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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) is increasingly used to study
gene expression at the level of individual cells. However, preparing raw sequence data
for further analysis is not a straightforward process. Biases, artifacts, and other sources
of unwanted variation are present in the data, requiring substantial time and effort to
be spent on pre-processing, quality control (QC) and normalisation.
Results: We have developed the R/Bioconductor package scater to facilitate rigorous
pre-processing, quality control, normalisation and visualisation of scRNA-seq data. The
package provides a convenient, flexible workflow to process raw sequencing reads into a
high-quality expression dataset ready for downstream analysis. scater provides a rich
suite of plotting tools for single-cell data and a flexible data structure that is compatible
with existing tools and can be used as infrastructure for future software development.
Availability: The open-source code, along with installation instructions, vignettes and
case studies, is available through Bioconductor at
http://bioconductor.org/packages/scater.
Supplementary information: Supplementary material is available online at bioRxiv
accompanying this manuscript, and all materials required to reproduce the results
presented in this paper are available at dx.doi.org/10.5281/zenodo.60139.

Introduction 1

Single-cell RNA sequencing (scRNA-seq) describes a broad class of techniques which 2

profile the transcriptomes of individual cells. This provides insights into cellular 3

processes at a resolution that cannot be matched by bulk RNA-seq experiments 4

(Hebenstreit and Teichmann, 2011; Shalek et al., 2013). With scRNA-seq data, the 5

1/16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2016. ; https://doi.org/10.1101/069633doi: bioRxiv preprint 

davis@ebi.ac.uk
http://bioconductor.org/packages/scater
http://dx.doi.org/10.5281/zenodo.60139
https://doi.org/10.1101/069633
http://creativecommons.org/licenses/by/4.0/


contributions of different cell types to the expression profile of a heterogeneous 6

population can be explicitly determined. Rare cell types can be interrogated and new 7

cell subpopulations can be discovered. Graduated processes such as development and 8

differentiation can also be studied in greater detail. However, this improvement in 9

resolution comes at the cost of increased technical noise and biases. This means that 10

pre-processing, quality control and normalisation are critical to a rigorous analysis of 11

scRNA-seq data. The increased complexity of the data across hundreds or thousands of 12

cells also requires sophisticated visualisation tools to assist interpretation of the results. 13

Numerous statistical methods and software tools have been published for scRNA-seq 14

data (Guo et al., 2015; Kharchenko et al., 2014; Finak et al., 2015; Angerer et al., 2015; 15

Juliá et al., 2015; Trapnell et al., 2014). However, all of these assume that quality 16

control and normalisation have already been applied. Fewer methods are available in 17

the literature to perform these basic steps in scRNA-seq data processing (Ilicic et al., 18

2016). This issue is exacerbated by the diversity of scRNA-seq data sets with respect to 19

the experimental protocol and the biological context of the study, meaning that a single 20

processing pipeline with fixed parameters is unlikely to be universally applicable. 21

Rather, software tools are required that support an interactive approach to analysis. 22

This allows parameters to be fine-tuned for the study at hand in response to any issues 23

diagnosed during data exploration. The provided functionality should also process the 24

data in a statistically rigorous manner and encourage reproducible bioinformatics 25

analyses. 26

One of the most popular frameworks for interactive analysis is the R programming 27

language, extended for biological data analysis through the Bioconductor project 28

(Huber et al., 2015). While Bioconductor packages have been widely used for bulk 29

RNA-seq data, the existing data structures (like the ExpressionSet class) are not 30

sufficient for scRNA-seq data. This is because they do not support data types that are 31

specific to single-cell studies, e.g., cell-cell distance matrices for clustering. For larger 32

studies, this also includes data beyond expression profiles such as intensity values from 33

fluorescence-activated cell sorting, cell imaging data, and information from epigenetic 34

and targeted genotyping assays. Existing methods for processing and applying quality 35

control to scRNA-seq data are similarly inadequate. In particular, current visualisation 36

methods designed for exploratory data analysis of bulk transcriptomic experiments are 37

unsuited to datasets containing hundreds or thousands of cells. The large size of each 38

dataset also favours methods such as kallisto (Bray et al., 2016) and Salmon (Patro 39

et al., 2015) for rapidly quantifying gene expression. Extensions to the current 40

