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Abstract

Across many species, a large fraction of genetic variants that influence phenotypes of interest

is located outside of protein-coding genes, yet existing methods for identifying such vari-

ants have poor predictive power. Here, we introduce a new computational method, called

LINSIGHT, that substantially improves the prediction of noncoding nucleotide sites at which

mutations are likely to have deleterious fitness consequences, and which therefore are likely

to be phenotypically important. LINSIGHT combines a simple neural network for functional

genomic data with a probabilistic model of molecular evolution. The method is fast and

highly scalable, enabling it to exploit the “Big Data” available in modern genomics. We show

that LINSIGHT outperforms the best available methods in identifying human noncoding vari-

ants associated with inherited diseases. In addition, we apply LINSIGHT to an atlas of human

enhancers and show that the fitness consequences at enhancers depend on cell-type, tissue

specificity, and constraints at associated promoters.
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Introduction

In the human genome, a large majority of nucleotides that are associated with diseases or other

phenotypes, or that show signatures of natural selection, falls outside of protein-coding genes1–3.

Many of these nucleotides appear to fall in cis-regulatory elements, including promoters, en-

hancers, and insulators. Similar observations hold across most animals and plants, as well as

some other eukaryotes4–7. Nevertheless, the capability to identify and characterize functionally

important noncoding sequences is decades behind that for protein-coding sequences. Investiga-

tors still lack a deep understanding of many fundamental properties of these sequences, including

the manner in which they interact with chromatin and transcription factors and the biophysical

dynamics of protein / nucleic acid complexes important in transcriptional and posttranscriptional

regulation. This limited ability to make sense of noncoding DNA is a major barrier for progress in

establishing the genetic basis for many diseases and other phenotypes, with major implications for

biomedicine, agriculture, synthetic biology, and other fields.

For more than a decade, the genomics community has pushed for a deeper understanding of

the noncoding genomes of many animal and plant species through systematic interrogation with

high-throughput biochemical assays for features such as transcriptional activity, chromatin accessi-

bility, and specific histone modifications and transcription factor binding events8–12. These efforts

have produced a wealth of data for dozens of cell types across a range of organisms, and have

helped both to identify many predicted regulatory elements, and to clarify many general aspects

of gene regulation. Nevertheless, a substantial gap remains between the outcomes of these high-
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throughput experiments and a detailed understanding of noncoding function, for several reasons.

First, these assays generally measure genomic and epigenomic features roughly correlated with,

but not directly indicative of, regulatory function. Second, they generally have relatively low reso-

lution along the genome, identifying regions hundreds of nucleotides long, rather than pinpointing

single nucleotides. Third, these measures are highly condition-specific, and data has only been

generated for a small subset of cell types and conditions.

As a consequence, there is a pressing need for computational methods that more precisely

predict regulatory function by jointly considering the results of numerous such assays together

with complementary data, such as annotations of protein-coding genes and measures of evolu-

tionary conservation across species. The development of statistical and machine-learning methods

that attempt to address this integrative prediction challenge has emerged as an active, fast-moving

area of research. Recently published methods in this area can be roughly divided into three cate-

gories: (1) machine-learning classifiers that attempt to separate known disease variants from puta-

tively benign variants using a variety of genomic features (e.g., GWAVA13 and FATHMM-MKL14);

(2) sequence- and motif-based predictors for the impact of noncoding variants on cell-type-specific

molecular phenotypes, such as chromatin accessibility or histone modifications (e.g., DeepBind15,

DeepSEA16 and Basset17); and (3) evolutionary methods that consider data on genetic variation

together with functional genomic data and aim to predict the effects of noncoding variants on fit-

ness (e.g., CADD18, DANN19, FunSeq220, and fitCons3). A limitation of the first two classes of

methods is that they depend strongly on the available training data, which may be limited and

may not be representative of the broader class of regulatory sequences of interest. By contrast,
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the evolutionary methods obtain their signal not primarily from previously assigned class labels,

but instead from signatures of natural selection across the genome over many generations, and

they are therefore much less data limited. This approach is likely to be particularly powerful for

regulatory sequences that tend to be under strong purifying selection, such as Mendelian disease

variants. Evolution-based methods also naturally integrate over cell-types, an important strength

when the relevant tissue- or cell-types for a condition of interest are unknown (as with many human

diseases).

Among the available evolution-based methods, fitCons is unique in explicitly characterizing

the influence of natural selection at each genomic site of interest using a full probabilistic evolu-

tionary model and patterns of genetic variation within and between species. FitCons makes a dis-

tinction between functional genomic and comparative genomic data, first defining several hundred

clusters of genomic positions with distinct functional genomic “signatures,” and then estimating

the fraction of nucleotides under natural selection within each cluster from polymorphism and di-

vergence data. These estimates are obtained using the INSIGHT evolutionary model21, 22, and are

interpreted as the probabilities that mutations in each cluster of genomic sites will have fitness con-

sequences (fitCons scores). In this manner, fitCons aggregates information about natural selection

from a large number of sites with similar functional profiles based on evolutionary first principles.

FitCons provides a useful, easily interpretable readout along the genome, complementary to con-

ventional evolutionary conservation scores, and it performs well in predicting cell-type-specific

functional elements. A major limitation of the method, however, is that it scales poorly with the

available functional genomic data. In particular, the number of clusters considered by the method
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increases exponentially with the number of functional genomic annotations. This exponential de-

pendency limits the method’s ability to take advantage of the growing body of available functional

genomic data and therefore limits prediction power. A related problem is that the restriction to

small numbers of genomic features leads to a relatively coarse-grained, blocky pattern of scores

along the genome, which does not allow for fine distinctions among nearby nucleotide sites.

In this paper, we describe a new method, Linear INSIGHT (LINSIGHT; pronounced lin-site),

that is based on the existing INSIGHT/fitCons framework but has vastly improved speed, scalability,

genomic resolution, and prediction power. The main idea behind LINSIGHT is to bypass the clus-

tering step of fitCons and instead couple the probabilistic INSIGHT model directly to a generalized

linear model for genomic features. This results in a more streamlined model that scales linearly,

rather than exponentially, with the available data, and can make direct use of the input data, with no

need for discretization. This generalized linear model can be regarded as a simple neural network,

and it readily extends to more complex, multi-layered networks, allowing for nonlinearities and

interdendencies among genomic features. By integrating a large number of genomic features, LIN-

SIGHT provides a systematic, high resolution description of the fitness consequences of noncoding

mutations in the human genome. We demonstrate that LINSIGHT outperforms state-of-the-art pre-

diction methods in the task of prioritizing noncoding disease variants from the Human Gene Mu-

tation database (HGMD)23 and the NCBI ClinVar database24. Furthermore, we use LINSIGHT to

show that the evolutionary constraints on human enhancers depend on their associated tissue types,

degree of tissue specificity, and associated promoters, which has important implications for under-

standing the evolution of cis-regulatory elements and for improving variant prioritization methods.
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Our LINSIGHT scores are available as a track on the Cold Spring Harbor Laboratory mirror of the

UCSC Genome Browser (hg19 assembly).

Results

LINSIGHT combines INSIGHT with a scalable linear model. The original INSIGHT and fitCons

methods3, 21, 22 infer the selective pressure on noncoding sites, and hence the likely fitness conse-

quences of noncoding mutations, by contrasting patterns of genetic variation at each focal site with

the patterns at nearby genomic regions that are likely to be free from the influence of selection

(“neutrally evolving sites”). To address the problem that genetic variation within species and be-

tween closely related species (such as the human and chimpanzee) are sparse across the genome,

fitCons pools information across the thousands of genomic sites assigned to each discrete cluster.

