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Abstract

Complex patterns of neural activity appear during up-states in the neocortex and sharp
waves in the hippocampus, including sequences that resemble those during prior
behavioral experience. The mechanisms underlying this replay are not well understood.
How can small synaptic footprints engraved by experience control large-scale network
activity during memory retrieval and consolidation? We hypothesize that sparse and
weak synaptic connectivity between Hebbian assemblies are boosted by pre-existing
recurrent connectivity within them. To investigate this idea, we connect sequences of
assemblies in randomly connected spiking neuronal networks with a balance of
excitation and inhibition. Simulations and analytical calculations show that recurrent
connections within assemblies allow for a fast amplification of signals that indeed
reduces the required number of inter-assembly connections. Replay can be evoked by
small sensory-like cues or emerge spontaneously by activity fluctuations.
Global—potentially neuromodulatory—alterations of neuronal excitability can switch
between network states that favor retrieval and consolidation.

Author Summary

Synaptic plasticity is the basis for learning and memory, and many experiments indicate
that memories are imprinted in synaptic connections. However, basic mechanisms of
how such memories are retrieved and consolidated remain unclear. In particular, how
can one-shot learning of a sequence of events achieve a sufficiently strong synaptic
footprint to retrieve or replay this sequence? Using both numerical simulations of
spiking neural networks and an analytic approach, we provide a biologically plausible
model for understanding how minute synaptic changes in a recurrent network can
nevertheless be retrieved by small cues or even manifest themselves as activity patterns
that emerge spontaneously. We show how the retrieval of exceedingly small changes in
the connections across assemblies is robustly facilitated by recurrent connectivity within
assemblies. This interaction between recurrent amplification within an assembly and the
feed-forward propagation of activity across the network establishes a basis for the
retrieval of memories.

Introduction 1

The idea of sequential activation of mental concepts and neural populations has deep 2

roots in the history of the cognitive sciences [12,88,97] as well as its share of 3
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criticism [56]. In one of the most influential works in neuroscience, Donald Hebb 4

extended this concept by suggesting that neurons that fire simultaneously should be 5

connected to each other, thus forming a cell assembly that represents an abstract 6

mental concept [41]. He also suggested that such assemblies could be connected 7

amongst each other, forming a network of associations in which one mental concept can 8

ignite associated concepts by activating the corresponding assemblies. Hebb referred to 9

the resulting sequential activation as well as the underlying circuitry as “phase 10

sequence”. We will refer to such connectivity patterns as “assembly sequences”. 11

The notion of Hebbian assemblies has triggered a huge number of experimental 12

studies (reviewed in [96]), but relatively few experiments have been dedicated to the 13

idea of assembly sequences [2, 53]. Many theoretical studies focused on feedforward 14

networks, also known as synfire chains [1,7,25,44]. Synfire chains are characterized by a 15

convergent-divergent feedforward connectivity between groups of neurons, where pulse 16

packets of synchronous firing can propagate through the network. Few works were also 17

dedicated on synfire chains embedded in recurrent networks [6, 54, 89], however, without 18

explicitly considering recurrent connectivity within groups. 19

In this study, we combine the concept of feedforward synfire chains with the notion 20

of recurrently connected Hebbian assemblies to form an assembly sequence. Using 21

numerical simulations of spiking neural networks, we form assemblies consisting of 22

recurrently connected excitatory and inhibitory neurons. The networks are tuned to 23

operate in a balanced regime where large fluctuations of the mean excitatory and 24

inhibitory input currents cancel each other. In this case, distinct assemblies that are 25

sparsely connected in a feedforward fashion can reliably propagate transient activity. 26

This replay can be triggered by external cues for sparse connectivities, but also can be 27

evoked by background activity fluctuations for larger connectivities. Modulating the 28

population excitability can shift the network state between cued-replay and 29

spontaneous-replay regimes. Such spontaneous events may be the basis of the 30

reverberating activity observed in the neocortex [18,49,63] or in the 31

hippocampus [26, 58, 86]. Finally, we show that assembly sequences can also be replayed 32

in a reversed direction (i.e., reverse replay) as observed during replay of behavior 33

sequences [23,30]. 34

Results 35

To test Hebb’s hypothesis on activity propagation within a recurrent network, we use a 36

network model of excitatory and inhibitory conductance-based integrate-and-fire 37

neurons. The network has a sparse random background connectivity prand = 0.01. We 38

form a neural assembly (Fig 1A) by picking M excitatory (M = 500 if not stated 39

otherwise) and M/4 inhibitory neurons and connecting them randomly with probability 40

prc, resulting in a mutually coupled excitatory and inhibitory population. The new 41

connections are created independently and in addition to the background connections. 42

To embed an assembly sequence in the network, we first form 10 non-overlapping 43

assemblies. The assemblies are then connected in a feedforward manner where an 44

excitatory neuron from one group projects to an excitatory neuron in the subsequent 45

group with probability pff (Fig 1B). Thus, by varying the feedforward and the recurrent 46

connectivities, we can set the network structure anywhere in the spectrum between the 47

limiting cases of synfire chains (pff > 0, prc = 0) and uncoupled Hebbian assemblies 48

(pff = 0, prc > 0), as depicted in Fig 1C. 49

To ensure that the spontaneous activity of the network is close to an in-vivo 50

condition, we use Hebbian plasticity of inhibitory connections [94], which has been 51

shown to generate a balance of excitatory and inhibitory currents in individual neurons 52

(Fig 2A). As a consequence, spikes are caused by current fluctuations (Fig 2B), and the 53
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Fig 1. Network connectivity. A: Schematic of an assembly i consisting of an
excitatory (Ei) and an inhibitory (Ii) population. Red and blue lines indicate excitatory
and inhibitory connections, respectively. The symbols w and −kw denote total synaptic
couplings between populations. B: Sketch of network connectivity. The inhomogeneous
network is randomly connected with connection probability prand. A feedforward
structure consisting of 10 assemblies (only i− 1 and i shown) is embedded into the
network. Each assembly is formed by recurrently connecting its neurons with probability
prc. Subsequent assemblies are connected with feedforward probability pff between their
excitatory neurons. C: Embedded structure as a function of connectivities.

network settles into a state of asynchronous irregular (AI) firing (Fig 2C, 0-500 ms). If 54

we then stimulate the first group in the embedded assembly sequence (Fig 2C, 500 ms), 55

the network responds with a wave of activity that traverses the whole assembly sequence, 56

as hypothesised by Hebb [41]. We refer to such a propagation of activity wave as replay. 57

As excitatory and inhibitory neurons are part of the assemblies, they both have elevated 58

firing rates during group activation (∼ 100 spikes/sec for excitatory, and ∼ 60 spikes/sec 59

for inhibitory neurons). Because excitatory neurons in the assembly sequence transiently 60

increase their firing rates from 5 to 100 spikes/sec, a replay can be inferred from their 61

large change in activity, which resembles replay in hippocampal CA networks [58]. On 62

the other hand, interneurons have higher background firing rates of ∼ 20 spikes/sec and 63

smaller maximum firing rates of ∼ 60 spikes/sec during replay. As a result, interneurons 64

have a much lower ratio of peak to background activity than excitatory neurons in our 65

model, in line with lower selectivity of interneurons (e.g., [100]). 66

Sparse feedforward connectivity is sufficient for replay 67

Whether an assembly sequence is replayed is largely determined by the connectivities 68

within and between assemblies. Therefore, we first study how the quality of replay 69

depends on the recurrent (prc) and the feedforward (pff) connectivities. The network 70

dynamics can be roughly assigned to regimes where the connectivity is too weak, strong 71

enough, or too strong for a successful replay. We use a quality measure of replay (for 72

details see Materials and Methods), which determines whether activations of the first 73

group propagate to the end of the sequence without evoking a “pathological” burst of 74

activity (Fig 3). 75

Naturally, for a random network (pff = 0, prc = 0, Fig 3a) the replay fails because 76

the random connections are not sufficient to drive the succeeding groups. In the case of 77

uncoupled Hebbian assemblies (e.g., pff = 0, prc = 0.30), groups of neurons get activated 78

spontaneously (Fig 3c), which is reminiscent to the previously reported cluster 79

activation [61] but on a faster time scale. Already for sparse connectivity (e.g., 80

pff = prc = 0.06) the assembly-sequence replay is successful (Fig 3b). In the case of 81

denser recurrence (prc ≈ 0.10), a pulse packet propagates for even lower feedforward 82

connectivity (pff ≈ 0.03). The feedforward connectivity that is required for a successful 83

propagation decreases with increasing recurrent connectivity because assemblies of 84
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Fig 2. Example of activity in a balanced network. A: Input currents
experienced by an example neuron. The excitatory input is denoted by the red trace
while the inhibitory one is in blue. The black curve shows the sum of all currents:
synaptic, injected, and leak currents. B: Membrane potential of the same neuron. Red
dots denote the times of firing. C: Raster plot of spikes times of 500 neurons for 1
second. For better readability, only 50 neurons (out of 500) per group are shown. At
time 500 ms, the first group is stimulated (arrow) and the activity propagates through
the assembly sequence, resulting in a replay. The red dots correspond to the firing of
the example neuron in A and B.

excitatory and inhibitory neurons can increase small fluctuations of the input through 85