computational infrastructure are required to provide appropriate data structures and 41

methods that can accommodate these rich scRNA-seq datasets for integrative analyses 42

of expression and other assay data along with the accompanying metadata. 43

Here we present scater, an open-source R/Bioconductor software package that 44

implements a convenient data structure for representing scRNA-seq data and contains 45

functions for pre-processing, quality control, normalisation and visualisation. The 46

package provides wrapper functions for running kallisto and Salmon on raw read data 47

and converting their output into gene-level expression values, methods for computing 48

and visualising quality-control metrics for cells and genes, and methods for 49

normalisation and correction of uninteresting covariates. This is done in a single 50

software environment which enables seamless integration with a large number of existing 51

tools for scRNA-seq data analysis in R. The scater package provides basic infrastructure 52

upon which customized scRNA-seq analyses can be constructed, and we anticipate the 53

package to be useful across the whole spectrum of users, from experimentalists to 54

computational scientists. 55
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Methods, Data and Implementation 56

Case study with scRNA-seq data 57

The results presented in the main paper and supplementary case study use an 58

unpublished single-cell RNA-seq dataset consisting of 73 cells from two lymphoblast cell 59

lines of two unrelated individuals. Cells were captured, lysed, and cDNA generated 60

using the popular C1 platform from Fluidigm, Inc. 61

(www.fluidigm.com/products/c1-system). The processing of the two cell lines was 62

replicated across two machines, with the nuclei of the two cell lines stained with 63

different dyes before mixing on each machine. Cells were imaged before lysis, with an 64

example image provided together with these data (see Case Study in Supplementary 65

Material). Samples were sequenced with paired-end sequencing using the HiSeq 2500 66

Sequencing system (Illumina). RNA-seq reads were were mapped to a custom genome 67

reference, consisting of Homo sapiens GRCh37 (primary assembly from 68

ftp.ensembl.org/pub/release-75/fasta/homo sapiens/dna/, last accessed 14.08.2015), 69

Epstein-Barr Virus type 1 (B95-8 strain, Accession NC 007605.1) and ERCC RNA 70

spike-ins (ThermoFisher). Reads in fastq format were aligned using TopHat2 v2.0.12 71

(Kim et al., 2013) using Bowtie2 v2.2.3.0 (Langmead and Salzberg, 2012) as the 72

core-mapping engine (--mate-inner-dist 190 --mate-std-dev 40 73

--report-secondary-alignments) and other default parameters. Potential PCR 74

duplicates were marked with Picard MarkDuplicates v1.92(1464). Reads mapping 75

uniquely to annotated exon features were counted using htseq-count implemented in 76

HTSeq, version 0.6.1p1 (Anders et al., 2015). 77

Further case studies using scater on published data, for example from 3000 mouse 78

cortex cells (Zeisel et al., 2015) and 1200 cells from early-development mouse embryos 79

(Scialdone et al., 2016) are available at dx.doi.org/10.5281/zenodo.59897. All materials 80

required to reproduce the results presented in this paper are available at 81

dx.doi.org/10.5281/zenodo.60139. 82

Implementation 83

The scater package is an open-source R package available through Bioconductor. Key 84

aspects of the code are written in C++ to minimise computational time and memory 85

use. The package builds on many other R packages, including Biobase and BiocGenerics 86

for core Bioconductor functionality (Huber et al., 2015); destiny (Angerer et al., 2015) 87

and Rtsne for dimensionality reduction; and edgeR (Robinson et al., 2010) and limma 88

(Ritchie et al., 2015) for model fitting and statistical analyses. The plotting 89

functionality in the package uses ggplot2 (Wickham, 2016). A full set of dependencies is 90

provided in the Supplementary Materials. 91

Results 92

The scater package 93

The scater package offers a workflow to convert raw read sequences into a data set 94

ready for higher-level analysis within the R programming environment (Figure 1). In 95

addition, scater provides basic computational infrastructure to standardise and 96

streamline scRNA-seq data analyses. Key features of scater include: (1) the “single-cell 97

expression set” (SCESet) class, a data structure specialized for scRNA-seq data; (2) 98

wrapper methods to run kallisto and Salmon and process their output into gene-level 99

expression values; (3) automated calculation of quality control metrics, with QC 100

visualisation and filtering methods to retain high-quality cells and informative features; 101
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scater pre-processing and quality control workflow
From raw RNA-seq reads to a clean, tidy dataset ready for downstream analysis

