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1  Abstract 
Developmental improvements in working memory are important in the 

acquisition of new skills, like reading and maths. Current accounts of the 
brain systems supporting working memory rarely take development into 
account. However, understanding the development of these skills, and in turn 
where this development can go awry, will require more sophsiticated 
neuropsychological accounts that fully consider the role of development. The 
current study investigated how structural brain correlates of components of 
the working memory system change over developmental time. Verbal and 
visuospatial short-term and working memory were assessed in 153 children 
between 6 and 16 years and latent components of the working memory system 
were derived using principal component analysis. Further, fractional 
anisotropy and cortical thickness maps were derived from T1-weighted and 
diffusion-weighted MRI and processed using eigenanatomy decomposition, an 
advanced dimensionality reduction method for neuroimaging data. We were 
then able to explore how the structural brain correlates of working memory 
gradually shifted across childhood. Regression modelling indicated greater 
involvement of the corpus callosum and posterior temporal white matter in 
younger children for performance associated with the executive part of the 
working memory system, while thickness of the occipitotemporal cortex was 
more predictive in older children. These findings are consistent with an 
account in which increasing specialisation leads to shifts in the contribution of 
neural substrates over developmental time, from early reliance on a 
distributed system supported by long-range connections to later reliance on 
specialised local circuitry. Furthemore, our findings emphasise the importance 
of taking development into account when considering the neural systems that 
support complex cognitive skills, like working memory. 
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2  Introduction 
Working memory is a limited-capacity system for retaining and processing 
information over brief periods of time. It plays an important role in the 
acquisition of complex cognitive skills (Cowan, 2013) such as reading (Cain, 
Oakhill, & Bryant, 2004), maths (Dumontheil & Klingberg, 2011), and other 
school subjects (Gathercole, Pickering, Knight, & Stegmann, 2003, Clair-
Thompson & Gathercole, 2006). Deficits in working memory have been 
identified across a range of neurodevelopmental disorders, including attention 
deficit hyperactivity disorder (Martinussen, Hayden, Hogg-Johnson, & 
Tannock, 2005, Holmes et al., 2014), dyslexia (Smith-Spark & Fisk, 2007), 
dyscalculia (Rotzer et al., 2009, Szucs et al., 2013), and language disorders 
(Gathercole & Baddeley 1989; Archibald & Gathercole 2006; Montgomery, 
2000, Ellis Weismer, Evans,  & Hesketh, 1999).  

Working memory develops gradually through early and middle childhood 
(Huizinga, Dolan, & Molen, 2006, Gathercole, Pickering, Ambridge, & 
Wearing, 2004, Siegel & Ryan, 1988). It is assumed that this development 
reflects the maturation of the brain system supporting this skill in adulthood. 
However, understanding the potential causes of working memory impairments 
in childhood necessitates a neuropsychological account that incorporates 
developmental change. Currently we have no detailed understanding of how 
age-related changes in brain organisation support developmental 
improvements in working memory. The purpose of this study is to redress 
this.  

 

2.1  Working Memory and its development 

There are many theoretical accounts of working memory. The influential 
multicomponent model of working memory advanced by Baddeley and Hitch 
(A. D. Baddeley & Hitch, 1974) consists of three subcomponents: two domain-
specific stores and a central executive. The stores are specialized for the 
retention of material in either phonological (A. Baddeley, 1987) or visuo-
spatial format (A. D. Baddeley & Lieberman, 1980, Logie, 1986). The central 
executive is a system responsible for a range of regulatory functions, including 
attention, the control of action, and problem solving (A. Baddeley, 1996).  

