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Abstract

Expression quantitative trait loci (eQTL) analysis links sequence variants with gene
expression change and serves as a successful approach to fine-map variants causal
for complex traits and understand their pathogenesis. In this work, we present
an ensemble-based computational framework, EnsembleExpr, for eQTL prioriti-
zation. When trained on data from massively parallel reporter assays (MPRA),
EnsembleExpr accurately predicts reporter expression levels from DNA sequence
and identifies sequence variants that exhibit significant allele-specific reporter
expression. This framework achieved the best performance in the “eQTL-causal
SNPs” open challenge in the Fourth Critical Assessment of Genome Interpretation
(CAGI 4). We envision EnsembleExpr to be a powerful resource for interpreting
non-coding regulatory variants and prioritizing disease-associated mutations for
downstream validation.

1 Introduction

Genome-wide association studies (GWAS) have identified thousands of variants relevant to complex
traits or diseases (McCarthy et al.l 2008; Manoliol [2010; |Stranger et al., [2011}; |[Hindorff ez al., 2009).
However, as most of these variants reside in non-coding regions of the genome (Hindorff ef al.,|2009;
Frazer et al.||2009)), distinguishing the causal variants from the ones in strong linkage disequilibrium
(LD) remains challenging. Expression quantitative trait loci (¢QTL) analysis has been widely used
to assist in fine-mapping the causal mutations and provide immediate insight into their biological
basis (Cookson et all 2009). But meanwhile, similar to GWAS, the statistical power of eQTL
analysis is constrained by the complicated LD structure of the human genome and the statistical
multiple-comparison burden from the large number of variant-gene pairs to investigate.

The massively parallel reporter assay (MPRA) is an efficient way to systematically dissect transcrip-
tional regulatory elements (Melnikov ef al.|[2012)). In MPRA, a large number of synthesized DNA
elements and corresponding sequence tags are cloned into plasmids to form reporter constructs and are
transferred to cells. The expression of the tag is subsequently assayed by high-throughput sequencing.
Tewhey et al. further improved the efficiency and reproducibility of MPRA (Tewhey ef al.,2016) to
interrogate the expression level of reference and alternate alleles of 9,116 variants linked to 3,157
eQTLs. With this dataset, they discovered hundreds of variants with significantly different expression
between the two alleles (allele-specific expression). In the Fourth Critical Assessment of Genome
Interpretation (CAGI 4), this dataset was used as the training and test sets in the “eQTL-causal SNPs”
challenge to identify the best computational approaches to predict (reporter) expression level from
DNA sequence and to classify which sequence variants will lead to allele-specific expression.

In this work, we present a computational framework, EnsembleExpr, that outperformed all the
competing methods in both parts of the challenge. The performance of EnsembleExpr is robust to
various evaluation metrics. As an ensemble model, EnsembleExpr achieves performance superior
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to any single component by integrating complementary features of different sources and properties.
We also demonstrate how a sufficient range of sequence-based annotation of functional elements is
crucial to achieving accurate prediction of gene expression levels.

2 Background

2.1 Datasets in CAGI4 eQTL challenge

Tewhey et al. (Tewhey et al.|[2016) identified all the variants (range = 1 to 205, mean = 2.87, median
= 1) in perfect LD with 3,157 eQTLs drawn from the Geuvadis RNA-seq dataset of lymphoblastoid
cell lines (LCLs) from individuals of European ancestry (Consortium et al.| [2012; |Lappalainen et al.|
2013)). For each variant, the 150-bp flanking sequence of each of the two alleles were synthesized
with the corresponding allele centered at the middle of the synthesized oligonucleotide. With these
sequences as the library, MPRA experiments were carried out in two lymphoblastoid cell lines.

These data were split into three groups of similar sizes. The first group is the training set. It consists
of 3,044 variants, in which the normalized plasmid counts, RNA counts, log2 fold expression level
(“Log2FC”), expression p-value, multiple-testing corrected p-value and whether the expression for
either of the two alleles is significantly high (Regulatory Hit or “RegHit”). For each variant, the
dataset also includes the log?2 ratio (alternative/reference) of expression (“LogSkew”), allelic skew
p-value, allelic skew FDR and whether the change in expression is significantly large (“emVar”).