Raw RNA-seq Reads
[Fastq format]

Summarised feature 
expression values

[e.g. produced by 
bioinformatics core]

runKallisto/
readKallisto

runSalmon/readSalmon
newSCESet

Plotting methods

plot

plotQC

plotPCA

plotTSNE

plotMDS

plotDiffusionMap

plotReducedDim

plotExpression

plotPhenoData

plotFeatureData

plotMetadata

Filtered SCESet

Tidy filtered and 
normalised SCESet

Downstream 
modelling and 

statistical analysis

1. Obtain RNA-seq 
expression data

2. QC and filter features

3. QC and filter cells

4. Simple normalisation

5. QC of explanatory variables

SCESet
[Container: S4 class inheriting 
Bioconductor’s ExpressionSet]

Object that contains assay 
data, phenotype data, 

feature data, and more, for 
single-cell analysis

(6. Further 
normalisation)

QC methods

calculateQCMetrics

Miscellaneous methods

getBMFeatureAnnos

summariseExprsAcross
Features

Normalisation methods

normaliseExprs

normalise

Figure 1: An overview of the scater workflow, from raw sequenced reads to a tidy data set ready
for higher-level downstream analysis. For step 5, explanatory variables include experimental
covariates like batch, cell source and other recorded information, as well as QC metrics computed
from the data. Step 6 describes an optional round of normalisation to remove effects of particular
explanatory variables from the data. Automated computation of QC metrics and extensive
plotting functionality support the workflow.

(4) extensive visualisation capabilities for inspection of scRNA-seq data; and (5) 102

methods to identify and remove uninteresting covariates affecting expression across cells. 103

The package integrates many commonly used tools for scRNA-seq data analysis and 104

provides a foundation on which future methods can be built. The methods in scater are 105

agnostic to the form of the input data and are compatible with counts, 106

transcripts-per-million, counts-per-million, FPKM or any other appropriate 107

transformation of the expression values. 108

SCESet: a data structure for single-cell expression data 109

The scater package is built around the SCESet class (Supplementary Figure 1) which 110

provides a sophisticated container for scRNA-seq data. This class inherits from the 111

ExpressionSet class in Bioconductor’s Biobase package (Huber et al., 2015), which 112

allows assay data (and multiple transformations thereof), gene or transcript metadata 113

and sample metadata to be combined in a single object to empower robust analyses. 114

While the ExpressionSet class is the basis of many microarray and bulk RNA-seq 115

anaysis methods in Bioconductor, extensions to the class design are necessary to 116

support scRNA-seq data analyses. Specifically, the SCESet class adds slots to store a 117

reduced-dimension representation of the expression profiles, to easily visualize the 118

relationships between cells; cell-cell and gene-gene pairwise distance matrices, for 119

clustering or regulatory network reconstruction; bootstrapped expression results (such 120

as from kallisto), to gauge the accuracy of expression quantification; consensus 121

clustering results, where cluster assignments for each cell are combined from different 122

methods to improve reliability; information about feature controls (such as ERCC 123

spike-ins), which is required in downstream steps such as normalization, QC and 124
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detection of highly variable genes; and several more (Supplementary Figure 1). With 125

these extra slots, SCESet objects can support analyses of scRNA-seq data that 126

ExpressionSet cannot. In addition, extra data types such as FACS marker expression or 127

epigenetic information can be easily stored in each SCESet object for integration with 128

the single-cell expression profiles. 129

An SCESet data object can be easily subsetted by row or column to remove 130

unwanted genes or cells, respectively, from all data and metadata fields stored in the 131

object. Furthermore, data and metadata in multiple SCESet objects can be easily 132

combined e.g., to incorporate cells from different experimental batches. SCESet objects 133

can also be converted to other R data structures, or saved to disk in structured, 134

shareable formats. Further details on the class, including its motivation and execution, 135

are available in the Supplementary Case Study and the package documentation. All 136

methods available in scater are applicable to instances of the SCESet class and exploit 137

the availability and richness of (meta)data stored in each SCESet object. 138

Data pre-processing 139

An important initial step in scRNA-seq data processing is to quantify the expression 140

level of genomic features such as transcripts or genes from the raw sequencing data. 141