There have been many refinements of the original model (A. Baddeley, 
2000, 2003, 2012; Burgess & Hitch, 1996), and several new accounts. Some of  
these elaborate on specific mechanisms within working memory. For instance, 
Engle and colleagues add inhibitory processes that protect activated memory 
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traces from disruption (Engle, 2002, Kane, Conway, Hambrick, & Engle, 
2007). Other models integrate short-term memory with long-term memory, 
suggesting that working memory represents long-term memory in an activated 
state (Cowan, 1988, 1999; Oberauer 2002), and activation is guided by an 
attentional mechanism. Others have extended the scope of WM to encompass 
other processes that include updating (Ecker et al., 2010; Schmiedek et al., 
2014; Shelton et al, 2010), set shifting and relational binding (Oberauer et al., 
2003; von Bastian & Oberauer, 2013) and fluid intelligence (Engle et al., 
1999). In short, there exists a rich literature in which the specific cognitive 
mechanisms underlying working memory in adulthood are keenly debated. 
 

Multiple tasks are needed to establish the underlying latent factor 
structure supporting working memory performance rather than simply 
characterise the cognitive structure of individual tasks. Using this individual 
differences approach,  the three-factor structure has been robustly reproduced 
across multiple studies and age groups (T. P. Alloway, Gathercole, Willis, & 
Adams, 2004; Kane et al., 2004; Bayliss et al., 2003; Hornung, Brunner, 
Reuter, & Martin, 2011). In each case, the best-fitting model consisted of two 
domain-specific storage processes and an additional executive component 
similar to those outlined in the original Baddeley and Hitch (A. Baddeley, 
2003, 2012) account. These components are already detectable in preschool-
age children (T. P. Alloway et al., 2004) and their configuration remains 
stable throughout childhood (Gathercole et al., 2004). Despite this stable 
factor structure, overall working memory performance changes substantially 
over childhood (Huizinga et al., 2006, Gathercole et al., 2004, Siegel & Ryan, 
1988), increasing linearly from 6 years until adult performance is reached in 
adolescence (Gathercole et al., 2004, Luciana, Conklin, Hooper, & Yarger, 
2005). Different cognitive mechanisms may contribute to improvements across 
different periods (Huizinga et al., 2006, Gathercole et al., 2004, Siegel & Ryan, 
1988). These may include increased storage capacity (Cowan, Ricker, Clark, 
Hinrichs, & Glass, 2014), improvements in attention (Barrouillet, Gavens, 
Vergauwe, Gaillard, & Camos, 2009, Tam, Jarrold, Baddeley, & Sabatos-
DeVito, 2010), and changes in rehearsal strategy (Hitch, Halliday, Schaafstal, 
& Heffernan, 1991, Gathercole, Adams, & Hitch, 1994).  

2.2  Neural correlates of working memory 

The developmental period associated with increases in working memory is also 
accompanied by pronounced changes in brain structure. These include 
decreasing cortical thickness (Sowell, 2004) and increasing myelination of 
white matter tracts (Dean et al., 2014). Functional neuroimaging studies 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2016. ; https://doi.org/10.1101/069617doi: bioRxiv preprint 

https://doi.org/10.1101/069617
http://creativecommons.org/licenses/by/4.0/


5 

suggest that improvements in working memory are accompanied by some re-
organisation in brain networks: In adults, a specialised network including 
bilateral parietal, cingulate, and prefrontal areas has been found to show 
increased blood oxygenation during working memory tasks (Owen, McMillan, 
Laird, & Bullmore, 2005, Wager & Smith, 2003). Children show activation in 
a similar set of regions (Thomason et al., 2009) and also in additional outside 
of the core processing network observed in adults (Vogan, Morgan, Powell, 
Smith, & Taylor, 2016, Ciesielski, Lesnik, Savoy, Grant, & Ahlfors, 2006). 