The next two groups were used as the test set, the labels of which were not provided to the participants
in the challenge. The second group consists of 3,006 variants, and the participants were required to
submit allele-specific expression predictions (“Log2FC”) and whether it is significant (“RegHit”).
The last group consists of 3,066 variants, 401 of which have at least one allele with strong expression
(“RegHit”). For these 401 variants, the participants were asked to predict allelic change of expression
(“LogSkew”) and whether it is significant (“emVar”). For all of the three groups, only the genomic
location and the sequences of the alleles were provided.

2.2 Tasks in CAGI4 eQTL challenge

Expression Prediction In this task, the participants needed to submit predictions and confidence
estimates for the expression level (“Log2FC”, real value) and whether the expression is significant
(“RegHit”, binary label) for the second group of data.

Allele-specific Expression Prediction In this task, the participants needed to submit predictions
and confidence estimates for the change of expression between two alleles of a variant (“LogSkew”,
real value) and whether the change is significant (“emVar”, binary label) for the third group of data.

3 Methods

3.1 Features

Sequence-based features were generated for the candidate regulatory regions given in the challenge
(Figure [TJA). First, 150-bp probe sequences were obtained for both studied alleles, as described
in the challenge input files. Then for the set of sequences, we applied several computational
approaches, including Kmer-Set Motif (KSM, in preparation), DeepSEA (Zhou and Troyanskaya,
2015), DeepBind (Alipanahi et al.,|2015) and ChromHMM (Ernst and Kellis, [2012)) to derive sets of
functional features that we hoped would help us predict expression levels.

Specifically, we used the DeepSEA probabilistic model to analyze the 150-bp sequences and obtain
allele-specific signal predictions for 919 DNase-seq, transcription factor ChIP-seq, and histone
mark ChIP-seq experiments. Similarly, we applied the DeepBind model to the same sequences and
generated allele-specific predictions for the binding affinities of 538 distinct transcription factors. In
addition, a KSM model trained on 57 ENCODE ChIP-seq experiments for a lymphoblastoid cell line
(GM12878) was used to produce predictions for transcription factor binding affinities. Chromatin
state annotations from the NIH Roadmap Epigenomics (Kundaje et al.| 2015) project were also
compiled for all regions and used as one-hot encoded binary features.
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Figure 1: The schematic of EnsembleExpr. (A) The 150-bp sequence centered at the queried allele is
taken as input to four computational models to generate functional features, on which two ensemble
models are built to make expression predictions (“log2FC”) and significance estimates (“RegHit”).
(B) In the training phase, the provided expression levels of the two alleles of each variant are used to
train an ensemble model of significant allele-specific expression (ASE). In the testing phase, we first
apply the trained expression model in (A) to generate expression predictions, which are then given to
the significant ASE model to make predictions (“emVar”). The difference of the predicted expression
levels is directly output as the prediction for allelic expression change (“LogSkew”).

Expression Prediction Task Armed with this set of potentially predictive features for expression
levels, many of which are allele-specific, we used an ensemble of regularized regression and clas-
sification models to predict allele-specific expression values and regulatory hit status based on the
provided training data (Figure[TJA).

Specifically, we trained multiple LASSO regression models to predict the log (normalized) expression
levels for each allele using the DeepSEA features alone, the DeepBind features alone, DeepSEA
and KSM features combined, and DeepSEA along with KSM and chromatin state annotations. All
learning algorithms were tuned by cross-validation, and the various feature sets were chosen using a
heuristic manual analysis. We averaged the LASSO model predictions to produce the final predictions
and took the standard deviation of the separate predictions as confidence estimates. For the binary
prediction task (“RegHit”), we trained a one-layer neural network with 400 neurons on the same four
sets of features described previously.

Allele-specific Expression Prediction Task For allelic expression change (“LogSkew”) prediction,
given that “LogSkew” is defined and calculated as the expression difference between the two alleles,
we decided to directly utilize the “Log2FC” expression model we trained in the previous section
instead of training a new model. Therefore we applied the trained “Log2FC” model to generate
expression predictions for each allele in the held-out test set to submit. Then for each variant, we
took the difference in predicted expression levels between the reference and the alternate alleles as
our “LogSkew” prediction (Figure[TB).