Approaches to expression quantification from raw reads are, in principle, the same for 142

scRNA-seq as they are for bulk RNA-seq (Kanitz et al., 2015; Teng et al., 2016). Read 143

counts obtained from conventional quantification methods such as HTSeq (Anders et al., 144

2015) and featureCounts (Liao et al., 2014) can be readily stored in an SCESet object 145

and used in a scater workflow (Figure 1). Another option is to use 146

computationally-efficient pseudoalignment methods such as kallisto and Salmon. This is 147

especially appealing for large scRNA-seq data sets containing hundreds to tens of 148

thousands of cells. To this end, scater also provides wrapper functions for kallisto and 149

Salmon so that fast quantification of transcript-level expression can be managed 150

completely within an R programming environment. A common subsequent step for 151

these methods is to collapse transcript-level expression to gene-level expression. 152

Exploiting the biomaRt R/Bioconductor package, scater provides a convenient function 153

for using Ensembl annotations to obtain gene-level expression values and gene or 154

transcript annotations (Yates et al., 2016). 155

Data quality control 156

The scater package provides methods to compute relevant QC metrics for an SCESet 157

object. Given a set of control genes and/or cells, a variety of QC metrics will be 158

computed and returned to the object in a single call to the calculateQCMetrics function 159

(see package documentation). Cell-specific QC metrics include the total count across all 160

genes, the total number of expressed genes, and the percentage of counts allocated to 161

control genes like spike-in transcripts or mitochondrial genes. These metrics are useful 162

for identifying low-quality cells—for example, a high percentage of counts mapping to 163

spike-ins typically indicates that a small amount of RNA was captured for the cell, 164

suggesting protocol failure or death of the cell in processing that renders it unsuitable 165

for downstream analyses. For each gene, QC metrics such as the average expression 166

level and the proportion of cells in which the gene is expressed are computed. This can 167

be used to identify low-abundance genes or genes with high dropout rates that should 168

be filtered out prior to downstream analyses. All of these metrics are used by scater to 169

construct QC plots to diagnose potential issues with data quality. This facilitates 170

quality control which—despite attempts at automation (Ilicic et al., 2016)—still requires 171

manual intervention to account for aspects of the data specific to each study. The 172

package documentation provides full details of the QC metrics produced. 173
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Figure 2: Different types of QC plots that can be generated with scater. (a) Cumulative expression plot showing the
proportion of the library accounted for by the top 1–500 most highly-expressed features. (b) PCA plot produced using a subset of
the QC metrics computed with scater’s calculateQCMetrics function. (c) Plot of frequency of expression (percentage of cells in
which the feature is deemed expressed) against mean expression level across cells. The vertical dotted line shows the median of
the gene mean expression levels, and the horizontal dotted line indicates 50% frequency of expression. (d) Plot of the 20 most
highly-expressed features (computed according to the highest total read counts) across all cells in the data set. For each feature, the
circle represents the percentage of counts that the gene accounts for computed from counts pooled across all cells. The genes are
ordered by this value. The bars for each gene show the percentage of counts accounted for by the gene for each individual cell,
providing a visualisation of the distribution across cells. (e) Density plot showing the percentage of variance explained by a set of
explanatory variables across all genes. Each individual plot is produced by a single call with either the function plot (a), plotPCA
(b) or plotQC (c–e).

In scater, the default plot method for an SCESet object produces a cumulative 174

expression plot (Figure 2a). This plot describes how reads are distributed across genes, 175

distinguishing between low-complexity libraries (where very few genes contain most of 176

the counts) and their high-complexity counterparts (where counts are distributed more 177

evenly across genes). For example, there is substantial variability in library complexity 178

among cells in the case study dataset in Figure 2a. Some cells have profiles similar to 179

the blank wells, suggesting that library preparation or sequencing failed for these cells 180

and that the corresponding libraries should be removed prior to further analysis. Cell 181

phenotype variables can be incorporated into these plots to highlight differences in 182

expression distributions for different types of cells. For example, the curve for each cell 183

is coloured by the type of well that produced the library (Figure 2a), while cells can also 184

be split into separate facets by library type to show more metadata variables 185

simultaneously (see Supplementary Case Study). Cumulative expression plots should be 186

favoured over boxplots as the default method for visualising expression distributions 187

across cells in a dataset, as the latter performs poorly at handling the long tail of low- 188

and zero-expression observations in scRNA-seq data. 189

The plotPCA function implements an approach to automatic outlier detection using 190

multivariate normal methods applied to the cell-level QC metrics (Ilicic et al., 2016). 191