The key idea behind LINSIGHT is instead to accomplish this pooling of information across

sites indirectly, using a generalized linear model (Figure 1; see Supplementary Text and Supple-

mentary Table 1 for complete details). In particular, the parameters of the INSIGHT model that

describe natural selection (ρ and γ) are determined as linear-sigmoid functions of the genomic

features local to each site. Thus, the fitness consequences of mutations at each site are assumed to

depend on genomic features at that site, such as its RNA expression level (RNA-seq read depth),

chromatin accessibility (DNase-I hypersensitive sites), histone modifications or bound transcrip-

tion factors (ChIP-seq peaks), as well as features based on annotations (e.g., distance to nearest

transcription start site, match to known TFBS motif) and comparative genomics (e.g., phyloP or

phastCons scores). This approach has several major advantages: it requires no clustering and no
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discretization a priori, and it scales linearly with the available genomic features, allowing hundreds

or even thousands of features to be considered. In contrast to fitCons, the scalability of the method

enables data to be pooled across cell-types, and it allows the scores to reach single-nucleotide res-

olution along the genome. Nevertheless, LINSIGHT continues to benefit from the advantages of the

probabilistic INSIGHT model of molecular evolution.

All parameters of the LINSIGHT model can be estimated simultaneously from genome-wide

data by maximum likelihood using an online stochastic gradient descent algorithm (Methods).

The gradients for the feature weights can be efficiently computed by the back-propagation method

widely used in neural network training25. Indeed, the model can be considered a type of neural net-

work, albeit one without hidden layers. Its main disadvantage relative to fitCons—the assumption

of an additive, linear relationship between features and selection parameters—could be addressed

by adding hidden layers to the neural network, although we have found its performance to be

excellent without this extension. Notably, the amount of data available for training is large in com-

parison to the number of free parameters and we have not found regularization to be necessary, but

it could easily be added if necessary.

LINSIGHT scores across the human genome are generally consistent with, but often improve

on, previous measures of evolutionary conservation. We applied LINSIGHT to a large public

data set consisting of complete genome sequences for multiple human individuals and nonhuman

primates, comparative genomic data for mammals and vertebrates, and a wide variety of func-

tional genomic data, and we generated LINSIGHT scores for all positions across human reference

genome (Methods). We considered a total of 48 genomic features, falling in three general classes:

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 15, 2016. ; https://doi.org/10.1101/069682doi: bioRxiv preprint 

https://doi.org/10.1101/069682


conservation scores, predicted binding sites, and regional annotations (Table 1 and Supplementary

Table 2). We used the human polymorphism data (from the Complete Genomics “69 Genomes”

data set) and primate divergence data (from alignments of the human, chimpanzee, orangutan, and

rhesus macaque genomes) that were used for fitCons3. Note that, while it might appear circular

to use evolutionary conservation scores as features since LINSIGHT’s objective function is also

essentially a measure of conservation, these scores reflect the influence of natural selection over

alternative time scales (e.g., ∼80 million years of mammalian evolution), and considering them in

this way substantially improves prediction performance (as shown below; see Discussion).

The distributions of INSIGHT scores in annotated regions of the noncoding genome are gen-

erally consistent with previous observations based on conservation scores1, 4, 26. For example, splice

sites are very highly constrained (median LINSIGHT score of 0.956, indicating a 95.6% probability

of fitness consequences due to mutations at these nucleotide sites), whereas annotated TFBSs show

reduced, but still substantial, constraint (median score of 0.240 for TFBSs shared across species,

median score of 0.106 for all TFBSs from the Ensembl Regulatory Build27; Figure 2a). Other pro-

moter regions (median score of 0.073) and untranslated regions (UTRs; median scores of 0.128 and

0.076 for 5′ and 3′ UTRs, respectively) are somewhat less constrained, and unannotated intronic

and intergenic regions exhibit the least constraint (median scores of 0.044–0.048). As observed

previously, 5′ UTRs show somewhat more constraint than 3′ UTRs, although both types of UTRs

contain subsets of sites subject to strong selection (LINSIGHT score >0.8)4, 26. The estimate for

the more conserved TFBSs (0.240) is roughly similar to, if slightly lower than, previous estimates

directly obtained from experimentally defined TFBSs (∼30-40% of sites under selection22, 28), de-
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spite that it was obtained indirectly in this case via the generalized linear model. The genome-wide

average of the LINSIGHT scores is about 0.07, suggesting that about 7% of noncoding sites are un-

der evolutionary constraint, consistent with numerous previous studies3, 4, 29–31.

Across all noncoding positions in the genome, the LINSIGHT scores are fairly well correlated

with scores from recently published methods such as FunSeq220 and Eigen32 (Spearman’s ρ =

0.43–0.48), moderately with those from fitCons3 (ρ = 0.33), and relatively poorly with those from

phyloP26, GERP++33, and CADD18 (ρ = 0.04–0.06; Supplementary Figure 1a). However, these

sitewise correlations are strongly influenced by large regions of the genome bereft of functional

genomic data. Within phastCons-predicted conserved elements4, which are strongly enriched for

regulatory function, LINSIGHT’s correlation increases to ρ = 0.62–0.66 for phyloP, GERP++, and

Eigen, and to ρ = 0.43 for CADD, while decreasing to ρ = 0.42 for FunSeq2 and to ρ = 0.16

for fitCons (Supplementary Figure 1b). In general, the scores that make use of functional genomic

data, including those from LINSIGHT, FunSeq2, Eigen, and CADD, are relatively well correlated,

as are those from the pure conservation methods, phyloP and GERP++, but these two groups of

scores are less well correlated with one another. The fitCons method shows the least correlation

with other methods, primarily because of its low genomic resolution.

On the task of identifying likely regulatory elements in unannotated regions of the genome,

the functional genomic methods generally perform better than pure conservation methods, and

LINSIGHT is among the best available methods at this task. For example, LINSIGHT has good power

to identify transcription factor binding sites from the ORegAnno database34, with an AUC = 0.926,

outperformed only by DeepSEA (AUC = 0.965) and FunSeq2 (AUC = 0.950) among seven meth-
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ods tested (Supplementary Figure 2). These three methods perform substantially better than cons-

ervation-based methods (e.g., phyloP has AUC = 0.884) as well as methods that use functional

genomic data such as GWAVA (AUC = 0.814), CADD (AUC = 0.841), and Eigen (AUC = 0.899).

Thus, despite that it relies on an evolutionary objective function, LINSIGHT maintains good perfor-

mance in the prediction of regulatory elements, competitive with methods optimized for regulatory

element prediction and superior to methods that consider evolutionary conservation alone.

Consistent with these general trends, LINSIGHT highlights many of the regions identified

by conservation-methods such as phastCons, phyloP, and GERP++, but also identifies some re-

gions that have relatively low conservation scores yet are likely to have important biological func-

tions. An example is HGMD variant CR065653, associated with up-regulation of the telomerase

reverse transcriptase (TERT) gene, which obtains an elevated LINSIGHT score, but is not identi-

fied by phastCons, phyloP, or GERP++ as being under constraint (Figure 2b). This example also

demonstrates that the genomic resolution of the LINSIGHT scores is dramatically better than that

of fitCons, and approaches the nucleotide resolution of phyloP and GERP++.