For predicting “emVar” labels (allele-specific expression status), we trained on the actual allele-
specific expression levels provided in the sample data. An ensemble of binary classification models
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was considered, with all regularization parameters tuned by cross-validation (Figure[T]B). Models
used in the final ensemble included linear regularized logistic regression, kernel regularized logistic
regression, k-nearest neighbors, support vector machine (SVM) with linear kernel and SVM with
radial basis function kernel. The predictions of all models were combined to form the final probability
estimate along with a measure of confidence in the prediction. After training, we first ran our
prediction module in the previous task (Expression Prediction) to generate predictions of allele-
specific expression, on which we applied the trained model here to make predictions of significant

allele-specific expression (“emVar” hits) for the held-out challenge dataset.
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Figure 2: EnsembleExpr outperformed all the competing methods. (A) The area under ROC (auROC,
left) and area under precision-recall curve (auPRC, right) for EnsembleExpr (red) and other methods
(grey) in predicting significant expression. (B) The auROC (left) and auPRC (right) for EnsembleExpr
(red) and other methods (grey) in predicting significant allele-specific expression.

4 Results

4.1 EnsembleExpr outperforms competing approaches in CAGI eQTL challenge

We assessed the prediction from EnsembleExpr and other competing methods in the challenge. For
predicting log (normalized) expression levels and expression levels between two alleles (“LogSkew”),
both of which are regression tasks, we used Spearman’s rank correlation coefficient which is non-
parametric and stable with the scale of the values. For predicting significant expression (“RegHit”)
and significant allele-specific expression (“emVar”), both of which are binary classification tasks, we
chose two benchmarks: receiver operating characteristic (ROC) and precision recall curve (PRC).
ROC evaluates how the true positive rate changes with the false positive rate, where a random
prediction would be along the diagonal with an area under curve (AUC) of 0.5 and a better model
would have larger AUC. PRC shows how the precision changes with increasing recall (true positives),
where the desired model should maintain high precision for large recall.

EnsembleExpr outperformed all the competing methods in both tasks. In the first part of the challenge,
expression predictions from EnsembleExpr correlate the best with the experimental observations
(Table[I} a Spearman correlation of 0.485 for the reference allele and 0.470 for the alternate allele).
In predicting significant expression (“RegHit”), EnsembleExpr is the only model with an auROC
> 0.8 and an auPRC > 0.5 (Table[T] Figure[JA).
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In the second part of the challenge, EnsembleExpr accurately predicted the change in expression
(“LogSkew”) with a Spearman correlation much better than most of the other submissions which
yielded close to zero (Table [2). Prioritizing variants that give rise to significant change of expression
(“emVar”) is the hardest among all tasks. In this task, EnsembleExpr also demonstrated superior
performance with a auROC of 0.655 and an auPRC of 0.452 (Table 2] Figure 2B).

EnsembleExpr also outperformed the state-of-the-art in the eQTL-prioritization literature. Recent
work (Zhou and Troyanskayal [2015) reported that a Ly-regularized logistic regression trained on
DeepSEA-derived features and evolutionary conservation scores achieved a performance that sur-
passes existing approaches. We generated the same features for the datasets in the eQTL challenge
and trained the same regularized logistic regression model to predict “emVar” labels. While ranking
third among all the submissions, this model achieved a performance inferior to that of EnsembleExpr
(auROC=0.589, auPRC=0.389, Table[2)). This comparison shows that EnsembleExpr not only excels
among all the submitted methods, but outperforms the state-of-the-art in the literature.

Thus EnsembleExpr modeled the diversity of expression well and demonstrated unmatched capacity
as a predictive model for eQTL prioritization. More importantly, the consistently high performance of
EnsembleExpr across different tasks and evaluation metrics proves the robustness of the predictions.