Specifically, PCA is applied to the QC metrics for all cells and a plot is produced to 192
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automatically detect outliers in the higher-dimensional QC metric space (Figure 2b). 193

These outliers correspond to low-quality cells with abnormal library characteristics (e.g., 194

low total counts and few expressed genes) that should be removed prior to downstream 195

analysis. This automated approach is powerful but also somewhat opaque with respect 196

to how outliers are defined, and so complements simpler filtering approaches that apply 197

thresholds to particular QC metrics. 198

The plotQC function generates many types of plots useful for quality control, such 199

as a plot to visualise the frequency of expression of features against their average 200

expression level (Figure 2c). Such plots are useful, because scRNA-seq is characterised 201

by a high frequency of “dropout” events, that is, no observed expression (such as no 202

read counts) in a particular cell for a gene that is actually expressed in that cell. 203

Typically only a small set of genes are observed with detectable expression in every cell. 204

With plotQC, control features can be highlighted easily in the plot, and typical 205

scRNA-seq datasets will show a broadly sigmoidal relationship between average 206

expression level and frequency of expression across cells. This is consistent with 207

expected behaviour where genes with greater average expression are more readily 208

captured during library preparation and are detected at a greater frequency (Brennecke 209

et al., 2013; Kim et al., 2015; Vallejos et al., 2015). 210

With plotQC we can also produce a plot to visualise the most highly-expressed 211

features in the dataset (Figure 2d). This provides a feature-centric overview of the 212

dataset that visualises the features with highest total expression across all cells, while 213

also displaying the distribution of cell-level expression values for these features. It is 214

common to see ERCC spike-ins (if used), mitochondrial and ribosomal genes among the 215

highest expressed genes, while datasets consisting of healthy cells will also show high 216

levels of constitutively expressed genes like ACTB. This plot allows the analyst to 217

quickly check that the gene- or transcript-level quantification is behaving as expected, 218

and to flag datasets where it is not. 219

Another important step in quality control is to identify variables (experimental 220

factors or computed QC metrics) that drive variation in expression data across cells. 221

The plotQC function provides a novel approach to identifying variables that have 222

substantial explanatory power for many genes. For each variable in the phenoData slot 223

of the SCESet object, we fit a linear model for each feature with just that variable as 224

the explanatory variable. We then plot the distribution of the marginal R2 values across 225

all features for the variables with the most explanatory power for the dataset 226

(Figure 2e). The variables are ranked by median R2 across features in the plot, allowing 227

users to identify variables that may need to be considered during normalisation or 228

statistical modelling. The plotQC function can also assess the influence of variables of 229

interest by plotting principal components of the expression matrix most strongly 230

correlated with a variable of interest against that variable. For example, in the Case 231

Study data, the first principal component is correlated with the C1 machine used to 232

process the cell (Supplementary Figure 2). 233

We also introduce the plotPhenoData function for convenient plotting of cell 234

phenotype information (including QC metrics), and the plotFeatureData function for 235

plotting feature information (see examples in the Supplementary Case Study). These 236

methods will work not only on the SCESet class defined in scater, but also on any 237

ExpressionSet object, providing sophisticated plotting functionality for many other 238