Research on structural neural correlates of working memory is more 
limited, but where studies exist they broadly concur with the functional 
findings. Frontal and parietal grey matter volume (Mahone, Martin, Kates, 
Hay, & Horska, 2009, Rossi et al., 2013), and temporal and parietal 
connections of the corpus callosum (Treble et al., 2013), are significant 
predictors of a participant’s working memory capacity. However, these studies 
either investigate narrow age ranges or statistically correct for the effect of 
age. As a result, little is known about how structural brain changes support 
the development of particular cognitive skills like working memory. 
Furthermore, the majority of previous studies have used performance on 
individual tasks to measure working memory ability (see (Poldrack & 
Yarkoni, 2016) for a detailed discussion). This approach has two key 
limitations.  First, it is widely accepted that multiple underlying components 
underpin performance (Conway, Cowan, Bunting, Therriault, & Minkoff, 
2002, T. P. Alloway et al., 2004, Clair-Thompson & Gathercole, 2006, 
Oberauer, Süß, Schulze, Wilhelm, & Wittmann, 2000). Second, scores on 
individual tests also reflect task-specific components that may be unrelated to 
WM demands (such as proficiency in the stimulus domain from which the 
stimuli are drawn, Dark & Benbow, 1994) as well as significant levels of error. 
The purpose of the current study was to redress these two gaps in the 
literature by i) exploring how structural brain correlates of working memory, 
in terms of both grey and white matter, change over developmental time; and 
ii) using multiple behavioural assessments alongside a theory-driven factor 
analysis, to differentiate the neural correlates of robustly determined cognitive 
components of WM.  
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3  Methods 
Our analysis approach used data reduction techniques to reduce raw 
behavioural and neuroimaging measures to underlying statistical components. 
We then explored how the underlying cognitive factors of the working 
memory system were associated with structural brain components, and the 
extent to which these relationships were moderated by developmental stage 
(i.e. age). A schematic summary of this approach can be seen in Figure 1. The 
computer code used for data processing and statistical analysis is available 
online (https://github.com/joebathelt/ 
WorkingMemory_and_BrainStructure_Code).  

  

  
Figure 1:  Overview of processing steps from raw to latent data. Raw 
behavioural data were decomposed with principal component analysis (PCA) 
to derive factor scores that corresponded to a verbal, visuo-spatial, and 
executive factor. Dimensionality reduction was also applied to cortical 
thickness maps and FA maps derived from T1-weighted and diffusion-
weighted MRI data to obtain Eigenanatomy components. 

3.1  Participants 
The data for the current study were taken from two large-scale studies at the 
MRC Cognition and Brain Sciences Unit. These two studies had different 
recruitment criteria but when combined, provide a large sample of children 
with working memory scores whose distributional properties closely 
approximated the standardisation sample. The first study was the Centre for 
Attention, Learning, and Memory (CALM) research clinic. At the clinic, 
children aged between 5 and 18 years were recruited on the basis of ongoing 
problems in attention, learning and memory identified by professionals 
working in schools or specialist children’s community services. If parents 
expressed interest in participating in the research study, the professionals 
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made an initial referral that was followed-up by CALM staff to discuss the 
nature of the child’s problems. If difficulties in one or more areas of attention, 
learning or memory were indicated by the referrer, the family were invited to 
the CALM clinic at the MRC Cognition and Brain Sciences Unit in 
Cambridge for an assessment that lasted approximately 3 hours. The 
assessment included the working memory battery reported here. Exclusion 
criteria for referrals were significant or severe known problems in vision or 
hearing that were uncorrected, and having a native language other than 
English. This study was approved by the local NHS research ethics committee 
(Reference: 13/EE/0157). Written parental consent was obtained and children 
provided verbal assent.  

The second study investigated the neural, cognitive, and environmental 
markers of risk and resilience in children. Children between 7 and 12 years 
attending mainstream school in the UK with normal or corrected-to-normal 
vision or hearing and no history of brain injury were recruited via local 
schools and through advertisement in public places (childcare and community 
centres, libraries). Participating families were invited to the MRC Cognition 
and Brain Sciences Unit for a 2-hour assessment that included the working 
memory battery reported here. Participants received monetary compensation 
for taking part in the study. This study was approved by the Psychology 
Research Ethics Committee at the University of Cambridge (Reference: 
2015.11). Parents provided written informed consent.  