“balanced amplification” [42,72]. 86

For high feedforward (pff & 0.10) but low recurrent (prc . 0.10) connectivity, the 87

replay has low quality. In this case, excitatory neurons receive small recurrent inhibitory 88

input compared to the large feedforward excitation, because the recurrent connection 89

probability is lower than the feedforward one. Due to this lack of sufficient inhibitory 90

input, the propagating activity either leads to run-away excitation (Fig 3e), also called 91

synfire explosion [5, 66], or to epileptiform bursting (Fig 3d). When both recurrent and 92

feedforward connectivities are high, the inhibition is able to keep the propagating 93

activity transient (Fig 3f). However, due to the strong input each neuron is firing 94

multiple times within a small time window. Due to this bursting, the replay has a low 95

quality. 96

To get an analytical understanding of the network, we use a linear approximation of 97

the network dynamics to derive conditions under which replay is successful. The key 98

determinant for replay is an amplification factor κ(pff , prc) = ri+1

ri
, which measures how 99

large is the rate ri+1 in group i+ 1 in relation to the rate in the previous group i. 100

In the case where the amplification factor is smaller than one (ri+1 < ri), the 101

activity propagating through the assembly sequence will decrease at each step and 102

eventually vanish, while for amplification larger than one (ri+1 > ri) one would expect 103

propagating activity that increases at each step in the sequence. An amplification factor 104
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Fig 3. Evoked replay. Assembly-sequence activation as a function of the feedforward
pff and the recurrent prc connectivities. The color code denotes the quality of replay,
that is, the number of subsequent groups firing without bursting (see Materials and
Methods). The black curve corresponds to the critical connectivity required for a replay
where the slope c of the transfer function (See Materials and Methods and Eq 1) is
matched manually to fit the simulation results for connectivities prc = 0.08 and
pff = 0.04. The slope c is also estimated analytically (dashed white line). The raster
plots (a-f) illustrate the dynamic regimes observed for different connectivity values;
neurons above the gray line belong to the background neurons.

κ(pff , prc) = 1 represents the critical value of connectivity for which the replay is stable, 105

and the magnitude of activations is similar across groups. In the Materials and Methods 106

we show that a linear model can approximate the amplification factor by 107

κ = cMpff g
E(1 + cMprc g

E) (1)

where c = 0.25 nS−1 is a constant that fits the model to the data (see Materials and 108

Methods). We can interpret κ as an “effective feedforward connectivity” because the 109

recurrent connectivity (prc) effectively scales up the feedforward connectivity pff . We 110

can match the analytical results for critical connectivities to the numerical simulation, 111

and show a qualitative fit between the approaches (black line in Fig 3). 112

We note that the number of excitatory synapses that is needed for an association, 113

M2(prc + pff), weakly depends on the position on the line κ = 1. By solving 114

argminprc,pff∈κ=1M
2(prc + pff) we find that the minimum number of new connections 115

required for a replay is obtained for prc = 0 because lines for which prc + pff = const 116

have slope of −1 in Fig 3, and the slope of the line defined by κ = 1 has a more 117

negative slope. For example, when prc = 0.0, we need 40 new synapses; for prc = 0.05, 118

we need 50 new synapses; and for prc = 0.2, 111 synapses are required for a new 119

association. However, as feedforward connections might be created/facilitated on 120

demand in one-shot learning, it is advantageous to keep their number low at the cost of 121

higher recurrent connectivity, which has more time to develop prior to the learning. We 122

extend this arguments further in the Discussion. 123

In summary, the recurrent connections within an assembly play a crucial role in 124

integrating and amplifying the input to the assembly. This facilitation of replay is 125

predominantly due to the excitatory-to-excitatory (E-E) recurrent connections, and not 126

due to the excitatory-to-inhibitory (E-I) connections, a connectivity also known as 127
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“shadow pools” [5]. Embedding shadow pools and omitting the E-E connectivity within 128

assemblies has no beneficial effect on the quality of replay (results not shown). 129

Recurrent connections are important for pattern completion 130

Neural systems have to deal with obscure or incomplete sensory cues. A widely adopted 131

solution is pattern completion, that is, reconstruction of patterns from partial input. 132

We examine how the network activity evolves in time for a partial or asynchronous 133

activation of the first assembly. 134

To determine the capability of our network to complete patterns, we quantify the 135

replay when only a fraction of the neurons in the first group is stimulated by external 136

input. If 60 % of the neurons in the first group (strong cue) are synchronously activated 137

(Fig 4A, left panel), the quality of replay is virtually the same as in the case of full 138

stimulation (100% activated) in Fig 3. However, when only 20 % of the neurons (weak 139

cue) are simultaneously activated (Fig 4A, middle panel), we see a deterioration of 140

replay mostly for low recurrent connectivities. The effect of the recurrent connections is 141

illustrated in the right-most panel in Fig 4A where quality of replay is shown as a 142

function of prc while the feedforward connectivity was kept constant (pff = 0.05). 143

Small input cues lead to a weak activation of the corresponding assembly. In the 144

case of stronger connectivity (e.g., prc) this weak activity can build up and result in a 145

replay as shown in the example from Fig 4B. The top and bottom rows of raster plots 146

correspond to two assembly sequences with different recurrent connectivities, as 147

highlighted by the rectangles in Fig 4A, while left and right columns show the activity 148

during strong and weak cues, respectively. In the case of pff = 0.05 and prc = 0.10 149

(Fig 4B, top-right), the weak cue triggers a wide pulse packet with large temporal jitter 150

in the first groups, which gradually shapes into a synchronous pulse packet as it 151

propagates through the network. On the other hand, for a smaller recurrent 152

connectivity (prc = 0.06), the 20% partial activation triggers a rather weak response 153

that does not result in replay (Fig 4B, bottom-right). 154

The quality of replay depends not only on the number of neurons that are activated 155

but also on the temporal dispersion of the pulse packet. Here, we adopt a quantification 156

method that represents the activity evolution in a state-space portrait [25]. Fig 4C 157

shows the time course of the fraction α of cells that participate in the pulse packet and 158

the temporal dispersion σ of the packet as the pulse propagates through the network. 159

The state-space representation of two assembly sequences with equal feedforward 160

(pff = 0.05) but different recurrent connectivity are shown in Fig 4C (top: prc = 0.10, 161

bottom: prc = 0.06). For each assembly sequence we repeatedly stimulated the first 162

group with varying cue size α and time dispersion σ, depicted by the black dots. 163

Depending on the strength and dispersion of the initial stimulation, the dynamics of a 164

network can enter one of two attractor points. For high α and low σ the pulse packet 165

propagates, entering the so-called synfire attractor (white background). On the other 166

hand, for low α and high σ the pulse packet dies out resulting in low asynchronous 167

firing (gray background). The black-arrow traces in Fig 4C are example trajectories 168

that describe the propagating pulse packets from Fig 4B in the (α− σ) space. 169

To summarize, increasing both the recurrent and feedforward connectivity facilitates 170

the replay triggered by weak and dispersed inputs. Recurrent connectivity is 171

particularly important for pattern completion. 172

Spontaneous replay 173

An interesting feature of assembly sequences is the potential emergence of spontaneous 174

activations, that is, a replay when no specific input is given to the network. Random 175
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Fig 4. Pattern completion. A: Quality of replay after partial activation of the first
group for cue size 60% (left panel) and 20% (middle) as a function of feedforward and
recurrent connectivity. The right-most panel shows the quality replay after a cue
activation (20% and 60%) as a function of the recurrent connectivity (prc) while the
feedforward connectivity is constant (pff = 0.05). B: Examples of network activity
during 60% (left) and 20% (right) cue activation. The top and bottom raster plots
correspond to assembly sequences with higher (prc = 0.10, top) and lower (prc = 0.06,
bottom) recurrent connectivity, highlighted in A with white and black rectangles,
respectively. C: State-space portraits representing the pulse-packet propagation. The
activity in each group is quantified by the fraction of firing excitatory neurons (α) and
the standard deviation of their spike times (σ). The initial stimulations are denoted
with small black dots while the colored dots denote the response of the first group to
the stimulations; red dot if the whole sequence is activated, and blue otherwise.
Stimulations in the region with white background result in replays, while stimulating in
the gray region results in no replay. The black arrows illustrate the evolution of pulse
packets during the replays in B. Top: prc = 0.10; bottom: prc = 0.06.

fluctuations in the network can be amplified by the feedforward structure and give rise 176

to a spontaneous wave of propagation. 177

We find that spontaneous and evoked replay share various features such as 178

sequential group activation on the background of AI network activity (Fig 5A, rasters a 179

and b). As in the case of evoked replay, for exceedingly large connectivities the network 180

dynamics can be dominated by epileptiform bursting activity (Fig 5A, rasters c and d). 181

To assess spontaneous replay, we quantify the number of replay events per time 182

taking into account their quality, i.e., huge bursts of propagating activity are 183
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Fig 5. Spontaneous network activity. A: The rate of spontaneous sequence
activation is measured in the unperturbed network. The black curve is the analytical
result for the lower bound of successful propagation from Fig 3. Examples of
spontaneous replays for different connectivities are shown in the raster plots a-d.
Synchrony (B), coefficient of variation (C), and firing rate (D) are averaged over the
neurons in the last group of the sequence. E: Spontaneous events modulated by an
external input. For low enough connectivities no spontaneous events occur (left). A
small additional constant current input to the whole excitatory population (Ie = 1 pA)
generates spontaneous replays (right). F: A densely connected network shows replays
(left). Once the inhibitory population receives an additional constant current input
(Ii = 3 pA), the firing rate decreases and no spontaneous events occur (right).