Bioconductor packages and contexts. 239

The scater graphical user interface (GUI) provides convenient access to scater ’s QC 240

and visualisation methods (Supplementary Figures 4–6). This opens an interactive 241

interface in a web browser that facilitates exploration of the data through QC plots and 242

other intuitive visualisations. The GUI allows users of any background to easily 243

examine the effects of changing multiple parameters, which can be helpful for quickly 244
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conducting exploratory data analysis. Useful settings can then be stored in R scripts to 245

ensure that data analyses are reproducible. 246

In summary, scater provides a variety of novel and convenient methods to visualise 247

an scRNA-seq dataset for QC. Low-quality cells and uninteresting genes can then be 248

easily removed by filtering and subsetting the SCESet data structure prior to further 249

analysis. 250

Data visualisation 251

Dimensionality reduction techniques are necessary to convert high-dimensional 252

expression data into low-dimensional representations for intuitive visualisation of the 253

relationships, similarities and differences between cells. To this end, scater provides 254

convenient functions to apply a variety of dimensionality reduction procedures to the 255

cells in an SCESet object. Functions include plotPCA, to perform a principal 256

components analysis; plotTSNE, to perform t-distributed stochastic neighbour 257

embedding (Van der Maaten and Hinton, 2008), which has been widely used for 258

scRNA-seq data (Amir et al., 2013; Bendall et al., 2014; Macosko et al., 2015); 259

plotDiffusionMap, to generate a diffusion map (Haghverdi et al., 2015) for visualising 260

differentiation processes; and plotMDS, to generate multi-dimensional scaling plots 261

(Figure 3a–c). The plotReducedDim function can also be used to plot any 262

reduced-dimension representation of cells (e.g., an independent component analysis 263

produced by monocle (Trapnell et al., 2013) or similar) that is stored in an SCESet 264

object. 265

By default, the PCA and t-SNE plots are produced using the features with the most 266

variable expression across all cells. We focus on the most variable genes to highlight any 267

heterogeneity in the data that might be driving interesting differences between cells. 268

Alternatively, we can apply a priori knowledge to define a set of genes that are 269

associated with a biological process of interest, and construct plots using only these 270

features. For example, Scialdone et al. (2015) found that using prior knowledge to 271

define feature sets is vital for exploring processes like the cell cycle, which can have 272

substantial effects on single-cell expression measurements (Buettner et al., 2015). The 273

subsetting and filtering methods for SCESet objects facilitate the generation of 274

reduced-dimension plots for particular gene sets, in order to investigate certain effects in 275

the data such as those due to the cell cycle (Figure 3d–f). 276

The various types of reduced-dimension plots can be used to examine the structure 277

of the cell population, including the formation of distinct subpopulations or the 278

presence of continuous trajectories. Cell-level variables stored in the SCESet object can 279

be used to define the shape, colour and size of points plotted, allowing more information 280

to be conveniently incorporated into each plot (e.g., cells are coloured by CCND2 281

expression in Figure 3d–f). The plotExpression function is also provided for plotting 282

expression levels of a particular gene against any of the cell phenotype variables or the 283

expression level of another feature (Figure 3g). This allows the user to inspect the 284

expression levels of a feature or set of features in full detail, rather than relying only on 285

summary information and reduced-dimension plots where information is necessarily lost. 286

Data normalisation and batch correction 287

Scaling normalisation is typically required in RNA-seq data analysis to remove biases 288

caused by differences in sequencing depth, capture efficiency or composition effects 289

between samples. Frequently used methods for scaling normalization include the 290

trimmed mean of M-values (Robinson and Oshlack, 2010), relative log-expression 291

(Anders and Huber, 2010) and upper-quartile methods (Bullard et al., 2010), all of 292

which are available for use in scater. In addition, scater is tightly integrated with the 293

8/16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2016. ; https://doi.org/10.1101/069633doi: bioRxiv preprint 

https://doi.org/10.1101/069633
http://creativecommons.org/licenses/by/4.0/


scran package that implements a method utilising cell pooling and deconvolution to 294

compute size factors better suited to scRNA-seq data (Lun et al., 2016). 295
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Figure 3: Reduced dimension representations of cells and gene expression plots with scater. Plots are shown using
all genes (a-c) and cell cycle genes only (d-f) using PCA (a,d), t-SNE (b,e) and diffusion maps (c,f), where each point represents
a cell. In the top row (a-c), points are coloured by patient of origin, sized by total features (number of genes with detectable
expression) and the shape indicates the C1 machine used to process the cells. In the second row (d-f), points are coloured by the
expression of CCND2 (a gene associated with the G1/S phase transition of the cell cycle) in each cell. With the plotExpression
function, gene expression can be plotted against any cell metadata variables or the expression of another gene—here, expression
for the CD86, IGH44 and IGHV4-34 genes in each cell is plotted against the patient of origin (g). The function automatically
detects whether the x-axis variable is categorical or continuous and plots the data accordingly, with x-axis values “jittered” to avoid
excessive overplotting of points with the same x coordinate.