Table 1: Performance comparison for Expression Prediction task (sorted by RegHit auROC)

(Lagggig?szaon) Ref. Spearman corr. | Alt. Spearman corr. | RegHit auPRC | RegHit auROC
4 (EnsembleExpr) 0.484936 0.470176 0.528288 0.807690
6-1 0.290971 0.399997 0.461099 0.786722
2-2 0.278613 0.262536 0.402448 0.777035
2-4 0.260072 0.245915 0.437067 0.774688
2-5 0.261064 0.245595 0.432639 0.772747
6-2 0.290971 0.399997 0.433406 0.771472
6-3 0.433043 0.399116 0.426697 0.767268
2-6 0.199247 0.171989 0.353660 0.728643
2-1 0.173587 0.169082 0.385369 0.723336
1-5 0.295519 0.272904 0.304145 0.719242
1-1 0.251873 0.248376 0.329400 0.716045
1-3 0.251027 0.248319 0.328427 0.713983
1-6 0.318642 0.300630 0.312914 0.713570
1-4 0.254598 0.236243 0.311588 0.709843
5-1 0.252023 0.223952 0.369462 0.693357
1-2 0.174655 0.168176 0.293471 0.683512
7 0.208036 0.194298 0.437487 0.670681
3 0.304933 0.236940 0.242830 0.652059
5-2 0.352951 0.353493 0.189516 0.578095
2-3 0.000766 -0.002387 0.126747 0.513558

4.2 Components of the ensemble provide complementary functional information

We benchmarked EnsembleExpr and each of the single models included in the ensemble to understand
the major sources of improvement. Through ten-fold cross-validation, for each model we evaluated
the median R? when predicting log expression level (“Log2FC”) and the median auROC and auPRC
when predicting significant expression (“RegHit”’). We observed that with the DeepSEA-predicted
functional features, including TF binding, histone marks and DNase hypersensitivity, we could already
reach decent accuracy in both tasks (Table [3). However, models with only TF binding-based features
from either deep learning (DeepBind) or k-mer based models (KSM) are much less satisfactory. But
we did observe that incorporating DeepSEA with features from KSM and ChromHMM led to better
performance, suggesting that these two models provided complementary information despite the
comprehensiveness of the DeepSEA output.
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Table 2: Performance comparison for Allele-specific Expression Prediction task (sorted by emVar

auROC)
(Lalf?srsgigﬁsztion) LogSkew Spearman corr. | emVar auPRC | emVar auROC
4 (EnsembleExpr) 0.449760 0.452561 0.655261
5-1 0.333893 0.409730 0.626850
Published state-of-the-art Not Applicable 0.389 0.589

5-2 0.342004 0.369083 0.577220

7 0.007343 0.431639 0.562854

6-1 0.217845 0.345064 0.561953

6-2 0.190123 0.354726 0.561776

1-3 NaN* 0.311243 0.556499

1-1 NaN* 0.305258 0.550820

1-2 0.030243 0.295886 0.550048

2-3 -0.015476 0.303051 0.545206

1-5 0.056143 0.284863 0.541216

1-4 0.079049 0.293321 0.530856

3 0.030049 0.284356 0.511181

1-6 0.105376 0.286584 0.510103

2-2 -0.007377 0.249473 0.479746

2-1 -0.024347 0.234723 0.477301

2-5 -0.023092 0.233144 0.472651

2-6 -0.023092 0.233144 0.472651

2-4 -0.023092 0.233144 0.472651

*: every variant was assigned the same score, leading to incalculable Spearman correlations

Table 3: Performance of each component in the ensemble

. Task1-a Task1-b
Features included R2 AUROC ‘ AUPRC
Ensemble 0.3976 | 0.8647 | 0.5830
KSM+DeepSEA* 0.3803 | 0.8515 | 0.5622
KSM+DeepSEA+ChromHMM* | 0.3769 | 0.8462 | 0.5380
DeepSEA* 0.3728 | 0.8347 | 0.5391
DeepBind* 0.2508 | 0.8209 | 0.4438
KSM 0.2393 | 0.7943 | 0.3943

*: models included in the ensemble

4.3 Accurate eQTL prioritization requires a comprehensive panel of functional features

We next sought to understand what sequence-derived functional features, among the hundreds we
used, are most predictive of expression and eQTL status. Expression is regulated by sophisticated
machinery where numerous regulators and epigenetic marks act in concert. To include a large enough
panel of features, we investigated one of the LASSO regression models in the ensemble that was
trained to predict expression (“Log2FC”) from sequence-derived prediction of DNase hypersensitivity,
histone marks, transcription factor binding and chromatin state (Supplementary Table 1).