disregarded as replay. The rate of spontaneous activation increases as a function of both 184

the feedforward (pff) and the recurrent (prc) connectivity (Fig 5A). For large 185

connectivities (pff , prc > 0.20) the quality of the spontaneous events is again poor and 186

mostly dominated by strong bursts (Fig 5A, raster c). The dynamics of networks with 187

large feedforward and low recurrent connections is dominated by long-lasting bursts of 188

activity consisting of multiple sequence replays within each burst (Fig 5A, raster d). 189

The maximum rate of activations does not exceed 4 events per second because the 190
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inhibitory synaptic plasticity adjusts the inhibition such that the excitatory firing rate 191

is close to 5 spikes/sec. 192

To better characterize spontaneous dynamics, we refer to more extensive measures of 193

the network dynamics. First, to account for deviations from the AI network state, we 194

measure the synchrony of firing among neurons within the assemblies. To this end, we 195

calculate the average pairwise correlation coefficient of spike trains of neurons within 196

the same group. A low synchrony (value ∼ 0) means that neurons are uncorrelated, 197

while a high synchrony (value ∼ 1) reveals that neurons fire preferentially together and 198

seldom (or not at all) outside of an assembly activation. Because the synchrony builds 199

up while activity propagates from one group to the next, a synchronization is most 200

pronounced in the latter groups of the sequence. Therefore, we use correlations within 201

the last group of the sequence as a measure of network synchrony (Fig 5B). The average 202

synchrony is low (∼ 0) for low connectivities (pff , prc < 0.10) and increases as a function 203

of both pff and prc. In the case of high prc, neurons participating in one assembly excite 204

each other, and hence tend to fire together. On the other hand, for high pff , neurons 205

within an assembly receive very similar input from the preceding group, so they fire 206

together. This attachment of single neurons to group activity has two major 207

consequences: first, it alters the AI state of the network, and second, it alters the 208

stochastic behavior of the neurons, leading to more deterministic firing and bursting. 209

The network exhibits frequent epileptiform bursting in the case of high feedforward 210

and low recurrent connectivities (raster plot examples in Fig 3, panel d, and Fig 5A, 211

panel d). To assess this tendency of neurons to fire in bursts, we calculate the coefficient 212

of variation (CV) for individual neurons’ spike trains. The average CV of neurons in the 213

last group of the sequence exhibits Poisson-like irregular firing (CV value ∼ 1) for a 214

large range of parameters (Fig 5C). However, for high pff (≥ 0.10) and low prc (≤ 0.10), 215

the CV value exceeds 1, in line with irregular and bursting firing. In this parameter 216

region, small fluctuations of activity in the first groups of the sequence are strongly 217

amplified by the underlying feedforward connectivity, leading to ever increasing activity 218

in the following groups (Fig 5A, panel d). Because of the variable shapes and sizes of 219

these bursts, they are not always classified as spontaneous activations in Fig 5A. Highly 220

bursty firing (CV > 3) and high synchrony (∼ 1) suggest that the network cannot be 221

properly balanced. 222

To test whether the inhibitory plasticity can balance the network activity when 223

assembly sequences are embedded, we measure the average firing rate in the last group 224

of the sequence (Fig 5D). The firing rate deviates from the target rate of 5 spikes/sec 225

mostly for high feedforward connectivity (pff & 0.15). This inability of inhibition to 226

keep the firing rate at the target value can be explained by the frequent replays that 227

shape a stronger inhibitory input during the balancing of the network. Once the 228

inhibition gets too strong, neurons can fire only when they receive excessive amount of 229

excitation. Thus, in the case of high clustering, e.g., strong assembly connectivity, the 230

inhibitory plasticity prevents the neurons from reaching high firing rates, but is unable 231

to sustain an AI state of the network. 232

Control of spontaneous and cued replay by external input 233

Further, we investigate how spontaneous and cued replay are related. The black line in 234

Fig 5A refers to the analytical approximation for connectivities that enable evoked 235

replay. Compared to the connectivity region of successfully evoked replays in Fig 3, the 236

region for spontaneous replays in Fig 5 is slightly shifted to the top and to the right. 237

Therefore, in only a narrow area of the parameter space, sequences can be replayed by 238

external input but do not get spontaneously activated. This finding suggests that to 239

embed a sequence with high signal-to-noise ratio of propagation, the connectivities 240

should be chosen appropriately, in line with previous reports [55]. In what follows we 241
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show that the size of this region can be controlled by external input to the network. 242

Fig 5E and F illustrate how a small amount of global input current to all excitatory 243

or all inhibitory neurons can modulate the network and shift it between AI and 244

spontaneous-replay regimes. In the first example, the connectivities are relatively low 245

(pff = prc = 0.06) such that replay can be evoked (Fig 3) but no spontaneous activations 246

are present (Fig 5A and Fig 5E, left). After injecting a small additional current of only 247

1 pA into the whole excitatory population, the network becomes more excitable, i.e., the 248

firing rate rises from 5 to 12 spikes/sec and spontaneous replays do arise (Fig 5E, right). 249

On the other hand, in a network with high connectivities (pff = prc = 0.12), replay 250

can be reliably evoked (Figs 3 and 4A) and also occurs spontaneously (Fig 5A). An 251

additional input current of 3 pA to the inhibitory population decreases the firing rate of 252

the excitatory population from 5 to 0.33 spikes/sec and shifts the network from a regime 253

showing frequent spontaneous replays to a no-replay, AI regime (Fig 5F, left and right, 254

respectively). Nevertheless, replays can still be evoked as in Fig 3 (result not shown). 255

Hence, the spontaneous-replay regime and the average firing rate in the AI state can be 256

controlled by global or unspecific external current. 257

In summary, the balanced AI network state and successfully evoked replay of 258

assembly sequences can coexist for a range of connectivities. For higher connectivities, 259

the underlying network structure amplifies random fluctuations, leading to spontaneous 260

propagations of activity between assemblies. A dynamical control of the rate of 261

spontaneous events is possible through external input, which modulates the network 262

activity and excitability. In the brain, such a switching between regimes could be 263

achieved via neuromodulators, in particular via the cholinergic or adrenergic 264

systems [40,87]. 265

Smaller assemblies require higher connectivity 266

So far, we have shown basic properties of sequences at fixed assembly size M = 500. To 267

determine the role of this group size in replay, we vary M and the connectivity while 268

keeping the size of the network fixed. As we have already explored how recurrent and 269

feedforward connections determine replay individually, we now consider the case where 270

they are equal, i.e., pff = prc = p. 271

Assembly sequences can be successfully replayed after stimulation for various 272

assembly sizes (Fig 6A). Smaller assemblies require denser connectivity (e.g., p = 0.25 273

for M = 100), while larger assemblies allow sparser connectivity (e.g., p = 0.05 for 274

M = 500). Moreover, assemblies as small as 20 neurons are sufficient to organize a 275

sequence given the condition of all-to-all connectivity within and between assemblies 276

(result not shown). The analytically derived critical value of effective connectivity κ = 1 277

is in agreement with the numerical simulations (black line in Fig 6A). 278

To further characterize the network dynamics for varying group size, we measure the 279

rate of spontaneous activations of assembly sequences in undisturbed networks driven 280

solely by constant input. Fig 6B indicates that spontaneous replays occur for a limited 281

set of parameters resembling a banana-shaped region in the (M , p) plane. The 282

parameter region for spontaneous replays partly overlaps with that of evoked replay. 283

Again, there is a narrow range of parameters to the right of the black line in Fig 6B for 284

which sequences can be evoked by external input while not being replayed 285

spontaneously. As shown above, the size of this region can be controlled by external 286

input to the whole network (Fig 5E, F). 287

To further assess the spontaneous dynamics, we measure the firing synchrony of 288

neurons within the last group. The synchrony grows as function of both connectivity 289

and group size (Fig 6C). The fact that the synchrony approaches the value one for 290

higher connectivity and group size indicates that the network dynamics gets dominated 291

by spontaneous reactivations. The simulation results reveal that neurons always fire 292
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Fig 6. Assembly-sequence activation for various group sizes and
connectivities. A: Simulation results for the quality of replay. B: Rate of
spontaneous replay. C: Synchrony. D: Coefficient of variation E: Firing rate.
ρ0 = 5 spikes/sec is the target firing rate. In C, D, and E quantities are averaged over
the neurons in the last group of the sequence. The black line is an analytical estimate
for the evoked replay as in Figs 3 and 5.

rather irregular with CVs between 0.7 and 1.4 (Fig 6D). Because the recurrent and the 293

feedforward connectivities are equal (pff = prc = p), the inhibition is always strong 294

enough and does not allow epileptiform bursting activity. This behavior is reflected in a 295

rather low maximal value of the coefficient of variation (CV<1.4) compared to the 296

results from Fig 5, where the CV could exceed values of 4 for low prc. The measured 297

firing rates in the last assembly are at the target firing rate of ρ0 = 5 spikes/sec for 298

parameter values around and below the critical value κ = 1 (Fig 6E). However, for 299

increasing connectivity p and increasing group size M , the firing rate deviates from the 300

target, indicating that the inhibitory plasticity cannot keep the network fully balanced. 301