After scaling normalisation, further correction is typically required to ameliorate or 296

remove batch effects. For example, in the case study dataset, cells from two patients 297

were each processed on two C1 machines. Although C1 machine is not one of the most 298

important explanatory variables on a per-gene level (Figure 2e), this factor is correlated 299

with the first principal component of the log-expression data (Figure 2f). This effect 300

cannot be removed by scaling normalisation methods, which target cell-specific biases 301

and are not sufficient for removing large-scale batch effects that vary on a gene-by-gene 302

basis (Figure 4a). Here we present two possibilities, all easily implemented in a scater 303

workflow. 304

The C1 machine effect is known from the design of the experiment, so we can easily 305

regress out this effect in scater. With the normaliseExprs function the user can supply a 306

design matrix of variables to regress out of the expression values, and residuals from the 307

linear model fit can be used as expression values for downstream analyses. For the 308

dataset here, we fit a linear model to the scran normalised log-expression values with 309

the C1 machine as an explanatory factor. (We also use the log-total counts from 310

endogenous genes, percentage of counts from the top 100 most highly-expressed genes 311

and percentage of counts from control genes as additional covariates to control for these 312

other unwanted technical effects.) We then use the residuals from the fitted model for 313
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Figure 4: Normalisation and batch correction with scater. Principal component analysis plots showing cell structure in the
first two PCA dimensions using various normalisation methods that can be easily applied in scater, including endogenous size-factor
normalisation using methods from the scran package (a); expression residuals after applying size-factor normalisation and regressing
out known, unwanted sources of variation (b); and removal of one hidden factor identified using the RUVs method from the RUV
package (c). In all plots, the colour of points is determined by the patient from which cells were obtained, shape is determined by
the C1 machine used to process the cells and size reflects the total number of genes with detectable expression in the cell.

further analyses (see Case Study in Supplementary Material). This approach 314

successfully removes the C1 machine effect as a major source of variation between cells; 315

the first principal component now separates the cells from the two patients, as expected 316

(Figure 4b). This approach needs to be used carefully as single-cell data often deviate 317

from normal distributions, but in many cases, as here, it can successfully ameliorate 318

large-scale known batch effects. 319

In addition to removing known batch effects, it can be important for large data sets 320

to identify (potentially unknown) sources of unwanted variation (Leek et al., 2010; Hicks 321

et al., 2015; Grün and van Oudenaarden, 2015). scater is compatible with existing 322

methods such as svaseq (Leek and Storey, 2007; Leek, 2014) and RUVSeq (Risso et al., 323

2014) to identify and remove these unwanted sources of variation, and the 324

removeBatchEffect method in the limma package (Ritchie et al., 2015) to account for 325

known batch effects. Here, just removing the first latent variable identified by the RUVs 326

method from RUVSeq is sufficient to remove the machine effect, as the PCA plot now 327

separates cells by patient rather than C1 machine (Figure 4c). 328

We emphasise that it is generally preferable to incorporate batch effects or latent 329

variables into statistical models used for inference. Where this is not possible (e.g., for 330

visualisation), directly regressing out these uninteresting factors is required to obtain 331

”corrected” expression values for further analysis. 332

Software and data integration 333

As part of the R/Bioconductor ecosystem, scater can be easily integrated with other 334

software for scRNA-seq data analysis (Supplementary Figure 3). Because the SCESet 335

class builds on existing Bioconductor data structures, most Bioconductor packages for 336

expression analyses are able to operate seamlessly with SCESet objects. Tools that can 337

integrate easily with scater include many options for data normalisation (Lun et al., 338

2016; Vallejos et al., 2015; Ding et al., 2015), differential expression analysis (Vallejos 339

et al., 2016; Trapnell et al., 2014; Finak et al., 2015; Vu et al., 2016; Kharchenko et al., 340

2014; Korthauer et al., 2015; Andrews and Hemberg, 2016), heterogeneous gene 341

expression analyses (Vallejos et al., 2015), clustering (Kiselev et al., 2016; Guo et al., 342