MRIs were obtained from 153 children between 6 and 16 years (96 boys, 
age in months: M=115.79, SD=23.779). 31 children were excluded from 
cortical thickness analysis because the T1-weighted data was not usable due 
to participant movement. 41 children were excluded from analysis of diffusion-
weighted data due to head movement above 3mm in the DWI sequence. 
Residual movement estimates were included as a nuisance variable in 
regression models. As these measures did not influence the results, they were 
omitted from the reported models.  

3.2  Working Memory Assessment 

The Digit Recall, Backward Digit Recall, Dot Matrix, and Mr X task of the 
Automatic Working Memory Assessment (AWMA) (T. Alloway, 2007, T. P. 
Alloway, Gathercole, Kirkwood, & Elliott, 2008) were administered 
individually. In Digit Recall, children repeat sequences of single-digit numbers 
presented in an audio format. In Backward Digit Recall, children repeat the 
sequence in backward order. These tasks were selected to engage verbal short-
term and working memory respectively. For the Dot Matrix task, the child is 
shown the position of a red dot for two seconds in a series of four by four 
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matrices and has to recall this position by tapping the squares on the 
computer screen. In the Mr. X task, the child is shown a series of Mr. X 
figures and has to identify whether they are holding the ball in the same or 
different hands. One Mr. X is rotated in each trial. The child then has to 
recall the location of the ball in Mr. X’s hand by pointing to one of eight 
compass points. These tasks were aimed at tapping short-term and working 
visuo-spatial memory.  

Standardised scores established that the sample performed at expected 
levels for their age ( i.e. mean of 100 and a standard deviation of 15, Digit 
Recall: mean = 96.39; std = 16.32; Backward Digit Recall: mean = 94.61, std 
= 12.671; Dot Matrix: mean = 98.29, std = 15.595; Mr X: mean = 99.32, std 
= 15.69).  

In order to reconstruct the latent variable structure of working memory 
from the assessment data, principal component analysis was applied. This was 
carried out using the ’principal’ function of the psych package v1.5.1 
(http://personality-project.org/r) in R v3.1.3 (R Development Core Team, 
2008). Varimax rotation was used to create orthogonal factors (Kaiser, 1958). 
A 3-factor solution provided the best fit with theoretical predictions and 
explained a large proportion of variance in the assessment scores. Mahalanobis 
distance was computed to detect outliers in the assessment data, but no data 
point exceeded the recommended cut-off at 3 degrees of freedom.  

3.3  MRI data acquisition 
Magnetic resonance imaging data were acquired at the MRC Cognition and 
Brain Sciences Unit, Cambridge U.K. All scans were obtained on the Siemens 
3 T Tim Trio system (Siemens Healthcare, Erlangen, Germany), using a 32-
channel quadrature head coil. The imaging protocol consisted of two 
sequences: T1-weighted MRI and a diffusion-weighted sequence.  

T1-weighted volume scans were acquired using a whole brain coverage 3D 
Magnetisation Prepared Rapid Acquisition Gradient Echo (MP RAGE) 
sequence acquired using 1mm isometric image resolution. Echo time was 2.98 
ms, and repetition time was 2250 ms. 

Diffusion scans were acquired using echo-planar diffusion-weighted images 
with an isotropic set of 60 non-collinear directions, using a weighting factor of 
b=1000s*mm-2, interleaved with 4 T2-weighted (b = 0) volumes. Whole brain 
coverage was obtained with 60 contiguous axial slices and isometric image 
resolution of 2mm. Echo time was 90 ms and repetition time was 8400 ms.  
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3.4  Processing of diffusion-weighted data 
Diffusion imaging makes it possible to quantify the rate of water diffusion in 
the brain. In the parallel bundles of white matter, diffusion is stronger along 
the fibre orientation, but is attenuated in the perpendicular direction. This 
can be summarized by the metric of fractional anisotropy (FA), which is a 
scalar value between 0 and 1 describing the degree of anisotropy of the 
diffusion at every voxel. Developmental studies show steady increases in FA 
between childhood and adulthood (Imperati et al., 2011, Muftuler et al., 2012, 
Westlye et al., 2009), which is likely to reflect increased myelination (Dean et 
al., 2014).  