To conclude, the assembly size M plays an important role in the network activity. 302

The critical values of connectivity and group size for successful propagation are inversely 303

proportional. Thus, the analytics predicts that larger assemblies of several thousands 304

neurons require only a fraction of a percent connectivity in order to propagate 305

synchronous activity. However, for this to happen, the group size M must be much 306

smaller than the network size NE . Here NE was fixed to 20,000 neurons for easier 307

comparison of scenarios, but results are also valid for larger networks (see Materials and 308

Methods). The good agreement between the mean-field theory and the numerical 309

results suggests that the crucial parameter for assembly-sequence replay is the total 310

input one neuron is receiving, e.g., the number of input synapses. 311
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Stronger synapses are equivalent to more connections 312

Up to this point, all excitatory synaptic connections in our model had constant and 313

equal strengths. By encoding an assembly sequence we implicitly altered the structural 314

connectivity by creating new synaptic connections. This case of structural plasticity can 315

also occur when silent synapses are turned into functionally active connections upon 316

learning [4, 38]. However, learning new associations might also be possible through a 317

change of synaptic strength of individual connections [10,64]. If a sequence is to be 318

learned through synaptic plasticity, then instead of increasing the connectivity between 319

groups of neurons, the synaptic conductances could be increased as well. To test 320

whether these two types of plasticity are equivalent in our approach, we embed assembly 321

sequences with various feedforward connectivities pff and various feedforward 322

conductances gEff , while keeping the recurrent connectivity (prc = 0.06) and recurrent 323

conductances (gE = 0.1 nS) constant. 324

Numerical results show that feedforward connectivity and feedforward conductance 325

have identical roles in the replay of a sequence. That is, the sparser the connections, the 326

stronger synapses are required for the propagation of activity. The analytical estimate 327

(Fig 7A, black line corresponds to κ ∼ pff gEff = const.) predicts that the product of pff 328

and gEff is the essential parameter for replay. 329

That this analytical prediction is fulfilled in the numerical simulations becomes 330

clearer when we show the replay quality as a function of the feedforward connectivity 331

and the total feedforward input pff g
E
ff /g

E a neuron is receiving (Fig 7B). It is irrelevant 332

whether the number of connections are changed or their strength, what matters is their 333

product. This rule breaks only for sparse connectivities (pff < 0.01), i.e. when the mean 334

number of feedforward connections between two groups is low (< 5). Therefore, the 335

number of relevant connections cannot be reduced to very low numbers. 336

Consistent with earlier findings, the quality of replay is high above a certain strength 337

of the total feedforward conductance (& 0.05 in Fig 5B) and for pff > 0.01. However, for 338

sufficiently large feedforward input (pff g
E
ff /g

E > 0.12), the replay of sequences is 339

severely impaired as the network is in a state of highly synchronous bursting activity 340

(Fig 7B), which is similar to the results shown in Figs 5 and 6. 341

The rule that the total input pff g
E
ff determines the network behavior also holds for 342

spontaneous activity. Spontaneous replay rate, CV, synchrony, and firing rate all vary 343

as a function of the total input (Fig 7C), and only weakly as a function of the 344

connectivity or the conductance alone. Similar to the previous results in Figs 5 and 6, 345

for 0.05 ≤ pff gEff /gE < 0.10 it is possible to evoke a replay while preserving the AI state 346

of the network. Increasing the total input beyond this value drives the network into a 347

state of spontaneous replay with increased synchrony. 348

Forward and reverse replay in assembly sequences with 349

symmetric connections 350

The assembly-sequence model discussed until now contains asymmetric connections, i.e., 351

neurons from one group project extensively within the same and the subsequent group 352

but not to the previous group. We showed that such feedforward assembly sequences 353

are capable of propagating activity, which we call replay. Thus, the proposed model may 354

give an insight on the replay of behavioral sequences that have been observed in the 355

hippocampus [58]. However, further experiments revealed that sequences are also 356

replayed in the inverse temporal order than during behavior, so-called reverse 357

replay [23,30]. The direction of this replay also depended on the context, i.e., when the 358

animal was at the beginning of the path, forward replays prevailed; while after 359

traversing the path, more reverse replays were detected (but see [47]). This suggests 360

that the replay activity might be cued by the sensory input experienced at the current 361
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Fig 7. Feedforward conductance versus feedforward connectivity. A: Quality
of replay as a function of connectivity and synaptic strength. B: The replay as a
function of connectivity and total feedforward conductance input shows that the
propagation is independent of connectivity as long as the total feed-forward input is
kept constant. C: Spontaneous network dynamics described by the rate of spontaneous
replay, synchrony, CV, and firing rate.

location of the animal. 362

As the feedforward structure adopted in the network model is largely asymmetric, 363

the assembly sequence is incapable of reverse replay in its current form. To be able to 364

activate a sequence in both directions, we modify the network and add symmetric 365

connectivity between assemblies [62,68,82]. Then, an assembly of neurons does not 366

project only to the subsequent assembly but also to the preceding, and both projections 367

are random with probability pff (Fig 8A). While this connectivity pattern decreases the 368

group clustering, it does not lead to full merge of the assemblies because the inhibition 369

remains local for each group. 370

Interpreting this network as a model for hippocampal activity during spatial 371

navigation of a virtual rat on a linear track (Fig 8B, top), we test the idea that external 372

input can switch the network between a spontaneous-replay state during rest and a 373

non-replay, spatial-representation state during locomotion. During immobility at the 374
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Fig 8. Symmetric assembly sequence. A: Schematic of an assembly sequence with
symmetric connections between groups. B: Virtual rat position on a linear track (top)
and the corresponding neuronal activity (bottom) as a function of time for 2 seconds.
The rat rests at position “b” for half a second, then moves from “b” to “e” with
constant speed for one second, where it rests for another 500 ms. While the rat is
immobile at both ends of the track, a positive current input Ie = 2 pA is applied to the
excitatory population of the first and last assembly as shown by the red background in
the raster plot. Spontaneous replays start from the cued assemblies. During exploration,
however, the network activity is decreased by a current Ie = −10 pA injected to the
whole excitatory population, denoted with a blue horizontal bar. Strong sensory input
during traversal activates the location-specific assemblies but does not result in any
replay. The timing and location of the stimulations is denoted with red vertical bars in
the raster plot. Recurrent and feedforward connectivities are prc = 0.15 and pff = 0.03,
respectively.

beginning of the track, a context-dependent input cue is mimicked by a constant current 375

Ie = 2 pA injected into the excitatory neurons of the first assembly (Fig 8B, red bar 376

from 0 to 500 ms). The elevated firing rate of the first assembly results in a spontaneous 377

forward replay, similar to the experimental findings during resting states at the 378

beginning of a linear track [23,30]. In contrast, in the absence of the context-dependent 379

current, spontaneous replay can start at any assembly in the sequence (as in Fig 5) and 380

propagate in forward or reverse direction. 381

After the initial 500 ms resting period, an external global current of −10 pA is 382

injected into the whole excitatory population to decrease network excitability and to 383

mimic a state in which the rat explores the environment. In addition, to model 384

place-specific sensory input that is locked to theta oscillations, we apply a strong and 385

brief conductance input (as in Fig 2) every 100 ms to the assembly that represents the 386

current location. In this situation, the assemblies fire at their corresponding locations 387

only. There is, however, a weak activation of the neighboring assemblies that does not 388

result in a replay. An extension of the model including lateral inhibition and STP would 389

possibly enable theta sequences that span in one direction only [80]. Such an extension 390

is, however, beyond the scope of the current manuscript. 391

At the end of the track, we retract the global external current to return to the 392

virtual resting state for the last 500 ms of the simulation, and the network switches back 393

to higher mean firing rates. A context-dependent sensory cue to the last group 394

(Ie = 2 pA current injected continuously) then leads to a spontaneous reverse replay, 395

similar to experimental findings at the end of a linear track [23,30]. 396

In summary, we show that given symmetric connectivity between assemblies, 397

transient activity can propagate in both directions. Large negative external currents 398

injected into all excitatory neurons can decrease network excitability and thus block the 399

replay of sequences. On the other hand, spontaneous replay can be cued by a small 400

increase in the firing rate of a particular assembly. Interestingly, once a replay is 401
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initiated, it does not change direction, in spite of the symmetric connectivity. An active 402

assembly receives feedback inhibition from its inhibitory subpopulation, which prevents 403

immediate further activations and hence a reversal of the direction of propagation. 404

Discussion 405

We revived Hebb’s idea on assembly sequences (or “phase sequences”) where activity in 406

a recurrent neural network propagates through assemblies [41], a dynamics that could 407

underlie the recall and consolidation of memories. An important question in this 408

context is how learning of a series of events can achieve a strong enough synaptic 409

footprint to replay this sequence later. Using both numerical simulations of recurrent 410

spiking neural networks and an analytical approach, we provided a biologically plausible 411

model for understanding how minute synaptic changes can nevertheless be uncovered by 412

small cues or even manifest themselves as activity patterns that emerge spontaneously. 413