2015; Fan et al., 2016; Grün et al., 2015), latent or hidden variable analysis (Leek, 2014; 343

Risso et al., 2014; Stegle et al., 2012; Chikina et al., 2015), cell cycle phase identification 344

(Scialdone et al., 2015) and pseudotime computation (Trapnell et al., 2014; Angerer 345
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et al., 2015; Juliá et al., 2015; Campbell and Yau, 2016; Haghverdi et al., 2016). The 346

scater package bridges the gap between raw reads and these downstream analysis tools 347

by providing the pre-processing, QC, visualisation and normalisation methods and a 348

data structure combining multiple data modalities and metadata necessary for 349

convenient, robust and reproducible analyses of scRNA-seq data. 350

Discussion 351

Single-cell RNA sequencing is widely used for high-resolution gene expression studies 352

investigating the behaviour of individual cells. While scRNA-seq data can provide 353

substantial biological insights, the complexity and noise of the data is also much greater 354

than that of conventional bulk RNA-seq. Thus, rigorous analysis of scRNA-seq data 355

requires careful quality control to remove low-quality cells and genes, as well as 356

normalisation to adjust for biases and batch effects in the expression data. Failure to 357

carry out these procedures correctly is likely to compromise the validity of all 358

downstream analyses (Leek et al., 2010; Hicks et al., 2015; Grün and van Oudenaarden, 359

2015). 360

Here, we present an R/Bioconductor package, scater, that provides crucial 361

infrastructure and methods for low-level scRNA-seq data analysis. The package 362

introduces a data structure tailored to scRNA-seq data that is compatible with a vast 363

number of existing tools in the Bioconductor project. The scater data structure 364

combines multiple transformations of the expression data with cell and feature (gene or 365

transcript) metadata and allows data sets to be easily standardised and shared. 366

Wrapper functions for the popular RNA-seq quantification methods kallisto and Salmon 367

facilitate the processing of raw read sequences to a SCESet object in R with expression 368

data and accompanying metadata. 369

Quality control is a vital preliminary step for scRNA-seq and can be a 370

time-consuming manual task. We present a tool for automated computation of QC 371

metrics, novel plotting methods for QC and convenient subsetting and filtering methods 372

to substantially simplify the process of filtering out unwanted or problematic cells and 373

genes. The package provides a large array of sophisticated plotting functions so that 374

cells can be visualised with a variety of popular dimensionality-reduction techniques in 375

plots that incorporate cell metadata and expression values as plotting variables. 376

Normalisation is a critical aspect of scRNA-seq data processing that is supported by 377

scater. Scaling normalisation methods, including the single-cell specific methods in the 378

scran package, are seamlessly integrated into a scater workflow. Methods for identifying 379

and removing batch effects and other types of unwanted variation are supported both 380

with internal methods and through integration with a multitude of tools available in the 381

R/Bioconductor environment. Once identified, important covariates and latent variables 382

can be flagged for inclusion in downstream statistical models or their effects regressed 383

out of normalised expression values. 384

Future development will include further extensions to data structures that will 385

enable tight integration of single-cell transcriptomic, genetic and epigenetic data, as well 386

as further refinement of the methods available as the single-cell field matures. Although 387

scater has been produced for scRNA-seq data, its capabilities are well suited for 388

single-cell qPCR data and bulk RNA-seq data, and may prove useful for supporting 389

analyses of these data types. 390
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Conclusion 391

The scater package eases the burden for a user tasked with producing a high-quality 392

single-cell expression dataset for downstream analysis. The intuitive GUI implemented 393

in scater provides an easier entry point into rigorous analysis of scRNA-seq data for 394

users without a computational background, enabling them to process raw reads into 395

high-quality expression data within a single computing environment. Experienced users 396

can take advantage of scater ’s data structures, wide array of tools, suitability for 397

scripted analyses and seamless integration with many other R/Bioconductor analysis 398

tools. The data structures and methods in scater provide basic infrastructure upon 399

which new scRNA-seq analysis tools can be developed. We anticipate that scater will be 400

a useful resource for both analysts and software developers in the single-cell RNA 401

sequencing field. 402
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