figures S3-S5) suggest118

that during a severe outbreak, a destabilisation of viral genes occurs, especially amongst119

sites that entertain weak interactions.120

To investigate this destabilisation hypothesis further, we analysed the structure of121

these networks with the tools of social network analysis. Again, we found a consistent122

pattern when contrasting regular and outbreak viruses: at weak to moderate interactions123

(P ≤ 0.50), outbreak viruses have networks of smaller diameter, path length, and ec-124

centricity (figure 2a-c, columns 1-5). All these patterns point to fewer connected sites125

in outbreak viruses. Betweenness is smaller for outbreak viruses (except Ebola), and126

transitivity tends to be larger (except Zika). These last two measures also suggest that127

interactions amongst sites are weakened in outbreak viruses. Other networks statistics128

failed to show a clear pattern (figure S6); in particular, there were no clear differences129

in terms of degree, centrality or homophyly, properties that are not directly related to130

network stability.131

Should these weak interactions play a critical role in the stabilisation of viruses outside132

of pandemics, we would expect to observe the strengthening of all the network statistics133

after the outbreak, as years go by. To test this prediction and estimate how long this134

re-stabilisation process can take, we analysed in a similar way all influenza seasons in135

the Northern hemisphere following the 2009 pandemic. Consistent with our prediction,136
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both HA and NA genes show a gradual transition between a typical pandemic state to a137

regular state in two-to-three seasons (figure 2, column 6-7, respectively).138

4 Discussion139

To understand how evolutionary dynamics are affected during a viral outbreak, we com-140

pared non-outbreak and outbreak viruses. Based on the hypothesis that non-outbreak141

viruses converge towards a stable evolutionary strategy with their host, and that such142

a stability is mediated by correlated evolution amongst pairs of sites in viral genes, we143

reconstructed the coevolution patterns in genes of non-outbreak and outbreak viruses. In144

line with our prediction, results show that outbreak viruses exhibit fewer coevolving sites145

than their non-outbreak counterparts, and that these interactions are gradually restored146

after the outbreak, at least in the case of the Influenza (2009 H1N1) virus for both HA147

and NA.148

Two lines of evidence further support the destabilisation hypothesis. First, all three149

viruses showed temporary increases in their rate of molecular evolution during each out-150

break [2–4]; such increases can be expected to tear down the coevolution pattern, and151

hence, destabilise viral genomes. Second, a probable cause can be identified in all cases152

studied here. For Influenza, the 2009 pandemic was caused by a chain of reassortment153

events that affected the two genes studied here, HA (triple-reassortant swine) and NA154

(Eurasian avian-like swine) [4]. Such exchanges of segments can very well destabilise the155

evolutionary dynamics, at least of the implicated segments. A similar argument could be156

put forward for both Ebola and Zika viruses, as a change of host was implicated in the157

Ebola outbreak [2], and a change of continent in the case of Zika [3]. These corresponding158

changes of environment (sensu lato) might have triggered the destabilisations observed159

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2016. ; https://doi.org/10.1101/070102doi: bioRxiv preprint 

https://doi.org/10.1101/070102
http://creativecommons.org/licenses/by-nc-nd/4.0/


9

here.160

One outstanding question is about the importance of weak patterns of coevolution161

within a gene: how can it be explained that it is essentially weak correlations (around162

P = 0.25) that distinguish non-outbreak from outbreak viruses? In recent work with163

mice, four phenotypes were quantitatively analysed following large intercrosses, and linear164

regressions on pairs of quantitative trait loci were used to detect non-additive effects, i.e.,165

epistasis; it was then showed that most epistatic interactions were weak and, critically,166

tended to stabilise phenotypes towards the mean of the population [22]. Viruses are not167

mice, and all correlations that we detect are probably not signalling epistasis, but this work168

in mice and the evidence presented here go in the same direction: weak interactions have169

a stabilising effect on viral genes and their phenotype (epidemics). It is further possible170

that the intricate nature of these weak correlation networks has higher-order effects [22],171

that in turn increase canalisation and hence may help viruses weather environmental172

and genotypic fluctuations [23]. The elimination of these many weak interactions has a173

destabilising effect that may lead to outbreaks. While the evidence shown here does not174

support the causal nature of this relationship, monitoring correlation networks could help175

forecast imminent outbreaks.176

Data accessibility177
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Figure 1. Correlation network of pre-outbreak and outbreak Ebola viruses. Networks of
correlated sites in the GP protein are shown in each panel. The top row shows networks for the viruses
circulating before the 2014 outbreak (blue); the bottom row shows networks for outbreak viruses (red).
Each column shows networks for different strengths of correlation, from weak (P = 0.05) to strong
(P = 0.95). Nodes represent animo acid sites, and edges correlations. Node sizes are proportional to
diameter.
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Figure 2. Network properties between pandemic and non-pandemic viruses. Results are shown for Ebola (column 1), Zika
(2) and Influenza viruses (for HA and NA circulating in 2009 in (3) and (4), respectively, and for pandemic viruses circulating since
then, season by season (5-6)). Pandemic viruses are show in red, while non-pandemic ones are in blue. Shading: 95% confidence
envelopes of the LOESS regressions. Five network measures are shown: (a) diameter, (b) average path length, (c) eccentricity, (d)
betweenness, and (e) transitivity.
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