We showed how the impact of small changes in the connections between assemblies is 414

boosted by recurrent connectivity within assemblies. This interaction between recurrent 415

amplification within an assembly and the feedforward propagation of activity establishes 416

a possible basis for the retrieval of memories. Our theory thus provides an unifying 417

framework that combines the fields of Hebbian assemblies and assembly sequences [41], 418

synfire chains [1, 25], and fast amplification in balanced recurrent networks that are in 419

an asynchronous-irregular state [72,94]. 420

Main conclusions from our work are that the effective coupling between assemblies is 421

a function of both feedforward and recurrent connectivities, and that the network can 422

express three main types of behavior: 1. When the coupling is weak enough, assembly 423

sequences are virtually indistinguishable from the background random connections, and 424

no replays take place. 2. For sufficiently strong coupling, a transient input to some 425

assembly propagates through the sequence, resulting in a replay. 3. For even stronger 426

coupling, noise fluctuations get amplified by the underlying structure, resulting in 427

spontaneous replays. Each of these three regimes has a certain advantage in performing 428

a particular task. Weak coupling is appropriate for imprinting new sequences if the 429

network dynamics is driven by external inputs rather than controlled by the intrinsically 430

generated activity. Intermediate coupling is suitable for recollection of saved memories; 431

sequences remain concealed and are replayed only by specific input cues; otherwise, the 432

network is in the asynchronous-irregular, spontaneous state. For strong coupling, 433

spontaneous replays might be useful for offline recollection of stored sequences when 434

there are no external input cues. Importantly, the network behaviour and the rate of 435

spontaneous events depends not only on the coupling but can be controlled by 436

modulating the network excitability through external input. Neuromodulator systems, 437

for example the cholinergic and the adrenergic systems [40,87] might therefore mediate 438

the retrieval process. 439

In our simulations, we examined relatively short and non-overlapping assemblies. A 440

natural question is whether the network can sustain longer chains and tolerate 441

overlapping patterns. In additional simulations (results not shown), we found that both 442

is possible. However, because previous work has dealt in great detail with the 443

calculation of capacity of neural networks both analytically [59,60] and 444

computationally [89], we did not explore this issue. 445

Related models 446

Assembly sequences are tightly related to synfire chains, which were proposed [1] as a 447

model for the propagation of synchronous activity between groups of neurons. 448

Diesmann et al. [25] showed for the first time that synfire chains in a noisy network of 449
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spiking neurons can indeed support a temporal code. It has been shown, however, that 450

the embedding of synfire chains in recurrent networks is fragile [6, 66], because on the 451

one hand, synfire chains require a minimal connectivity to allow propagation, while on 452

the other hand, a dense connectivity between groups of neurons can generate unstable 453

network dynamics. Therefore, Aviel et al. [5] introduced “shadow pools” of inhibitory 454

neurons that stabilize the network dynamics for high connectivity. The network fragility 455

can also be mitigated by reducing the required feedforward connectivity: inputs from 456

the previous assembly are boosted by recurrent connections within the assembly. This 457

approach was followed Kumar et al. [54], which examined synfire chains embedded in 458

random networks with local connectivity, thus, implicitly adopting some recurrent 459

connectivity within assemblies as proposed by the assembly-sequence hypothesis; 460

nevertheless, their assemblies were fully connected in a feedforward manner. Recently, it 461

was shown that replay of synfire chains can be facilitated by adding feedback 462

connections to preceding groups [69]. However, this Hebbian amplification significantly 463

increased the duration of the spike volleys and thus decreased the speed of replay. Our 464

model circumvents this slowing effect by combining the recurrent excitation with local 465

feedback inhibition, effectively replacing Hebbian amplification by a transient “balanced 466

amplification” [72]. 467

To store sequences, further classes of models were proposed, e.g., 468

“winner-takes-all” [46,50,71] and “communication through resonance” [37]. However, the 469

activity propagation in these models has an order of magnitude slower time scales than 470

the synfire chain or the assembly sequence, and thus, are not suitable for rapid transient 471

replays. 472

The spontaneous replay in our network bears some resemblance with the population 473

bursts that occur in a model with supralinear amplification of precisely synchronised 474

inputs [67]. Adding such nonlinearities to the conductances in our model might decrease 475

even further the connectivity required for the assembly-sequence replay. Another model 476

class, which relies on lognormal conductance distributions, has been proposed as a burst 477

generator for SWRs [74]. The model accounts for spontaneously generated stereotypical 478

activity that propagates through neurons that are connected with strong synapses. 479

To summarize, for the propagation of activity, functionally connecting assemblies of 480

excitatory and inhibitory neurons requires lower number of additional feedforward 481

synapses than connecting random groups of neurons. This lower number of synapses 482

may facilitate rapid, single-shot learning of associations and enhance the memory 483

capacity of the network [59,90]. 484

Relation between recurrent and feedforward connectivity 485

What is the most efficient set of connectivities in terms of numbers of synapses used? 486

To create an assembly of M neurons and to connect it to another assembly of the same 487

size, we need M2(prc + pff) excitatory-to-excitatory synapses. The constraint κ = 1 then 488

leads to a minimum total number of synapses at prc = 0. This result is somewhat 489

surprising because it suggests that our proposed recurrent amplification provides a 490

disadvantage. 491

However, another constraint might be even more important: to imprint an 492

association in one-shot learning, as for example required for episodic memories, it might 493

be an advantage to change as few synapses as possible so that one can retrieve the 494

memory later via a replay. Therefore, pff should be low, in particular lower than the 495

recurrent connectivity that is bound by the morphological connectivity that includes 496

also weak or silent synapses. Minimizing pff under the constraint κ = 1 implies, 497

however, maximizing prc. Such large connectivities might require longer time to develop. 498

A large prc is compatible with one-shot learning only if assemblies (that are defined by 499

increased prc among a group of neurons) can be set up prior to the (feedforward) 500
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association of assemblies. Thus, episodic memories could benefit from strong preexisting 501

assemblies. For setting up such assemblies, long time periods might be available to 502

create new synapses and to morphologically grow synapses. Thus, we predict that for 503

any episodic memory to be stored in one shot learning in hippocampal networks such as 504

CA3, a sufficiently strong representation of the events to be associated does exist prior 505

to successful one-shot learning. In this case, pff (i.e., connectivity in addition to prand) 506

can be almost arbitrarily low. A natural lower limit is that the number of synapses per 507

neuron Mpff is much larger than 1, say 10 as a rough estimate (in Fig 3 we have 508

Mpff ∼ 30 for a rather low value of prc = pff , and 10 for prc = 0.30; even 5 or more very 509

strong synapses are sufficient in Fig 7), which can be interpreted in two ways: (1) Every 510

neuron in an assembly should activate several neurons in the subsequent assembly, and 511

(2) every neuron in an assembly to be activated should receive several synapses from 512

from neurons in the previous assembly. 513

For example in the modeled network, for pff = 0.02 and Mpff > 10 we obtain 514

M > 500, which is in agreement with an estimated optimal size of assemblies in the 515

hippocampus [59]. The total number of feedforward synapses required for imprinting an 516

association is then M2pff > 5, 000, which is a relatively small number compared to the 517

total number of background synapses
(
NE

)2
prand = 4 · 106 for NE = 20, 000 and 518

prand = 0.01. Scaling up the network accordingly (see Materials and Methods) to the 519

size of a mouse CA3 network, i.e., NE = 240, 000 (a typical number for the rat 520

hippocampus, e.g., [76, 98]), the number of new associative synapses is M2pff > 17, 000, 521

while the total connections are more than 0.5 · 109. 522

To conclude, abundant recurrent connections within assemblies can decrease the 523

feedforward connectivity required for a replay to almost arbitrary low values. Moreover, 524

the ratio of memory synapses to background synapses decreases as the network is scaled 525

to bigger size. 526

Mechanisms for assembly-sequence formation 527

For sequence replay, increasing the number of connections between groups has the same 528

effect as scaling up the individual connection strengths. We conclude that structural 529

and synaptic plasticity could play an equivalent role in the formation of assembly 530

sequences. However, in the current study we have not considered plasticity mechanisms 531

that could be mediating the formation of assembly sequences. Previous attempts of 532

implementing a spike-timing-dependent plasticity (STDP) rule with an asymmetric 533

temporal window [9,32,48] in recurrent networks led to structural 534

instabilities [43,57,70]. More sophisticated learning rules better matched the 535

experimentally observed plasticity protocols [17,35,75], and these rules combined with 536

various homeostatic mechanisms could form Hebbian assemblies that remained stable 537

over long time periods [62,82,102]. Moreover, [62] and [82] have shown that the 538

voltage-based STDP rule [17] leads to strong bidirectional connections, a network motif 539

that has been reported in multiple brain regions [20,51,83,85]. A recent experimental 540

work on the plasticity of the CA3-to-CA3 pyramidal cell synapses has revealed a 541

symmetric STDP temporal curve [68]. Such a plasticity rule can be responsible for the 542

encoding of stable assembly representations in the hippocampus. 543

Several plasticity rules have been successfully applied in learning 544

sequences [11,53,78,84,95]. However, these studies focused purely on sequence replay 545

and did not take into account its interaction with a balanced, asynchronous irregular 546

background state. 547
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Relations to hippocampal replay of behavioral sequences 548

The present model may explain the replay of sequences associated with the sharp-wave 549

ripple (SWR) events, which originate in the CA3 region of the hippocampus 550

predominantly during rest and sleep [14]. SWRs are characterized by a massive 551

neuronal depolarization reflected in the local field potential [21]. Moreover, during 552