A number of processing steps are necessary to derive FA maps from 
diffusion-weighted volumes. In the current study, diffusion-weighted MRI 
scans were converted from the native DICOM to compressed NIfTI-1 format 
using the dcm2nii tool http://www.mccauslandcenter.sc.edu/mricro/ 
mricron/dcm2nii.html. Subsequently, the images were submitted to the DiPy 
v0.8.0 implementation (Garyfallidis et al., 2014) of a non-local means de-
noising algorithm (Coupe et al., 2008) to boost signal to noise ratio. Next, a 
brain mask of the b0 image was created using the brain extraction tool (BET) 
of the FMRIB Software Library (FSL) v5.0.8. Motion and eddy current 
correction were applied to the masked images using FSL routines. The 
corrected images were re-sliced to 1mm resolution with trilinear interpolation 
using in-house software based on NiBabel v2.0.0 functions 
(http://nipy.org/nibabel/). Finally, fractional anisotropy maps were created 
based on a diffusion tensor model fitted through the FSL dtifit algorithm 
(Behrens et al., 2003, Johansen-Berg et al., 2004).  

For comparison across participants, we created a study-specific FA-
templates based on all available images using Advanced Normalization Tools 
(ANTs) algorithms (Lawson, Duda, Avants, Wu, & Farah, 2013, B. B. 
Avants et al., 2014), which showed the highest accuracy in software 
comparisons (Klein et al., 2009, Murphy et al., 2011, Tustison et al., 2014). 
Individual images were transformed to template space using non-linear 
registration with symmetric diffeomorphic normalization as implemented in 
ANTs (B. Avants, Epstein, Grossman, & Gee, 2008). Next, the images were 
eroded twice with a 3mm sphere to remove brain edge artefacts using FSL 
maths.  

3.5  Processing of T1-weighted data 
Another measure of brain development that can be derived from 
neuroimaging data is cortical thickness (Giedd & Rapoport, 2010, Gogtay et 
al., 2004). Cortical thickness is defined as the distance between the outer edge 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2016. ; https://doi.org/10.1101/069617doi: bioRxiv preprint 

https://doi.org/10.1101/069617
http://creativecommons.org/licenses/by/4.0/


10 

of cortical grey matter and subcortical white matter (Fischl & Dale, 2000). To 
obtain thickness measure moments from anatomical MRI data, T1-weighted 
volumes were initially co-registered with MNI152 space using rigid co-
registration in order to obtain good initial between-subject alignment and 
optimal field of view. Next, all images were visually inspected and images 
with pronounced motion artefact were removed from further analysis (n=31, 
20.25% of the acquired data). The remaining data was submitted to the 
automatic ANTs cortical thickness pipeline (antsCorticalThickness). Details 
about the processing pipeline and thickness estimation are described in 
(Tustison et al., 2014) and (Das, Avants, Grossman, & Gee, 2009). Tissue 
priors were taken from the OASIS-TRT-20 template 
(http://www.mindboggle.info/data.html#mindboggle-software-data). 
Subsequently, images in template space were smoothed using a 10mm full 
width at half maximum (FWHM) Gaussian kernel and resampled to 2mm 
resolution. A thickness mask was created by averaging all images and 
binarizing the resulting mean image at a threshold of 0.1. 