LINSIGHT accurately identifies disease-associated variants in noncoding regions. We tested

the ability of LINSIGHT to identify noncoding nucleotide positions that are associated with inher-

ited human diseases, using the HGMD23 and ClinVar24 databases to define positive examples, and

common polymorphisms (MAF > 1%), which are unlikely to be functionally important, to define

negative examples. For comparison, we evaluated the CADD18, Eigen32, DeepSEA16, FunSeq220,

GWAVA13, and phyloP26 methods on the same task. For each scoring method, we computed false

positive vs. true positive rates for the complete range of score thresholds, displaying the results as
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receiver operating characteristic (ROC) curves and measuring prediction power by the area-under-

the-curve (AUC) statistic. Because the results of these tests can be highly sensitive to the criteria

for selecting negative examples, we considered three schemes of increasing stringency (follow-

ing ref. [13]): all negative examples (unmatched), negative examples matched by distance to the

nearest transcription start site (matched TSS), and negative examples matched by specific genomic

region (matched region; see Methods for details).

Overall, LINSIGHT outperformed all other methods in all comparisons (Figure 3 and Supple-

mentary Figure 3). Its absolute prediction power varied across matching schemes in a predictable

manner, being highest in the unmatched comparison (e.g., AUC = 0.897 for HGMD) and de-

creasing in the matched TSS (AUC = 0.759) and matched region (AUC = 0.660) comparisons.

The same effect also occurred for most other methods, but the methods that make heavier use of

regional information, such as FunSeq2, suffered more as the matching stringency increased. In

almost all cases, the AUCs were considerably higher for ClinVar than for HGMD, apparently be-

cause ClinVar is heavily enriched for variants in splice sites, which are relatively easy to identify

(Supplementary Figure 4). An exception to this rule was GWAVA, which performs exceptionally

well on HGMD (cross-validation AUCs of 0.71–0.97)13 and much more poorly on ClinVar (AUCs

of 0.741–0.887), but GWAVA was trained using HGMD13 and its performance on that data set

appears to reflect overfitting (not shown in the ROC plots for this reason). This dependency on

the training set for GWAVA demonstrates one of the pitfalls of pure classification strategies, and

highlights a strength of the evolution-based strategy, which are much less dependent on a training

set. Nevertheless, phyloP performs quite poorly on the HGMD data set, and CADD is only slightly

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 15, 2016. ; https://doi.org/10.1101/069682doi: bioRxiv preprint 

https://doi.org/10.1101/069682


better, showing that scores based exclusively or primarily on evolution are of limited usefulness

in this task. The excellent performance of INSIGHT in the tests appears to derive from its use of

both a broad collection of informative features along the genome and an evolution-based objective

function.

The relative contributions of genomic features to LINSIGHT prediction performance are

context-dependent. The genomic features used by LINSIGHT can be grouped into three broad

classes: conservation scores, predicted binding sites, and regional annotations (Table 1). We ex-

amined the relative contributions to prediction power of these feature classes by retraining the

model three times, each time removing a different class of features. This procedure was applied

at the level of feature classes, rather than individual features, because of the strong correlations

among the features within each class. We measured the prediction power of each version of the

model using the AUC statistic, as above, but this time we merged the HGMD and ClinVar variants

and then divided them into four categories based on their locations relative to genomic annota-

tions: variants in promoters of protein coding genes; variants in 5′ or 3′ UTRs; variants proximal

to splice sites; and all other noncoding variants. As a measure of the contribution of each class of

features, we used the reduction in AUC resulting from the exclusion of that feature class. Thus, a

large reduction in AUC implies that the removed features are highly important in prediction, while

a small reduction implies that they are less important.

These feature classes provide complementary information about disease variants, but their

relative contributions depend strongly on both the matching scheme for positive and negative

examples and on the genomic locations of the variants of interest (Figure 4 and Supplementary
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Figure 5). For example, regional annotations are powerful predictors when unmatched negative

controls are used (Figure 4a), because these features are broadly useful in distinguishing genomic

regions enriched for functional variants from the genomic background. However, when matched

TSS or matched region controls are considered (Figure 4b and Supplementary Figure 5), regional

annotations diminish in importance and, in most genomic regions, conservation scores make a

larger contribution to prediction performance. This is because the higher genomic resolution of

conservation scores makes them much more useful in distinguishing functional sites from nearby

nonfunctional sites. Interestingly, predicted binding sites make a substantial contribution only in

promoter regions and in the case of matched controls (Figure 4e and Supplementary Figure 5a),

apparently because these binding sites (most of which are TFBSs) are strongly enriched in these re-

gions. Altogether, these results indicate the contributions of genomic features to prediction power

for disease-associated noncoding variants depends on both the genomic regions considered and the

details of the comparison scheme. This observation may help to explain some of the discrepancies

in the literature regarding the apparent relative prediction performance of the available methods.

The evolutionary constraints on enhancers are context-dependent. In addition to its value in

identifying regulatory sequences and predicting disease relevance, LINSIGHT is potentially useful

for studying the influence of natural selection on noncoding sequences. Compared with other mea-

sures of selection, LINSIGHT has the advantages of considering both functional genomic and pop-

ulation genomic data, of detecting the influence of selection on relatively recent time scales (e.g.,

since the human/chimpanzee divergence), and of providing a model-based, easily interpretable

measure of fitness consequences. With these advantages in mind, we used the method to gauge
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the degree of evolutionary constraint on enhancers in the human genome, considering in particular

the relationships between constraint and the number and type of active cell types and the target

promoter of each enhancer. We analyzed nearly 30,000 enhancers (median length 293 bp) from a

recently published atlas of active enhancers in dozens of human cell types and tissues, which were

identified based on their transcriptional signatures35. This approach of annotating enhancers based

on enhancer-associated RNAs (eRNAs) has been shown to identify elements having active roles in

gene regulation in a cell-type-specific fashion with high genomic resolution35–37.

First, we examined the relationship between the LINSIGHT scores and the number of cell

types in which each enhancer is active. We found that the LINSIGHT scores were significantly

positively correlated with the number of active cell types (p < 10−15; Figure 5a), indicating that a

broader spectrum of activity across cell types is associated with stronger purifying selection. This

finding parallels similar findings for protein-coding genes38–40 and TFBSs22 and likely reflects a

general correlation between pleiotropy and constraint (see Discussion). Second, we examined the

relationship between the LINSIGHT score for each enhancer and the tissue type in which that en-

hancer is active, focusing on tissue-specific enhancers (active in a single tissue type). We found

that tissue-specific enhancers that were associated with sensory perception (olfactory region and

parotid gland), the immune system (lymph node), digestion (stomach), and male reproduction (pe-

nis and testis) had the lowest LINSIGHT scores, whereas tissue-specific enhancers associated with

tissues such as smooth muscle, the skin, and the urinary tract and bladder had the highest LIN-

SIGHT scores (Supplementary Figure 6). These findings are also broadly consistent with findings

for protein-coding genes, which have indicated that sensory, immune, dietary, and male reproduc-
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tive genes are enriched with positively selected (fast evolving) genes40, 41. Interestingly, enhancers

active in tissues associated with female reproduction (e.g., uterus, female gonad, and vagina) ap-

peared to be under substantially more constraint than those active in tissues associated with male

reproduction, perhaps owing to increased positive selection on male reproductive functions. Fi-

nally, we compared the LINSIGHT scores at enhancer/promoter pairs predicted from co-expression

across tissues35. The LINSIGHT scores for these paired enhancers and promoters are weakly but

significantly correlated (Figure 5b), indicating that the same types of evolutionary pressures tend to

act at both members of each pair. Together, these results indicate that the evolutionary constraints

on enhancers are dependent on several factors, including their degree of tissue specificity, the par-

ticular tissues in which they are active, and the evolutionary constraints associated with their target

promoters.