SWRs, pyramidal cells in the CA areas fire in sequences that reflect their firing during 553

prior awake experience [58]. Cells can fire in the same or in the reverse sequential order, 554

which we refer to as forward and reverse replay, respectively [23,30]. 555

According to the two-stage model of memory trace formation [14], the hippocampus 556

is encoding new episodic memories during active wakefulness (stage one). Later, these 557

memories are gradually consolidated into neocortex through SWR-associated replays 558

(stage two). It has been proposed that acetylcholine (ACh) modulates the flow of 559

information between the hippocampus and the neocortex and thereby mediates switches 560

between these memory-formation stages [39]. During active wakefulness, the 561

concentration of ACh in hippocampus is high, leading to partial suppression of 562

excitatory glutamatergic transmission [40] and promoting synaptic plasticity [36]. In 563

this state, a single experience seems to be sufficient to encode representations of the 564

immediate future in an environment [29]. On the other hand, the level of ACh decreases 565

significantly during slow-wave sleep [65], releasing the synaptic suppression and 566

resulting in strong excitatory feedback synapses, which suggests that this boost of 567

recurrent and feedback connections leads to the occurrence of SWRs. In line with this 568

hypothesis, the present model shows that increasing the synaptic strengths shifts the 569

assembly-sequence dynamics from a no-replay regime to a spontaneous-replay regime. 570

Also, we demonstrated that this regime supports both forward and reverse replay if 571

assemblies are projecting symmetrically to each other and if recurrent connectivity 572

exceeds severalfold the feedforward coupling. 573

In summary, a prediction of our assembly-sequence model is that prior to being able 574

to store and recall a memory trace that connects events, strong enough representations 575

of events in recurrently connected assemblies are necessary because recalling a minute 576

memory trace requires amplification within assemblies. Another prediction of this 577

model is based on the fact that the network is in an asynchronous-irregular state during 578

the time intervals between replays. Hence, by increasing the activity of the excitatory 579

neurons or by disinhibiting the network, e.g., by decreasing the activity of the 580

interneuron population specialized in keeping the balance, one could increase the rate of 581

spontaneous replays. Our model thus links a diverse set of experimental results on the 582

cellular, behavioral, and systems level of neuroscience on memory retrieval and 583

consolidation [24]. 584

Materials and Methods 585

The network simulations as well as the data analyses were performed in Python 586

(www.python.org). The neural network was implemented in Brian [34]. For managing 587

the simulation environment and data processing, we used standard Python libraries 588

such as NumPy, SciPy, Matplotlib, and SymPy. 589

Neuron model 590

Neurons are described by a conductance-based leaky integrate-and-fire model, where the 591

subthreshold membrane potential Vi(t) of cell i obeys 592

C
dVi
dt

= Gleak(V rest − Vi) +GEi (V E − Vi) +GIi (V
I − Vi) + Iext. (2)
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The cells’ resting potential is V rest = −60 mV, its capacitance is C = 200 pF, and the 593

leak conductance is Gleak = 10 nS, resulting in a membrane time constant of 20 ms in 594

the absence of synaptic stimulation. The variables GEi and GIi are the total synaptic 595

conductances describing the time-dependent synaptic inputs to neuron i. The excitatory 596

and inhibitory reversal potentials are V E = 0 mV and V I = −80 mV, respectively. 597

Iext = Iconst + Ix is an externally applied current. To evoke activity in the network, a 598

constant external current Iconst = 200 pA is injected into each neuron. Only if explicitly 599

stated (e.g., Figs 5 and 8), small additional current inputs Ix are applied to excitatory 600

or inhibitory neurons, which we denote as Ie and Ii, respectively. As the membrane 601

potential Vi reaches the threshold V th = −50 mV, neuron i emits an action potential, 602

and the membrane potential Vi is reset to the resting potential V rest for a refractory 603

period τrp = 2 ms. 604

The dynamics of the conductances GEi and GIi of a postsynaptic cell i are 605

determined by the spiking of the excitatory and inhibitory presynaptic neurons. Each 606

time a presynaptic cell j fires, the synaptic input conductance of the postsynaptic cell i 607

is increased by gEij for excitatory synapses and by gIij for inhibitory synapses. The input 608

conductances decay exponentially with time constants τE = 5 ms and τ I = 10 ms. The 609

dynamics of the total excitatory conductance is described by 610

dGEi (t)

dt
=
−GEi (t)

τE
+
∑
j,f

gEij δ(t− t
(f)
j ). (3)

Here the sum runs over the presynaptic projections j and over the sequence of spikes f 611

from each projection. The time of the f th spike from neuron j is denoted by t
(f)
j , and δ 612

is the Dirac delta function. The inhibitory conductance GIi is described analogously. 613

Amplitudes of recurrent excitatory conductances and excitatory conductances on 614

inhibitory neurons are denoted with gEij and gIEij , respectively. If not stated otherwise, 615

all excitatory conductance amplitudes are fixed and equal (gEij = gIEij = gE = 0.1 nS), 616

which results in EPSPs with an amplitude of ≈ 0.1 mV at resting potential. The 617

recurrent inhibitory synapses are also constant (gIij = 0.4 nS) while the 618

inhibitory-to-excitatory conductances gEIij are variable (see below). Irrespectively of the 619

synaptic type, the delay between a presynaptic spike and a postsynaptic response onset 620

is always 2 ms. 621

Network model 622

The modelled network consists of NE = 20, 000 excitatory and N I = 5, 000 inhibitory 623

neurons. Our results do not critically depend on the network size (see Section ‘Scaling 624

the network size’ below). Initially, all neurons are randomly connected with a sparse 625

probability prand = 0.01. 626

A cell assembly is defined as a group of recurrently connected excitatory and 627

inhibitory neurons (Fig 1A). The assembly is formed by picking M excitatory and M/4 628

inhibitory neurons from the network; every pair of pre- and post-synaptic neurons 629

within the assembly is randomly connected with probability prc. The new connections 630

are created independently and in addition to the already existing ones. Thus, if by 631

chance two neurons have a connection due to the background connectivity and are 632

connected due to the participation in an assembly, then the synaptic weight between 633

them is simply doubled. Unless stated otherwise, assemblies are hence formed by 634

additional connections rather than stronger synapses. 635

In the random network, we embed 10 non-overlapping assemblies with size M = 500 636

if not stated otherwise. The groups of excitatory neurons are connected in a feedforward 637

fashion, and a neuron from one group projects to a neuron of the subsequent group with 638
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probability pff (Fig 1B). Such a feedforward connectivity is reminiscent of a synfire 639

chain. However, classical synfire chains do not have recurrent connections (prc = 0, 640

pff > 0), while here, neurons within a group are recurrently connected even beyond the 641

random background connectivity (prc > 0, pff > 0). We will refer to such a sequence as 642

an “assembly sequence”. By varying the connectivity parameters prc and pff , the 643

network structure can be manipulated to obtain different network types (Fig 1C). In the 644

limiting case where feedforward connections are absent (prc > 0, pff = 0) the network 645

contains only largely disconnected Hebbian assemblies. In contrast, in the absence of 646

recurrent connections (prc = 0, pff > 0), the model is reduced to a synfire chain 647

embedded in a recurrent network. Structures with both recurrent and feedforward 648

connections correspond to Hebbian assembly sequences. 649

To keep the network structure as simple as possible and to be able to focus on 650

mechanisms underlying replay, we use non-overlapping assemblies and we do not embed 651

more than 10 groups. Nevertheless, additional simulations with overlapping assemblies 652

and longer sequences (results not shown) indicate that our approach is in line with 653

previous results on memory capacity [59,60,89]. Advancing the theory of memory 654

capacity is, however, beyond the scope of this manuscript. 655

Balancing the network 656

A naive implementation of the heterogeneous network as described above leads, in 657

general, to dynamics characterized by large population bursts of activity. To overcome 658

this epileptiform activity and ensure that neurons fire asynchronously and irregularly 659

(AI network state), the network should operate in a balanced regime. In the balanced 660

state, large excitatory currents are compensated by large inhibitory currents, as shown 661

in vivo [15, 73] and in vitro [101]. In this regime, fluctuations of the input lead to highly 662

irregular firing [92,93]. 663

Several mechanisms were proposed to balance numerically simulated neural networks. 664

One method involves structurally modifying the network connectivity to ensure that 665

neurons receive balanced excitatory and inhibitory inputs [77,81]. It was shown that a 666

short-term plasticity rule [91] in a fully connected network can also adjust the 667

irregularity of neuronal firing [8]. 668

Here, we balance the network using the inhibitory-plasticity rule [94]. All 669

inhibitory-to-excitatory synapses are subject to a spike-timing-dependent plasticity 670

(STDP) rule where near-coincident pre- and postsynaptic firing potentates the 671

inhibitory synapse while presynaptic spikes alone cause depression. A similar STDP 672

rule with a symmetric temporal window was recently reported in the layer 5 of the 673

auditory cortex [22]. 674

To implement the plasticity rule in a synapse, we first assign a synaptic trace
variable xi to every neuron i such that xi is incremented with each spike of the neuron
and decays with a time constant τSTDP = 20 ms:

xi → xi + 1 , if neuron i fires,

τSTDP
dxi
dt

= −xi , otherwise.