3.6  Eigenanatomy Decomposition 
Traditional univariate approaches like voxel-based morphometry (VBM) fit a 
statistical model for every voxel in a brain image. Because of the large 
number of voxels in a typical imaging protocol, this approach necessitates 
correction for a very large number of comparisons (T1-volumes in the current 
study contained over 1 million voxels), resulting in a dramatic loss of 
statistical power. However, effects are typically spread over areas that are 
larger than 1 voxel. Multivariate approaches are better suited to reduce the 
dimensionality of the data to the information contained in the data itself 
before statistical comparisons are applied. Eigenanatomy Decomposition is a 
novel method for data-driven dimensionality reduction of neuroimaging data 
that adds sparseness and smoothness constraints for better anatomical 
interpretability in comparison to standard spatial principal component 
analysis (Kandel, Wang, Gee, & Avants, 2015). Cortical thickness masks and 
FA images were processed using the ANTsR v0.3.2 implementation of the 
Eigenanatomy Decomposition algorithm (Kandel et al., 2015). Parameters for 
Eigenanatomy Decomposition were adopted from published work, i.e. 
decomposition into 32 components with sparseness of 1/32 with 20 iterations, 
a L1 penalty with gradient step size 0.5, a smoothing kernel of 1 voxel, and a 
minimum cluster size of 1000 voxels for each eigenvector. For statistical 
analysis, the mean value of each brain morphology measure (FA, cortical 
thickness) within each eigenanatomy component was calculated. See Figure 2 
for an illustration of the resulting parcellation.  
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Figure 2: Overview of the Eigenanatomy decomposition for FA images (top) 
and cortical thickness maps (bottom). The 32 components indicated by 
eigenatomy decompositon are shown on top of the study-specific FA and 
cortical thickness template. Cortical thickness images were downsampled and 
smoothed. Labels indicate the components that were found to show 
interactions with working memory scores and age.  

3.7  Statistical analysis 
We wanted to test how brain morphology was associated with the 
components of the working memory system, and the extent to which this 
relationship was moderated by age. The relationship between these factors 
was therefore tested in the following set of regression models: a) age 
predicting working memory performance, b) age predicting brain morphology 
measures, c) brain morphology predicting working memory; and ultimately d) 
the interaction between brain morphology and age predicting working 
memory (see Figure 3 for an overview of these models). Gender and an 
intercept term were included as additional regressors in each model. 
Assessment of Cook’s distance (Cook, 1977) indicated no particularly 
influential data points in the regression models. Therefore, all available data 
points were retained in the analysis. Regression analysis was carried out using 
the ’stats’ package v3.1.2 in Rbase. 
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Figure 3:  Relationships between age, brain morphology, and working memory 
factors explored in the current analysis. The relationship between age and 
working memory factors (Verbal, Executive, Spatial), age and brain 
morphology measures (FA, cortical thickness), and the interaction effect 
between age and brain morphology on working memory factors was 
investigated. All models further contained gender as a regressor of no interest 
as well as an intercept term and error term. The interaction model also 
contain terms for age and brain morphology separately. Models for cortical 
thickness analysis also contained intracranial volume as a regressor of no 
interest. 
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4  Results 

4.1  Factor analysis of behavioural data 

Principal component analysis (PCA) was applied to the raw scores of the 
working memory battery to derive the latent variable structure thought to 
underly working memory (A. D. Baddeley & Hitch, 1974). Assessment of 
Mahalanobis distance did not indicate outliers in the cognitive scores 
(Maximum distance D2(4)=15.542, critical value=18.47). Correlations 
between raw scores were moderate to high (range: 0.39 to 0.63). A 3-factor 
PCA solution with varimax rotation was selected that corresponded best with 
theoretical models (T. P. Alloway et al., 2004, Gathercole et al., 2004, 
Hornung et al., 2011, A. Baddeley, 2003, 2012, Gathercole et al., 2004). This 
solution explained 92% of the variance in the raw scores. The factor structure 
suggest a verbal, a spatial, and an executive factor. Factor loadings are shown 
in Table Error! Reference source not found.. 