Discussion

As sequencing costs fall and appreciation for regulatory variation grows, whole genome sequenc-

ing is rapidly supplanting exome sequencing as the primary technique for identifying and charac-

terizing genetic variants that have phenotypic consequences. Hence, there is an increasing need

for computational methods that can effectively prioritize noncoding variants based on their likeli-

hood of phenotypic importance. In this paper, we address this problem with a new computational

method, called LINSIGHT, that combines the evolutionary model of our previously developed IN-

SIGHT method with a generalized linear model for functional genomic data and genome annota-

tions, resulting in substantially improved scalability, resolution, and power. We have generated

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 15, 2016. ; https://doi.org/10.1101/069682doi: bioRxiv preprint 

https://doi.org/10.1101/069682


LINSIGHT scores across the human genome, making use of a large collection of publicly avail-

able population, comparative, and functional genomic data, and we find the scores to be consistent

with previously available scoring in many respects, but to improve on them in others. For ex-

ample, they have better power than both pure conservation-based methods and methods based on

genomic polymorphism for identifying known transcription factor binding sites. They are compet-

itive with modern machine-learning methods, such as DeepSEA16, that are specifically designed

for binding site identification. On the task of identifying human disease-associated variants from

the HGMD and ClinVar databases, LINSIGHT offered the best performance of several methods we

tested, across a range of types of variants and test designs. Importantly, LINSIGHT requires no

training set of known regulatory or disease variants and therefore is expected to have better gener-

alization properties and fewer biases than “supervised” machine-learning classifiers or sequence-

and motif-based predictors (see Introduction). This improved generalization was evident in the

improved performance of LINSIGHT across tests sets compared with GWAVA.

In conceptual terms, the new LINSIGHT method is closely related to our previous fitCons

method3, with the primary difference being that LINSIGHT pools data across sites implicitly through

the use of its linear-sigmoid model, whereas fitCons pools data by explicitly clustering sites ac-

cording to discretized functional genomic signatures. In effect, LINSIGHT trades the restrictions

of a linearity assumption for the benefits of computational speed, a reduced parameterization, and

scalability to very large numbers of genomic features. Notably, the new model design also has

a number of important side benefits. First, it avoids the need for discretization of the genomic

features. In addition, as the number of features grows larger, the genomic resolution of the scores
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naturally becomes much finer, approaching the nucleotide-level resolution of conservation scores.

Finally, the linear-sigmoid model can naturally be extended to a “deep” neural network through

the addition of hidden layers. While it remains to be seen how much this extension will help in

practice, in principle it can address the types of nonlinearity and interactions between features that

have been observed in this setting (for examples, see references [3] and [42]), and it may therefore

improve estimates of the fitness consequences of noncoding mutations.

Our approach to characterizing noncoding variants is based on the premise that natural se-

lection in the past, at individual nucleotide sites, provides useful information about phenotypic

importance in the present. This assumption clearly will not hold in all cases. For example, vari-

ants that increase the risk for post-reproductive diseases or that influence phenotypes dependent

on features of the modern environment (such as smoking, industrial chemicals, or abundant high-

calorie food) will not necessarily show signs of historical purifying selection. In addition, traits

dependent on highly epistatic loci or on the aggregate contributions of large numbers of loci may

have difficult-to-detect marginal contributions to fitness at individual nucleotides. Nevertheless,

our results indicate that the evolution-based approach is useful for many phenotypes of interest.

Furthermore, it is important to bear in mind that experimental approaches for identifying gene reg-

ulatory mutations also have limitations. For example, methods that depend on reporter gene assays

may not adequately consider the true genomic context and cell-type-dependence of a mutation,

and methods that depend on an RNA expression readout may not consider post-transcriptional or

post-translational influences. Evolution-based methods have the important advantage of measur-

ing the importance of genetic variants in real organisms in their natural environments over many
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generations. Thus, we expect that these methods will remain a powerful, complementary tool for

characterizing regulatory sequences, even as experimental methods improve.

In our previous work, we avoided considering evolutionary conservation as a genomic fea-

ture, instead making a clear distinction between features based on functional genomics and an

objective function based on patterns of genetic variation (via INSIGHT)3. In this work, we found

that we could improve our prediction performance substantially by relaxing this distinction and

including conservation scores as inputs to the model (see also references [13, 16, 18]). Thus, de-

spite the limitations of conventional conservation scores—such as their sensitivity to alignment

error and evolutionary turnover—they appear to be among the most informative features about

the recent natural selection measured by the INSIGHT model. We attribute their value in this set-

ting to the freedom of LINSIGHT to find a weighted combination of conservation scores, functional

genomic data, and annotations that is most informative about recent selection. The value of conser-

vation scores may increase further in an extension to a deep neural network, because conservation

is likely to be more informative in the presence of some combinations of genomic features than

others. For example, evolutionary conservation on the timescale of mammalian evolution is likely

to be more informative about recent selection in protein-coding genes, promoters, and splice sites

than in enhancers, which exhibit more turnover43.

Using LINSIGHT, we examined the influence of negative selection on enhancers, consid-

ering the relationships between constraint on enhancers and numbers of active cell types, tissue

of activity, and constraint at associated promoters. LINSIGHT is potentially useful for addressing

these questions because it should be much more robust to evolutionary turnover than conven-
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tional conservation-based methods, and some classes of enhancers are known to turn over more

quickly than others43. We found that, in general, the trends in constraint at enhancers parallel

those previously reported for protein-coding genes. For example, constraint increases with breadth

of activity across cell types and decreases in tissues associated with adaptation, such as olfactory

regions, the immune system, and male reproduction. Constraint also appears to be correlated at

enhancer/promoter pairs. These observations about the specific ways in which evolutionary con-

straints on enhancers depend on genomic context may be useful in improving the prediction power

for the fitness consequences of noncoding mutations.

As has been suggested for protein-coding genes38, it seems plausible that the positive corre-

lation between the strength of constraint and the number of active cell types can be explained by

pleiotropy: enhancers active in more cell types are more likely to participate in multiple regulatory

networks, perhaps with distinct roles involving the binding of different factors and/or the use of

different binding sites within each enhancer. As a result, they may be subject to greater constraint.

Notably, some of the other explanations offered for a similar correlation between breadth of expres-

sion and constraint in protein-coding genes—such as selection for translational efficiency44, 45 or

against misfolding39—are not relevant in the case of enhancers. Nevertheless, many open questions

remain about the influences of constraint on enhancers, and it will be important to examine these

questions further in light of rapidly improving enhancer annotations, data describing enhancer-

promoter interactions46–48, and observations of complex evolutionary behavior at enhancers49.

URLs. UCSC Genome Browser, http://genome.ucsc.edu/; Cold Spring Harbor Laboratory Mirror

of UCSC Genome Browser, http://genome-mirror.cshl.edu/; Complete Genomics human varia-
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tion data, http://www.completegenomics.com/public-data/69-Genomes/; SPIDEX database, http:

//www.deepgenomics.com/spidex/.
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Online Methods

Genomic features. The genomic features used by LINSIGHT can be divided into three categories:

conservation scores, predicted binding sites, and regional annotations (Table 1 and Supplemen-

tary Table 2). Conservation scores included phyloP scores26, phastCons elements4, SiPhy omega

elements50, 51, and CEGA elements52. Except for SiPhy, each score type was represented by mul-

tiple data tracks—for example, phastCons tracks for vertebrate, mammalian, and primate align-

ments (Supplementary Table 2). Predicted binding sites included transcription factor binding sites

(TFBS) and RNA binding sites. Predicted TFBSs were obtained from the conserved TFBS track

in the UCSC Genome Browser53, the rVISTA database54, SwissRegulon55, FunSeq220, and the

Ensembl Regulatory Build27. RNA binding sites include splice sites predicted by SPIDEX56 and

miRNA target sites predicted by TarBase57. The regional annotations were based a variety of

sources, including ChIP-seq and RNA-seq data from the ENCODE11 and Roadmap Epigenomics12

projects, enhancers from FANTOM558, predicted distal regulatory modules from FunSeq220, and

the distances to nearest TSSs based on GENCODE gene models59. All features and the result-

ing LINSIGHT scores were expressed in genomic coordinates for the hg19 assembly of the human

genome.