The synaptic conductance gEIij (t) from inhibitory neuron j to excitatory neuron i is

initialized with value gI0 = 0.4 nS and is updated at the times of pre/post-synaptic
events:

gEIij = gEIij + η(xi − α) , for a presynaptic spike in neuron j,

gEIij = gEIij + ηxj , for a postsynaptic spike in neuron i
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where 0 < η � 1 is the learning-rate parameter, and the bias α = 2ρ0τSTDP is 675

determined by the desired firing rate ρ0 of the excitatory postsynaptic neurons. In all 676

simulations, ρ0 has been set to 5 spikes/sec, which is at the upper bound of the wide 677

range of rates that were reported in the literature: e.g., 1− 3 spikes/sec in [21]; 678

3− 6 spikes/sec in [52]; 1− 76 spikes/sec in [28]; 0.43− 3.60 spikes/sec in [16]; 679

1− 11 spikes/sec in [27]. 680

An implementation of the described STDP rule drives typically the network into a 681

balanced state. The excitatory and the inhibitory input currents balance each other and 682

keep the membrane potential just below threshold while random fluctuations drive the 683

firing (Fig 2A, B). The specific conditions to be met for a successful balance are 684

discussed in the Results section. 685

In the AI network regime, any perturbation to the input of an assembly will lead to 686

a transient perturbation in the firing rate of the neurons within it. Moreover, because of 687

the recurrent connections, even small perturbations can lead to large responses. This 688

phenomenon of transient pattern completion is known as balanced amplification [72], 689

where it is essential that each assembly has excitatory and inhibitory neurons. Another 690

advantage of the inhibitory subpopulations is the rapid negative feedback that can lead 691

to enhanced memory capacity of the network [45]. 692

Simulations and data analysis 693

Each network simulation consists of 3 main phases: 694

1. Balancing the network. Initially, the population activity is characterized by 695

massive population bursts with varying sizes (avalanches). During a first phase, the 696

network (random network with embedded phase sequence) is balanced for 50 seconds 697

with decreasing learning rate (0.005 ≥ η ≥ 0.00001) for the plasticity on the 698

inhibitory-to-excitatory synapses. During this learning, the inhibitory plasticity shapes 699

the activity, finally leading to AI firing of the excitatory population. Individual 700

excitatory neurons then fire roughly with the target firing rate of 5 spikes/sec, while 701

inhibitory neurons have higher firing rates of around 20 spikes/sec, which is close to 702

rates reported in the hippocampus [16,21]. After 50 seconds simulation time, the 703

network is typically balanced. 704

2. Reliability and quality of replay. In a second phase, the plasticity is 705

switched off to be able to probe an unchanging network with external cue stimulations. 706

All neurons from the first group/assembly are simultaneously stimulated by an external 707

input so that all neurons fire once. The stimulation is mimicked by adding an excitatory 708

conductance in Eq 3 (gmax = 3 nS) that is sufficient to evoke a spike in each neuron. 709

For large enough connectivities (prc and pff), the generated pulse packet of activity 710

propagates through the sequence of assemblies, resulting in a replay. For too small 711

connectivities, the activity does not propagate. For excessively high connectivities, the 712

transient response of one group results in a burst in the next group and even larger 713

responses in the subsequent groups, finally leading to epileptiform population bursts of 714

activity (Fig 3). 715

To quantify the propagation from group to group and to account for abnormal 716

activity, we introduce a quality measure of replay. The activity of a group is measured 717

by calculating the population firing rate of the underlying neurons smoothed with a 718

Gaussian window of 2 ms width. We extract peaks of the smoothed firing rate that 719

exceed a threshold of 30 spikes/sec. A group is considered to be activated at the time at 720

which its population firing rate hits its maximum and is above the threshold rate. 721

Activity propagation from one group to the next is considered to be successful if one 722

group activates the next one within a delay between 2 and 20 ms. A typical delay is 723

about 5 ms, but in the case of extremely small pff and large prc the time of propagation 724

can take ∼ 15 ms. Additional rules are imposed to account for exceeding activity and 725
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punish replays that lead to run-away firing. First, if the activity of an assembly exceeds 726

a threshold of 180 spikes/sec (value is chosen manually for best discrimination), the 727

group is considered as bursting, and thus, the replay is considered as failed. Second, if 728

the assembly activity displays 2 super-threshold peaks that succeed each other within 729

30 ms, the replay is unsuccessful. Third, a “dummy group” (of size M) from the 730

background neurons is used as a proxy for detecting activations of the whole network. 731

In case that the dummy group is activated during an otherwise successful replay, the 732

replay is failed. Thus, for each stimulation the “quality of replay” has a value of 1 for 733

successful and a value of 0 for unsuccessful replays. The quality of replay for each set of 734

parameters (Fig 3) is an average from multiple (& 5) stimulations of 5 different 735

realizations of each network. 736

Additionally, we test the ability of the assembly sequence to complete a pattern by 737

stimulating only a fraction of the neurons in the first group (Fig 4). Analogously to the 738

full stimulation, the quality of replay is measured. 739

3. Spontaneous activity. In the last phase of the simulations, no specific input is 740

applied to the assemblies. As during the first phase of the simulation, the network is 741

driven solely by the constant-current input Iconst = 200 pA applied to each neuron, and 742

plasticity is switched off. 743

During this state, we quantify spontaneous replay (Fig 5). Whenever the last 744

assembly is activated and if this activation has propagated through at least three 745

previous assemblies, we consider this event as a spontaneous replay. Here, we apply the 746

quality measure of replay, where bursty replays are disregarded. Additionally, we 747

quantify the dynamic state of the network by the firing rate, the irregularity of firing, 748

and the synchrony of a few selected groups from the sequence. The irregularity is 749

measured as the average coefficient of variation of inter-spike intervals of the neurons 750

within a group. As a measure of synchrony between 2 neurons, we use the 751

cross-correlation coefficient of their spike trains binned in 5-ms windows. The group 752

synchrony is the average synchrony between all pairs of neurons in a group. 753

Mean-field analysis 754

To analytically describe the conditions for a successful sequence replay, we portray the 755

network activity during replay using a linear model. Approximating the network 756

dynamics with a system of linear differential equations, we estimate a lower bound for 757

the connectivities required for a successful replay. 758

The dynamics of an assembly i (Fig 1A, B) in the AI state is approximated by two 759

differential equations: 760

τ
drEi
dt

= −rEi + wrc r
E
i − kwrc r

I
i + ξEi (t)

τ
drIi
dt

= −rIi + wrc r
E
i − kwrc r

I
i

(4)

where rEi and rIi are the deviations of the population firing rates of the excitatory (E) 761

and inhibitory (I) populations from the spontaneous firing rates rE0 and rI0 , respectively. 762

The parameter wrc and the term −kwrc are the respective strengths of the excitatory 763

and the inhibitory recurrent projections. The constant k describes the relative strength 764

of the recurrent inhibition vs. excitation; for a balanced network, we assume that 765

inhibition balances or dominates excitation, e.g., k ≥ 1. The weight wrc is proportional 766

to the average number M prc of recurrent synapses a neuron receives, and proportional 767

to the synaptic strength gE . The function ξEi describes the external input to the 768

assembly from the rest of the network. In this mean-field analysis, we neglect the 769

influence of the noise on the network dynamics. Activities rEi and rIi are assumed to 770

approach the steady state 0 with a time constant τ . 771
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The excitatory assemblies are sequentially connected, and we denote the strength of 772

the feedforward projections as wff . The feedforward drive can be represented as an 773

external input to an assembly: 774

ξEi = wff r
E
i−1, for i > 1.

Taking into account the feedforward input to population i from the preceding excitatory 775

population i− 1, Eq 4 can be rewritten as 776

τ
dri
dt

=

(
−1 + wrc −kwrc

wrc −1− kwrc

)
ri +

(
wff r

E
i−1

0

)
, for i > 1 (5)

where ri =

(
rEi
rIi

)
is the 2-dimensional vector of firing rates in group i. 777

From previous theoretical studies [31,92,93] we know that in the AI state the 778

population time constant τ can be much smaller than the membrane time constant of 779

individual neurons. This means that a population of neurons can react faster to 780

external input than individual neurons. Assuming that the time duration of a pulse 781

packet in group i− 1 is much longer than the population time constant τ in group i, we 782

can consider the solution of the stationary state (τ dri
dt = 0) as an adequate 783

approximation. Thus, by setting the left-hand side of Eq 5 to zero, we can express the 784

firing rate rEi as a function of rEi−1: 785

1 + kwrc − wrc

1 + kwrc
rEi = wff r

E
i−1.