 

4.2  Working memory performance improves with age 

Linear regression indicated that age was significantly associated with increases 
in working memory scores (Effects of age including gender as nuisance 
regressor: Verbal factor: F(2,150) = 4.538, p = 0.012, R2 = 0.057, R2

Adjusted 
= 0.044, βAge = 0.010, tAge(150) = 2.99, p = 0.003; Executive factor: F(2,150) 
= 6.506, p = 0.002, R2 = 0.079, R2

Adjusted = 0.068, βAge = 0.003, tAge(150) = 

Verbal Factor Executive Factor Visuo-spatial Factor

Digit Recall 0.95 0.15 0.18
Backward Digit Recall 0.55 0.50 0.47

Dot Matrix 0.22 0.27 0.93
Mr. X 0.17 0.94 0.26

Proportion explained 0.35 0.33 0.32
Cumulative proportion 0.35 0.68 1.00

Table 1: Loading of factors based on principal component analysis using vari-
max rotations of the raw working memory scores. The three factor solution
explained 93% of the variance. The factor loadings suggested a verbal and
spatial storage factor, and an executive factor.

1
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3.09, p = 0.002; Spatial factor: F(2,150) = 16, p<0.001, R2 = 0.176, R2
Adjusted 

= 0.165, βAge = 0.018, tAge(150) = 5.66, p<0.001, see Figure 4a). Comparison 
with alternative quadratic and cubic models using the Akaike Information 
Criterion (AIC) as a measure of parsimony (Akaike, 1974) suggested that a 
linear model provided the overall best account for the relationship between 
age and factor scores in the current data (Verbal factor: AIClinear = 433.12, 
AICquadratic = 432.21, AICcubic = 427.54; Executive factor: AIClinear = 
428.46, AICquadratic = 429.52, AICcubic = 431.51; Spatial factor: AIClinear = 
408.91, AICquadratic = 409.94, AICcubic = 411.61). 

4.3  FA increases with age 
In order to assess the relationship between each measure of brain morphology 
and participant age, linear regression analysis was carried out. For FA, the 
effect of age was assessed including gender and an intercept in the model for 
all eigenanatomy components (yFA = βAgeXAge + βGenderXGender + βIntercept 
+ ε). For FA, the results indicated a significant effect of age in 30 of the 32 
components after Bonferroni correction for multiple comparisons. The effect 
was marginal for the remaining 2 components after correction for multiple 
comparisons (p<0.051). The slopes were positive for all components (βAge: 
mean=0.22, SD=0.03, Range=0.16-0.29, based on z-scores, see Figure 4b) 
indicating that FA increased with age for all eigenanatomy components. For 
cortical thickness, the model further included intracranial volume as a 
regressor of no interest (yThickness = βAgeXAge + βGenderXGender + βICVXICV 
+ βIntercept + ε). The results indicated no significant relationship between age 
and cortical thickness. The slopes ranged from 0 to slightly positive (betaAge: 
mean=0.05, SE=0.01, Range=-0.08-0.18, based on z-scores).  
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Figure 4: a: Relationship between age and verbal, executive, and visuo-spatial 
factor scores. Linear regression analysis indicated significantly higher scores in 
older participants for all factors. b: Relationship between age and FA within 
eigenanatomy components. Higher FA was significantly related to age in 30 
out of 32 eigencomponents (shown). 