Polymorphism and divergence data. The polymorphism and divergence data used by the IN-

SIGHT component of the LINSIGHT model were borrowed from previous analyses3, 21, 22. Briefly,

we obtained human single nucleotide polymorphisms from high-coverage genome sequences for

54 unrelated individuals from the “69 Genomes” dataset from Complete Genomics, eliminating
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nucleotide sites with more than two alleles. Outgroup alleles were defined by the aligned chim-

panzee, orangutan, and rhesus macaque reference genomes from UCSC. Several filters were ap-

plied to these data to reduce technical errors from alignment, sequencing, and genotype inference;

for example, we removed simple repeats, recent transposable elements, recent segmental dupli-

cations, and regions not in syntenic alignment across primates22. Putatively neutral regions were

identified by starting with all aligned regions, then removing coding sequences, conserved non-

coding sequences, and their proximal flanking regions. These regions were used to estimate neu-

tral divergence and polymorphism rates in the human lineage in a block-wise manner across the

genome, to account for local variation in mutation rates21. To allow for uncertainty in the human-

chimpanzee most recent common ancestor (MRCA), we integrated over a distribution of ancestral

alleles inferred after fitting a standard phylogenetic model to the outgroup sequences21.

Fitting the LINSIGHT model to the data. The weights for all genomic features were estimated by

approximately maximizing the log likelihood of the INSIGHT model with respect to our genome-

wide data set. We began by considering all genomic positions not excluded by our data-quality fil-

ters. Because our focus was on noncoding regions, we additionally excluded coding regions anno-

tated by GENCODE (release 19). Instead of a traditional “batch” learning algorithm, which would

require either storing all data in memory or reading it from disk many times, we used an “online”

stochastic gradient descent algorithm60. The algorithm processed the genome in “minibatches” of

100 nucleotides, each time updating the parameter vector in the direction of the gradient of the log

likelihood function, with learning rates of 0.001 and 0.01 for ρ and γ, respectively. Gradients were

computed analytically, by propagating partial derivatives through the linear-sigmoid component of
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the model using the chain rule (back-propagation). The learning procedure was truncated after 20

passes through the data set. The entire process took less than one day on a desktop computer. The

genome-wide LINSIGHT scores are available from the Cold Spring Harbor Laboratory mirror of

the UCSC Genome Browser (hg19 assembly).

Comparison with other methods. Our benchmarking scheme for prioritization of disease-assoc-

iated variants closely followed the one introduced in ref. [13]. The HGMD and ClinVar noncoding

disease variants and three sets of negative controls were obtained from this study. The negative

controls consisted of: (1) a randomly selected subset of human common variants (unmatched);

(2) a subset of human common variants matched to the disease variants by distance-to-nearest-

TSS (matched TSS); and (3) a subset of human common variants required to be in the same local

genomic region as the matched disease variants (matched region). The two matched sets account

for the enrichment of known disease variants near coding genes. For comparison, we downloaded

precomputed CADD18 (v1.3), GWAVA13 (v1.0), FunSeq220 (v2.1.0), and Eigen32 (Oct. 11, 2015)

scores from the source websites. GWAVA scores based on training with variants matched by

distance-to-nearest-TSS were used in all comparisons13. In addition, we obtained mammalian

phyloP26 scores based on the 46-way whole-genome alignment for hg19 from the UCSC Genome

Browser53. The DeepSEA scores of the disease variants and their negative controls were computed

using the online DeepSEA web service16 on Jan 14, 2015. Note that two of the methods consid-

ered, CADD and DeepSEA, provide allele-specific predictions, whereas the other methods assign

identical scores to all alternative variants. When evaluating CADD and DeepSea on the ClinVar

data set, we used the score corresponding to the annotated disease-associated allele. When eval-
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uating these methods on the HGMD data set, however, no disease-associated allele was provided,

so we used the maximum score for the three alternative alleles.

Classification of disease-associated variants by genomic location. For analyses that considered

the genomic locations of disease-associated variants, we divided the variants in the HGMD and

ClinVar databases into four categories based on their locations relative to gene models from GEN-

CODE (release 19). These categories were: (1) “promoter” variants, located within 1 kb upstream

of the 5′-most annotated transcription start site of any protein-coding gene; (2) “splicing” variants,

located within 20 bp of any annotated splice junction; (3) “UTR” variants, located within the an-

notated 5′ or 3′ UTR of any protein-coding gene; and (4) all “other” variants. Each variant was

assigned to the first category whose criteria it fulfilled in the order splicing > UTR > promoter >

other.

Quantification of the contributions of genomic feature classes. We measured the relative con-

tributions of the conservation scores, predicted binding sites, and regional annotations by removing

all features of each class (see Table 1), retraining the LINSIGHT model without those features, and

evaluating the AUC of the reduced model. The contribution of each class of features was defined

as the AUC for the full model minus the AUC for the reduced model. Notice that, while this dif-

ference in AUCs is generally positive, it may be negative due to stochastic effects. This analysis

was performed on a merged set of HGMD and ClinVar variants, separately for each of the four

genomic location labels defined above.
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Analysis of evolutionary constraints on enhancers. To study evolutionary constraints on en-

hancers, we used the comprehensive atlas of human enhancers across cell types based on en-

hancer RNAs (eRNAs) that was recently provided by the FANTOM5 project58. The evolutionary

constraint for each enhancer was quantified by taking the average LINSIGHT score across all nu-

cleotide sites in the enhancer. We examined the relationship between this measure of constraint

and the number of cell types in which each enhancer was active (according to a detectable eRNA

signature). We also defined a subset of enhancers as tissue-specific, based on apparent activity

in only a single tissue type, and examined the relationship between tissue of activity and degree

of constraint. Finally, we obtained putative enhancer-TSS pairs (based on correlated patterns of

expression across tissues) from the FANTOM5 website, and examined the correlation in constraint

at the enhancer and promoter in each pair, defining the promoter as the 1 kb region upstream of

the TSS. In cases where an enhancer was associated with multiple TSSs, the TSS with highest

correlation coefficient was used as the matched TSS.
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Table 1: Summary of genomic features used for LINSIGHT scores

Class Genomic Featurea Spatial resolution
Conservation phyloP score High

phastCons element High
SiPhy element High
CEGA element High

Binding site Conserved TFBS High
rVISTA TFBS High
SwissRegulon TFBS High
Predicted TFBS within ChIP-seq peak High
Conserved miRNA binding site High
Splicing site predicted by SPIDEX High