In the special case of a balanced network where k = 1, the relation can be simplified 786

further: 787

rEi = κ rEi−1 (6)

where 788

κ = wff(1 + wrc) (7)

is the “effective feedforward connectivity”. Interestingly, the recurrent connections 789

effectively scale up the efficiency of the feedforward connections and facilitate the 790

propagation of activity. For small κ, i.e. κ� 1, even large changes of the firing rate in 791

group i− 1 do not alter the rate in group i. For κ < 1, the pulse packet will steadily 792

decrease while propagating from one group to another as rEi < rEi−1. On the other hand, 793

if κ = 1, the propagation of a pulse packet is expected to be stable. In the case of κ > 1, 794

any fluctuation of firing rate in one assembly will lead to a larger fluctuation in the 795

following assembly. 796

To connect the analytical calculations to the numerical simulations, we again note 797

that a total connection strength is proportional to the number of inputs a neuron is 798

receiving (e.g., the product of group size M and connection probability) and 799

proportional to the synaptic strength: 800

wrc = cMprc g
E and wff = cMpff g

E
ff , (8)

where M is the group size, and prc and pff are the recurrent and feedforward 801

connectivities, respectively. gE is the conductance of an excitatory recurrent synapse 802

within a group, and gEff is the conductance of feedforward synapses between groups. 803

Unless stated otherwise, we assume gEff = gE . The parameter c is related to the slope of 804

the neurons’ input-output transfer function. 805

Before representing κ as function of the connectivities pff and prc, we estimate the 806

parameter c. By fitting the critical value κ(prc = 0.08, pff = 0.04) = 1 from the 807
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simulation results (Fig 3), we find c = 0.25 nS−1. This value of c is used in all further 808

analytical estimations for the effective connectivity κ. However, this procedure does not 809

show us how c depends on various parameters, e.g., conductances, time constants, 810

network size, etc. Therefore, the next subsection deals with deriving an explicit 811

expression for the transfer function slope c. 812

In summary, the lower bound for the connectivities for a successful replay can be 813

described as 814

prc =
1

cMgE

(
1

cMpffgEff
− 1

)
,

which is represented as a black line in Figs 3 and 5. For Figs 6 and 7, the black line is 815

calculated analogously using the same constant c = 0.25 nS−1. 816

Calculating the slope c 817

In the previous section, the constant c was manually fitted to a value of 0.25 nS−1 to 818

match analytical and numerical results. Here we express c analytically by utilizing a 819

non-linear neuronal model and by using the parameter values from the simulations. 820

The resting firing rate ρ of a neuronal population that is in an asynchronous 821

irregular (AI) regime can be expressed as a function of the mean µ and the standard 822

deviation σ of the membrane potential distribution [3, 13,33,79]: 823

µ =
∑
k

Jkρk

824

σ =

√∑
k

J2
kρk , (9)

where the sums over k run over the different synaptic contributions, ρk is the 825

corresponding presynaptic firing rate, and Jk and J2
k are the integrals over time of the 826

PSP and the square of the PSP from input k, respectively. Here PSPs are estimated for 827

the conductance-based integrate-and-fire neuron from Eq 2 for voltage values near the 828

firing threshold V th, 829

Jk =

∫
t

PSP(t)dt = τ syn(V syn − V th)
gsynk

Gleak

830

J2
k =

∫
t

PSP2(t)dt =

(
τ syngsynk (V syn − V th)

)2
2(τ + τ syn) (Gleak)

2 ,

where τ is the membrane time constant, τ syn is the synaptic time constant, V syn is the 831

synaptic reversal potential, and gsynk is the synaptic conductance of connection k. 832

Connections can be either excitatory or inhibitory. 833

Here we consider a network with random connections only, and look at a 834

subpopulation of size M , where M � NE . For a more convenient analytical treatment, 835

the recurrent connections within the group are neglected. This assumption does not 836

affect the estimation of the transfer function slope, as c is independent on the type of 837

inputs. The firing rate-fluctuations of the neuronal group are calculated as in Eq 6: 838

r = cMgErext. (10)

The membrane potential of an excitatory neuron from this subpopulation has several 839

contributions: NEprand excitatory inputs with firing rate ρ0 and efficacy JE ; inhibitory 840
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inputs due to the background connectivity: N IprandJ
EIρI0; injected constant current: 841

Iext/Gleak; and input from an external group: MextJ
E
extρext. In summary, we find: 842

µ = NEprandJ
Eρ0 +N IprandJ

EIρI0 +MextJ
E
extρext +

Iext

Gleak
.

The standard deviation of the membrane potential is then, accordingly: 843

σ2 = NEprandJ
E2

ρ0 +N IprandJ
EI2ρI0 +MextJ

E2

extρext.

In the case of uncorrelated inputs, the following approximation can be used for the 844

firing rate estimation [3, 13,33,79]: 845

ρ =
(
τrp + τ

√
π

∫ V th−µ
σ

V rest−µ
σ

eu
2(

1 + erf(u)
)
du
)−1

, (11)

where τrp is the refractory period, and V th and V rest are membrane threshold and reset 846

potential, respectively (see also section “Neural Model”). 847

To find the constant c used in the linear model, we estimate the firing rate ρ from 848

Eq 11 and substitute in Eq 10, assuming a linear relation between firing-rate 849

fluctuations: 850

ρ(ρext)− ρ0 = cMextg
E(ρext − 0) , (12)

and find: 851

c =
ρ(ρext)− ρ0
cMextgEρext

. (13)

Before calculating the constant c according to the method presented above, a 852

preliminary step needs to be taken. As we set the firing rate of the excitatory 853

population in the network to a fixed value ρ0 = 5 spikes/sec, there are two variables 854

remaining unknown: the firing rate of the inhibitory population ρI0 and the 855

inhibitory-to-excitatory synaptic conductance gEIrand that changes due to synaptic 856

plasticity. Therefore, we first solve a system of 2 equations for the firing rates of the 857

excitatory and the inhibitory populations expressed as in Eq 11. Once the unknowns ρI0 858

and gEIrand are calculated, we can estimate ρ(ρext) and c according to the method 859

presented above. We note that the analytically calculated values of gEIrand and ρI0 match 860

the measured values in the simulations. 861

The value we get after applying the above mentioned method for estimation of c is 862

0.13 nS−1. The fit corresponding to the estimate of c is shown in Fig 3 with a white 863

dashed line. It is worth noting that a slightly more involved calculation relying on the 864

estimate c = 1
Mg

∂r
∂rext

gives a similar result, concretely c = 0.11 nS−1. 865

Although the analytically calculated value c is a factor of 2 smaller than the manual 866

fit c = 0.25 nS−1, it is qualitatively similar and not too far from describing the results 867

for critical connectivity from the simulations. 868

The method applied above finds the slope of the transfer function for stationary 869

firing rates. However, the spiking network replay is a fast and brief event, where a 870

transient input in one assembly evokes a transient change in the output firing rate. The 871

value discrepancy suggests that the transfer function of transients is even steeper than 872

at the resting AI state. 873

Scaling the network size 874

So far we have been dealing with networks of fixed size NE = 20, 000 neurons. How 875

does the network size affect the embedding of assembly sequences? Is it possible to 876

change the network size but keep the assembly size fixed? 877
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Scaling the network size while keeping the connectivity prand constant leads to a 878

change in the number of inputs that a neuron receives, and therefore, affects the 879

membrane potential distributions. To compare replays in networks with different sizes 880

NE but identical M , we need to assure that the signal-to-noise ratio is kept constant, 881

and the easiest way is to keep both the signal and the noise constant, which requires to 882

change connectivities prc and pff and conductances. 883

While scaling the network from the default network size NE = 20, 000 to a size 884

ÑE = γNE , we see that the noise σ scales as ∼ g
√
γNE (Eq 9). To keep the input 885

current fluctuations constant as we change ÑE , all synaptic conductances are rescaled 886

with a factor of 1/
√
γ: g̃ = g/

√
γ [92]. However, such a synaptic scaling leads to a 887

change in the coupling between assemblies of fixed size M , which is proportional to the 888

conductance. Therefore, the connectivities prc and pff are scaled with
√
γ to compensate 889

the conductance decrease, leading to a constant coupling (cMp̃rcg̃
E = cMprcg

E and 890

cMp̃ff g̃
E = cMpffg

E), and hence, a constant signal-to-noise ratio. 891

What is the impact of such a scaling on the network capacity to store sequences? 892

The number of connections needed to store a sequence is changed by a factor
√
γ as we 893

change prc and pff . However, the number of background connections to each neuron is 894

scaled with γ, resulting in sparser memory representations in larger networks. More 895

precisely, for a neuron participating in the sequence, the ratio of excitatory memory 896

connections to the total number of excitatory connections is 897

u =
(prc + pff)

√
γM

(prc + pff)
√
γM + prandγNE

.

Therefore, the proportion of connections needed for an association is scaled as 1/
√
γ for 898

ÑE �M . To give a few numbers, u is equal to 0.23 for ÑE = 20, 000, and u = 0.09 for 899

ÑE = 180, 000. Other parameter values are: M = 500, prc = pff = 0.06, prand = 0.01. 900

The chosen scaling rule is applicable for networks of simpler units such as binary 901

neurons or current-based integrate-and-fire neurons [3, 93]. This scaling is not valid in a 902

strict mathematical framework for very large networks (ÑE →∞) consisting of 903

conductance-based integrate-and-fire neurons (see [77] for a detailed discussion). 904

Simulations results, however, reveal that replays are possible in network sizes up to 905

2 · 105 neurons (results not shown). 906
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23. Diba K, Buzsáki G. Forward and reverse hippocampal place-cell sequences during
ripples. Nat Neurosci. 2007;10:1241–1242.

24. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci.
2010;11:114–126.

25. Diesmann M, Gewaltig MO, Aertsen A. Stable propagation of synchronous
spiking in cortical neural networks. Nature. 1999;402:529–533.

26. Dragoi G, Tonegawa S. Distinct preplay of multiple novel spatial experiences in
the rat. Proc Natl Acad Sci USA. 2013;110:9100–9105.

27. English DF, Peyrache A, Stark E, Roux L, Vallentin D, Long MA, Buzsàki G.
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