We first analyzed the sign of the coefficients in the LASSO model to understand the direction in
which each feature affects the expression prediction. As expected, the model assigned large positive
weights to DNase hypersensitivity, histone marks known to be associated with promoters (such as
H3K4me3) and active functional elements (such as H3K27ac), and transcription initiators (such as
IRF1) (Supplementary Table 2). The model also gave large negative weights to chromatin regulators
known for repressive effects on transcription (such as EZH2) and histone marks predictive for gene
bodies (such as H3K36me3). Interestingly, we observed that the LASSO model consistently assigned
negative or close-to-zero coefficients to H3K4mel, which is known as strongly indicative for distal
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elements such as enhancers (Creyghton ef al.l |2010). This observation persisted even when we
retrained the model 10 times, and calculated the mean and 95% confidence interval of the coefficients
(Supplementary Table 2). As DeepSEA does not predict H3K4me1 any less accurately than other
marks (Supplementary Table 2 in Zhou and Troyanskaya (2015)), we speculate that this might reflect
MPRA'’s insensitivity to sequences that regulate gene expression in trans.

We next analyzed the importance of the features. By design, LASSO models impose sparsity and force
the coefficients for non-important features to zero. However, the limitation of such L-regularization
based models is that when faced with a group of highly correlated features, as in our experiments,
the model will only pick one of them. Thus to fully understand which features are important for
expression prediction, instead of directly looking at the coefficients in the LASSO model, we retrained
a Randomized Lasso model that performs “stability selection” (Meinshausen and Biithlmannl 2010)
by resampling the train data and computing a LASSO model on each resampling. The more often
a feature gets selected, the more important it is for the performance of the model. We observed a
bi-modal distribution of feature importance (Supplementary Figure 1). Most of the 994 features are
considered not very important, while a group of 60 features demonstrate great importance. These top
60 features are highly diverse, including histone marks predictive for enhancer/promoter/repressive
regions, important transcription regulators and chromatin states predictions (Supplementary Table 3).
This diversity of useful features suggests that a comprehensive functional annotation of the sequence,
rather than one type or two, is essential for accurate expression prediction and eQTL prioritization.
We also observed that while many of the important features are predicted for the same type of cell
line as the one the MPRA experiment was performed on (lymphoblastoid cell lines), many features
predicted for other cell lines, such as K562 and H1-hESC, also proved to be highly informative.

5 Discussion

In this work, we presented EnsembleExpr, an ensemble-based framework that predicts expression
level from sequence and prioritizes sequence variants that exhibit allele-specific expression. We
showed that EnsembleExpr achieved the best performance in both parts of the “eQTL-causal SNPs”
challenge in the Fourth Critical Assessment of Genome Interpretation (CAGI4).

Each component of the EnsembleExpr provides useful yet complementary information, leading to
a successful ensemble with performance surpassing any of the single ones. Through a systematic
analysis of feature importance, we demonstrated that the features considered important for accurate
prediction are highly diverse, ranging from chromatin state and histone marks to transcription factor
binding.

In this framework, most of the features we used, except the chromatin state labels from ChromHMM,
are obtained from sequence-based computational models that can provide allele-specific predictions.
This enables precise characterization of how a single-base change affects expression levels, which we
consider crucial for any model aiming to interpret sequence variants.

With the capacity to accurately predict sequence variants with significant allele-specific expression,
we expect EnsembleExpr to serve as an important resource to pinpoint mutations causal for com-
plex traits and diseases and help understand the pathogenic pathways. We make EnsembleExpr
openly available at http://ensembleexpr.csail.mit.edu for researchers to utilize freely for
downstream analysis.
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