Regional annotation ChIP-seq peak of transcription factor Low
DNase I hypersensitive site Low
UCSC FAIRE peak Low
RNA-seq signal Low
Histone modification peak Low
FANTOM5 enhancer Low
Predicted distal regulatory module Low
Distance to nearest TSS Low

aEach “genomic feature” listed here may actually correspond to multiple features in the model. For example, four
features are derived from phyloP scores: two from the mammalian phyloP scores and two from the vertebrate phyloP
scores. See Supplementary Table 2 for complete details.
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Figure 1: Conceptual overview of LINSIGHT. (a) Like our previous fitCons3 method, LINSIGHT

estimates probabilities that mutations at each genomic site will have fitness consequencs, based
on patterns of genetic polymorphism within a species (here, humans) and patterns of divergence
from closely related outgroup species (chimpanzee, orangutan, and rhesus macaque). Patterns
of genetic variation at the focal site and other sites like it are contrasted with those in neutrally
evolving regions nearby. Red circles indicate human single nucleotide polymorphisms and blue
circles indicate nucleotide substitutions between species. (b) LINSIGHT combines the probabilistic
graphical model from INSIGHT 21, 22 with a generalized linear model. The selection parameters
from INSIGHT, ρ and γ, are defined by linear combinations of local genomic features, followed
by sigmoid transformations. ρ: probability that focal site is under negative selection (hence, has
fitness consequences if mutated); γ: relative rate of low frequency polymorphism for focal sites
under selection; S: indicator of natural selection; Z: ancestral allele in the human-chimpanzee
most recent common ancestor (MRCA); A: ancestral allele in the MRCA of all modern humans;
X: allelic state in human population, including major and minor alleles and minor allele frequency;
wρ,i: weight of genomic feature i for parameter ρ; wγ,i: weight of genomic feature i for parameter
γ. λ: block-wise neutral divergence rate. θ: block-wise polymorphism rate. β = (β1, β2, β3):
proportions of low, intermediate, and high frequency neutral derived alleles genome-wide. Note
that a third selection parameter from INSIGHT, η, is omitted here, because positive selection has a
negligible effect in this setting (see Supplementary Text).
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Figure 2: Summary of LINSIGHT scores across the human genome. (a) Distributions of LINSIGHT

scores for various genomic regions. Intergenic, intronic, UTRs, and 1-kb promoters were defined
based on GENCODE annotations; TFBSs were predicted from ChIP-seq peaks (Ensembl Regu-
latory Build); and conserved TFBSs were obtained from the UCSC Genome Browser. Note the
logarithmic scale. (b) UCSC Genome Browser display showing LINSIGHT scores alongside those
from fitCons, phastCons, phyloP, and GERP++. LINSIGHT integrates functional genomic data
together with conservation scores and other features to provide a high-powered, high-resolution
measure of potential function. In this example, it is the only method to highlight a variant from
HGMD (CR065653) that is associated with up-regulation of the telomerase reverse transcriptase
(TERT) gene.
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Figure 3: Prediction power of various computational methods for distinguishing disease-
associated noncoding variants from variants not likely to have phenotypic effects. Power is de-
scribed using receiver operating characteristic (ROC) curves and quantified using the Area Under
the Curve (AUC) statistic. Results are shown for positive examples from the HGMD23 (panels a &
b) and ClinVar24 (c & d) databases. Common SNPs (MAF > 1%) were used as negative examples
and were either randomly selected (a & c) or matched to positive examples by distance to near-
est transcription start site (b & d). LINSIGHT is compared with CADD18, phyloP26, FunSeq220,
DeepSEA16, Eigen32, and GWAVA13. FitCons is not included because it performs poorly on this
task due to its low genomic resolution and cell-type specificity. GWAVA is not shown in (a) & (b)
because it was trained on HGMD data.
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Figure 4: Contributions of various genomic features to the identification of disease-associated
variants from HGMD and ClinVar. The contribution of each class of genomic features is measured
as the reduction in the area under the curve (AUC) statistic resulting from the removal of those
features. Results are shown for four types of variants and two matching schemes for positive and
negative examples. Additional results are shown in Supplementary Figure 5.
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Figure 5: Evolutionary constraints on enhancers. (a) Fitness consequences of mutations in
enhancers (measured by average LINSIGHT score) is positively correlated with the number of
cell types in which each enhancer is active (Spearman’s rank correlation coefficient ρ = 0.284;
p < 10−15). Results are shown for 29,303 enhancers in 69 cell types. (b) Fitness consequences of
mutations in enhancers is positively correlated with fitness consequences of mutations in associ-
ated promoters (Spearman’s rank correlation coefficient ρ = 0.150; p < 10−15). Results are shown
for 25,067 enhancer-promoter pairs.
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Supplementary material for:

Fast, scalable prediction of deleterious noncoding vari-
ants from functional and population genomic data

Yi-Fei Huang1, Brad Gulko1, 2, and Adam Siepel1

1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

2Graduate Field of Computer Science, Cornell University, Ithaca, NY, USA

Details of the LINSIGHT model

Three modes of evolution. LINSIGHT infers the strength of natural selection based on an evolu-

tionary model closely related to the INSIGHT model1, 2. The key idea of this model is that natural

selection and neutral evolution generate distinct patterns of variation in divergence and polymor-

phism data. In LINSIGHT, we assume that the evolutionary process at a noncoding site occurs by

one of three modes: neutral drift (neut), weak negative selection (WN), and strong negative selec-

tion (SN). Furthermore, the evolutionary mode of a site does not change over time along the human

lineage (since the human/chimpanzee divergence). These assumptions are the same as those of IN-

SIGHT, except in this case we exclude the possibility of positive selection, which turns out to have

negligible importance when estimating genome-wide probabilities of fitness consequences3.

LINSIGHT is able to distinguish among these three modes of evolution because they have

different effects on divergence and polymorphism patterns. In particular, as in INSIGHT, we assume

that mutations in strongly negatively selected sites are immediately removed from the population

and cannot segregate or fix in the human population. In addition, we assume that mutations in

weakly negatively selected sites can segregate at low frequencies but cannot reach high frequencies

or fix in the human population. In contrast, mutations in neutral sites can segregate at both low and

high frequencies and can fix in the human population.

1
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Polymorphism and divergence data. LINSIGHT gains power by combining the signatures of nat-

ural selection from both polymorphisms within the target species and divergences between species.

As in INSIGHT, each site in the human genome is first classified as monomorphic (M ), polymor-

phic with a low-frequency minor allele (L), or polymorphic with a high-frequency minor allele

(H). The minor allele frequency (MAF) at site i is denoted by mi, and its low-dimensional, cate-

gorical summary (M/L/H) is denoted by Yi. Sites without alternative alleles, i.e., with mi = 0,

are defined as M sites. L and H sites are distinguished by a MAF threshold f , i.e., Yi = L if

0 < mi < f and Yi = H if f ≤ mi ≤ 0.5. It has been shown that this low dimensional summary

of the allele frequency data helps to make the model robust to complex demographic histories, at

little cost in inference power1. As in our previous work, we set f to be equal to 0.15. The polymor-

phism data at site i in the human population is summarized as Xi = (Xmaj
i , Xmin

i , Yi), in which

Xmaj
i is the observed major allele, Xmin

i is the observed minor allele, and Yi ∈ {M,L,H} is the

minor allele frequency class. In the whole genome alignment of human and other primates, the

aligned bases in the primate outgroup at site i are denoted by the vector Oi. See references [1] and

[2] for further details.

Parameters in the LINSIGHT model. As in INSIGHT, inferences of natural selection depend on

the contrast between a model that allows for selection and a neutral model. LINSIGHT uses the

same neutral model as INSIGHT 1. Briefly, for each site i in the human genome, two neutral

parameters are specified: λi and θi. The parameter λi denotes the block-wise neutral substitution

rate associated with site i in the human lineage after the human-chimpanzee divergence. Similarly,

θi denotes the block-wise neutral polymorphism rate associated with site i. In addition, there is a set

of three global parameters, denoted β = (β1, β2, β3), that describe the genome-wide proportions of

low, intermediate, and high frequency derived neutral alleles, respectively. Note that β is defined

based on the frequencies of derived alleles, rather than the MAF, and therefore depends on the

ancestral allele. The estimation procedure for β integrates over possible values of the ancestral

allele. Together, we denote the neutral parameters by ζi = (λi, θi, β). These parameters were

reused from our previous work. See references [1] and [2] for further details.

2
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Similar to INSIGHT, LINSIGHT summarizes the influence of negative selection at site i using

two parameters: ρi and γi. (A third selection parameter considered by INSIGHT, ηi, is not needed

because of the omission of positive selection.) The parameter ρi describes the probability that

site i is under selection (WN or SN). The parameter γi represents the relative rate of low-frequency

derived alleles at sites under selection. These two parameters together describe whether and how

the evolutionary process at site i diverges from that at the flanking neutral sites.

The parameter ρi is the main focus of our analysis. This parameter can be interpreted as the

probability that a mutation at that site will have fitness consequences. Nucleotide-specific estimates

of this parameter are therefore referred to as fitness-consequence scores, or simply, as LINSIGHT

scores. The parameter γi is influenced by both weak and strong selection and is more difficult to

interpret. This parameter is used for fitting the model but is ignored in our subsequent analyses.

Note that the definition of γi here is slightly different from its definition in the INSIGHT model

(denoted here by γ′i), which was defined as the relative rate of polymorphisms. There is a simple

linear relationship between γi and γ′i: γ
′
i = β1γi. This redefinition of γi was needed to ensure that

its range would match that of the sigmoid function (0, 1).

Because the information about natural selection at each individual nucleotide is very limited,

some means for pooling statistical information across sites is needed. In LINSIGHT, this pooling is

achieved by a generalized linear regression model. We assume that the selection parameters at each

focal site can be predicted by a linear function of local genomic features, together with a nonlinear

“link” function. Specifically, if Di is a column vector of genomic features associated with site i,

LINSIGHT assumes that,

ρi = g(WρDi) and γi = h(WγDi), (1)

where the row vectors Wρ and Wγ represent the weights of genomic features with respect to ρ and

γ, respectively, and g() and h() are nonlinear link functions. Following the common practice in

machine learning, we assume that the first element of Di is always equal to 1 and the corresponding

weights in Wρ and Wγ represent the intercepts for the respective linear functions. For the link

3
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functions g() and h(), we use two sigmoid functions,

g(x) = exp(−3 exp(−x))

h(x) =
1

1 + e−x
,

(2)

where g(x) is known as the Gompertz sigmoid function4 and is used here to avoid saturation at

small values of x. Thus, the linear combinations of genomic features are mapped to the range

between 0 and 1, separately for each of the two parameters at each nucleotide site. Because Wρ

and Wγ are shared by all sites, this strategy allows sharing of statistical strength across the genome.

Likelihood function. To estimate the Wρ and Wγ vectors (the free parameters of the LINSIGHT

model), and hence to obtain the nucleotide-specific LINSIGHT scores, an objective function for

optimization is needed. For this purpose, we use the likelihood function defined for INSIGHT, with

minor changes to accommodate the omission of positive selection (η parameter). Maximization of

this likelihood function will therefore allow for maximum likelihood estimation of Wρ and Wγ .

The combination of the adapted INSIGHT model and our generalized linear model is depicted in

Figure 1 of the main text. In the following discussion, we briefly detail key features of this model,

focusing on differences from the original INSIGHT model.

As in INSIGHT, we introduce two latent variables, Zi and Ai, representing the alleles at

site i in the most recent common ancestors of human-chimpanzee and the human individuals,

respectively. The evolutionary trajectory of site i in the human lineage can then be denoted by

(Zi, Ai, Xi). Another binary latent variable, Si, is introduced to represent whether or not site i is

under negative selection. The likelihood function for site i thus requires summing over all possible

configurations of Si, Zi, and Ai. Assuming independence across sites, the likelihood function for

the whole genome is given by:

L(Wρ,Wγ) =
∏
i

∑
si∈{neut, sel}

P (Si|Wρ,Di)
∑
Zi

∑
Ai

P (Xi, Ai, Zi|Si,Wγ,Di,Oi, ζi). (3)

Here, P (Si|Wρ,Di) represents the prior probability that site i is under selection conditional on

4
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genomic features Di and weights Wρ. Based on equation 1, this prior probability is given by

P (Si|Wρ,Di) =

ρi = g(WρDi), if Si = neut

1− ρi = 1− g(WρDi), if Si = sel.

The other probability in equation 3, P (Xi, Ai, Zi|Si,Wγ,Di,Oi, ζi) representing the prob-

ability of the evolutionary trajectory (Zi, Ai, Xi), can be factorized as follows based on the condi-

tional independence assumptions of the model (as in INSIGHT):

P (Xi, Ai, Zi|Si,Wγ,Di,Oi, ζi) = P (Zi|Oi, ζi) P (Ai|Si, Zi, ζi) P (Xi|Si, Ai,Wγ,Di, ζi), (4)

where P (Zi|Oi, ζi) represents the prior distribution of the deep ancestral allele Zi, P (Ai|Si, Zi, ζi)

represents the generation of fixed mutations (substitutions) along the human lineage, and P (Xi|

Si, Ai,Wγ,Di, ζi) represents the generation of polymorphisms in the human population. As in

INSIGHT, P (Zi|Oi, ζi) is estimated using a standard phylogenetic model and P (Ai|Si, Zi, ζi) is

modeled by an approximate Jukes-Cantor substitution model5, 6. Here,

P (Ai|Si, Zi, ζi) =



1
3
λit, if Si = neut, Ai 6= Zi

1− λit, if Si = neut, Ai = Zi

0, if Si = sel, Ai 6= Zi

1, if Si = sel, Ai = Zi,

(5)

where t represents the evolutionary time between the human-chimpanzee MRCA and the human

population MRCA. Note that, unlike in INSIGHT, when site i is under selection, no substitution is

possible because positive selection is prohibited in LINSIGHT. As in INSIGHT, however, recurrent

substitutions at the same site are ignored due to the very short divergence time between human and

chimpanzee.

The final term in equation 4, P (Xi|Si, Ai,Wγ,Di, ζi), represents the generation of (unfixed)

polymorphisms in the human population. As in INSIGHT, we assume a simple infinite-sites model

for the generation of polymorphisms, in which polymorphisms are generated at rate θi (and all three

5
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alternative alleles are equally likely), and the allele frequency category (L or H) is determined by

the β and γi parameters. Specifically, we assume:

P (Xi|Si, Ai,Wγ,Di, ζi) =



1− θian, if Si = neut, Yi =M,Ai = Xmaj
i

1
3
θianβ1, if Si = neut, Yi = L,Ai = Xmaj

i

1
3
θianβ3, if Si = neut, Yi = L,Ai = Xmin

i

1
3
θianβ2, if Si = neut, Yi = H,Ai ∈ {Xmaj

i , Xmin
i }

1− θianβ1γi, if Si = sel, Yi =M,Ai = Xmaj
i

1
3
θianβ1γi, if Si = sel, Yi = L,Ai = Xmaj

i

0, otherwise.

(6)

where n is the number of haploid genomes sampled at site i, an =
∑n−1

k=1
1
k

is Watterson’s constant7,

and γi is given by equation 1. As in INSIGHT, Watterson’s constant an can be used to accommodate

small amounts of missing data1. Notice in equation 6 that polymorphisms in sites under selection

(Si = sel) are only permitted to segregate at low frequencies, consistent with the assumptions of

the model. Combining equations 5 and 6 and then summing over possible values of Ai, we obtain

the conditional likelihood P (Xi|Si, Zi,Wγ,Di, ζi), which is summarized in Table 1. Finally, the

full likelihood (equation 3) is calculated by summing over possible values of Zi.
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Supplementary Table 1: Conditional distribution table for
P (Xi|Si, Zi,Wγ,Di, ζi)

Si Yi Zi, X
maj
i , Xmin

i P (Xi|Si, Zi,Wγ,Di, ζi)
ab

neut M Zi = Xmaj
i (1− λit)(1− θian)

neut M Zi 6= Xmaj
i

1
3
λit(1− θian)

neut L Zi = Xmaj
i ((1− λit)β1 + 1

3
λitβ3)

1
3
θian

neut L Zi = Xmin
i ((1− λit)β3 + 1

3
λitβ1)

1
3
θian

neut L Zi /∈ {Xmaj
i , Xmin

i } 1
3
λit(β1 + β3)

1
3
θian

neut H Zi ∈ {Xmaj
i , Xmin

i } (1− λit+ 1
3
λit)β2

1
3
θian

neut H Zi /∈ {Xmaj
i , Xmin

i } 2
3
λitβ2

1
3
θian

sel M Zi = Xmaj
i 1− β1γiθian

sel M Zi 6= Xmaj
i 0

sel L Zi = Xmaj
i

1
3
β1γiθian

sel L Zi 6= Xmaj
i 0

sel H − 0

aζi = (λi, θi, β) represents the set of neutral parameters associated with site i.
bγi = h(WγDi) represents the relative rate of low-frequency derived alleles.
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Supplementary Table 2: Genomic features used for LINSIGHT scores for human genome
(hg19)

Feature Type Definition Weighta

phyloP mammal score (46 way) Numeric Truncated at 2 to reduce false positive rate 0.673
phyloP mammal class (46 way) Binary Score >= 2 is coded as 1, otherwise 0 1.418
phyloP vertebrate score (46 way) Numeric Truncated at 2 to reduce false positive rate 0.709
phyloP vertebrate class (46 way) Binary Score >= 2 is coded as 1, otherwise 0 1.456
Primate phastCons element (46 way) Binary Presence/absence of conserved element 0.413
Mammal phastCons element (46 way) Binary Presence/absence of conserved element 0.120
Vertebrate phastCons element (46 way) Binary Presence/absence of conserved element 0.227
SiPhy omega element (29 way) Binary Presence/absence of conserved element 0.049
CEGA conserved element (Amniota) Binary Presence/absence of conserved element 0.000
CEGA conserved element (Boreoeutheria) Binary Presence/absence of conserved element 0.149
CEGA conserved element (Euarchontoglires) Binary Presence/absence of conserved element 0.226
CEGA conserved element (Eutheria) Binary Presence/absence of conserved element 0.126
CEGA conserved element (Vertebrata) Binary Presence/absence of conserved element −0.058
UCSC conserved TFBS Binary Presence/absence of TFBS 0.306
TFBS in Ensembl regulatory build Binary Presence/absence of TFBS 0.098
rVISTA TFBS Binary Presence/absence of TFBS 0.232
SwissRegulon TFBS Binary Presence/absence of TFBS 0.179
FunSeq2 (ENCODE) TFBS Binary Presence/absence of TFBS 0.094
TarBase miRNA target Binary Presence/absence of miRNA binding 0.050
Maximum SPIDEX score Numeric Truncated at 2 to reduce false positive rate 0.228
Maximum SPIDEX score class Binary Maximum score >= 2 is coded as 1, otherwise 0 0.190

Distance to nearest TSS Numeric 10Kb−dist
10Kb if dist <= 10Kb, otherwise 0 0.051

ENCODE (UCSC) FAIRE peak Binary Presence/absence of peak 0.043
ENCODE (UCSC) FAIRE prevalence Numeric Number of tissues associated with the peak −0.076
ENCODE (UCSC) DNase peak Binary Presence/absence of peak 0.015
ENCODE (UCSC) DNase prevalence Numeric Number of tissues associated with the peak −0.004
Predicted distal regulatory module in FunSeq2 Binary Presence/absence of cis-regulatory module 0.062
ENCODE TF ChIP-seq peak (UCSC) Binary Presence/absence of peak 0.006
ENCODE TF ChIP-seq prevalence (UCSC) Binary Number of TFs associated with the peak −0.003
Maximum Roadmap Epigenomics RNA-seq class Binary Site with signal is coded as 1, otherwise 0 −0.002
Maximum Roadmap Epigenomics RNA-seq signal Numeric Log transformed signal if exists, otherwise 0 0.129
FANTOM5 enhancer Binary Presence/absence of FAMTOM5 enhancer 0.028
ENCODE/Roadmap distal DNase peak Binary Presence/absence of peak −0.006
ENCODE/Roadmap distal DNase prevalence Numeric Number of tissues associated with the peak 0.037
ENCODE/Roadmap distal H3K27ac peak Binary Presence/absence of peak 0.007
ENCODE/Roadmap distal H3K27ac prevalence Numeric Number of tissues associated with the peak 0.031
ENCODE/Roadmap distal H3K4me1 peak Binary Presence/absence of peak 0.010
ENCODE/Roadmap distal H3K4me1 prevalence Numeric Number of tissues associated with the peak 0.031
ENCODE/Roadmap distal H3K9 peak Binary Presence/absence of peak 0.024
ENCODE/Roadmap distal H3K9 prevalence Numeric Number of tissues associated with the peak 0.025
ENCODE/Roadmap distal TF ChIP-seq peak Binary Presence/absence of binding site −0.006
ENCODE/Roadmap proximal DNase peak Binary Presence/absence of peak 0.043
ENCODE/Roadmap proximal DNase prevalence Numeric Number of tissues associated with the peak −0.061
ENCODE/Roadmap proximal H3K4me3 peak Binary Presence/absence of peak 0.024
ENCODE/Roadmap proximal H3K4me3 prevalence Numeric Number of tissues associated with the peak −0.040
ENCODE/Roadmap proximal H3K9ac peak Binary Presence/absence of peak 0.015
ENCODE/Roadmap proximal H3K9ac prevalence Numeric Number of tissues associated with the peak −0.039
ENCODE/Roadmap proximal TFBS Binary Presence/absence of binding site 0.009

aEstimated weight for ρ after genome-wide training. Weights are directly comparable because all covariates are
rescaled to a range between 0 and 1 before training.
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Supplementary Figure 1: Spearman’s correlation coefficients (ρ) for all pairs of scores considered.
(a) Correlation at all scored genomic positions. (b) Correlation at sites in mammalian phastCons
elements.
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Supplementary Figure 2: Prediction power of various computational methods for distinguishing
predicted transcription factor binding sites (TFBS) from likely non-TFBSs, described as receiver
operating characteristic (ROC) curves. Results are shown for the (a) “matched TSS” and (b)
“matched region” schemes for pairing positive and negative examples (see Methods). We consid-
ered all TFBSs in the ORegAnno database8 that were associated with the hg19 assembly, merging
overlapping binding sites (7,369 TFBSs in total).
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Supplementary Figure 3: Prediction power of various computational methods for distinguishing
disease-associated noncoding variants from variants not likely to have phenotypic effects. Plots are
the same as those in Figure 3 except for the use of the region-based matching scheme for positive
and negative examples (see Methods). Plots describe positive examples from (a) HGMD and (b)
ClinVar.
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Supplementary Figure 4: Genomic distributions of noncoding disease variants in the ClinVar (left)
and HGMD (right) data sets. See Methods for definitions of Promoter, Splicing, UTR, and Other
genomic regions.
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Supplementary Figure 5: Contributions of various genomic features to the identification of
disease-associated variants from HGMD and ClinVar. Plot is the same as those in Figure 4 ex-
cept for the use of the region-based matching scheme for positive and negative examples (see
Methods).
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Supplementary Figure 6: Distribution of fitness consequences of mutations at 8,082 tissue-specific
enhancers (measured by average LINSIGHT score per enhancer) across 41 tissue types.
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