4.4  FA predicts differences in executive scores 
The relationship between brain morphology and factor scores was then 
assessed without taking age into account. To this end, linear regression 
models were fitted with the factor score as the outcome and FA and Gender 
as predictors on each of the assessments (yFactor = βFAXFA + βGenderXGender 
+ βIntercept + ε). Importantly, there was no significant effect of FA in any 
eigenanatomy component for the verbal and visuospatial storage factor after 
correction for multiple comparisons. There were significant effects of FA in 16 
eigenanatomy components for the executive factor (see Table 2). For cortical 
thickness, the model further contained intracranial volume as a regressors of 
no interest (yFactor = βThicknessXThickness + βICVXICV + βGenderXGender + 
βIntercept + ε). The results of the regression analysis indicated no significant 
effect of cortical thickness within any of the 32 eigenanatomy components on 
scores for any of the working memory factors (corrected-p>0.05). In 
summary, FA predicted working memory capacity associated with the 
executive factor, while cortical thickness was not significantly associated with 
working memory performance.  
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4.5  The interaction between age and FA, and between age and 
cortical thickness predicts the executive component of WM 
Finally, the relationship between brain morphology and components of the 
working memory system is moderated by age was investigated. The regression 
model for this analysis contained age, gender, FA within the eigenanatomy 
component, the interaction between age and component FA, and an intercept 
as regressors (yFactor = βAgeXAge + βFAXFA + d(XAge × XFA) + 
βGenderXGender + βIntercept + ε). The results indicated a significant effect of 
the interaction between age and FA on the executive factor in two 
eigenanatomy components (Corpus callosum component: β=-0.337, t(5)=-
3.35, p=0.001, pcorrected=0.036; Occipitotemporal white matter component: 
β=-0.368, t(5)=-3.32, p=0.001, pcorrected=0.039, see Figure 5).  

For cortical thickness, intracranial volume was included as an additional 
regressor of no interest (yFactor = βAgeXAge + βThicknessXThickness + d(XAge × 
XThickness) + βGenderXGender + βICVXICV + βIntercept + ε). The results of the 
regression analysis indicated a significant interaction between age and cortical 
thickness for one eigenanatomy component (left temporal thickness 
component: β=0.56, t(5)=-0.91, p=0.002, pcorrected=0.049) 

volume x y z � tstat p p
corrected

Comp 2 46439 90.71 83.23 84.62 0.47 3.09 0.003 0.01
Comp 3 41374 89.78 101.47 59.97 0.48 2.77 0.007 0.03
Comp 4 46585 91.01 107.09 85.48 0.49 2.74 0.007 0.031
Comp 6 32929 106.63 119.04 96.72 0.45 2.64 0.009 0.041
Comp 7 33840 78.00 92.32 57.81 0.48 2.68 0.009 0.035
Comp 8 23804 74.90 152.59 82.53 0.46 2.88 0.005 0.03
Comp 9 24972 125.41 106.25 65.33 0.51 3.15 0.002 0.008
Comp 10 36812 97.46 75.41 92.97 0.5 3.24 0.002 0.007
Comp 13 27930 98.03 82.84 99.30 0.49 2.91 0.004 0.019
Comp 16 20309 76.13 101.56 101.69 0.41 2.71 0.008 0.04
Comp 20 20608 110.17 112.02 100.88 0.46 2.79 0.006 0.033
Comp 22 18040 86.64 98.73 71.46 0.49 2.9 0.005 0.017
Comp 24 21049 64.55 115.31 75.93 0.51 2.73 0.007 0.033
Comp 25 15867 94.10 104.76 67.27 0.53 3.11 0.002 0.01
Comp 27 19398 66.55 116.81 99.49 0.51 2.99 0.003 0.02
Comp 28 13506 54.45 102.02 102.15 0.46 2.65 0.009 0.036

Table 2: Table FA within eigenanatomy components that showed significant
linear relationships with executive function scores. The coordinates refer to the
position of the ROI centroid in MNI152 space.

2
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Figure 5: : Interaction effect of age and measures of brain morphology (FA, 
cortical thickness) on executive factor scores. Age was split into three groups 
for better visualization of the results, but was treated as a continuous variable 
in the main analysis. Glass brain maps represent the topography of the 
components in MNI space. Regression analysis indicated significant 
interactions in two FA components (anterior and posterior corpus callosum, 
medial corpus callosum and bilateral posterior temporal white matter). FA in 
these components was more predictive of executive scores in younger children. 
For cortical thickness, one component in the left occipitotemporal cortex 
showed a significant interaction effect with age. In this component higher 
cortical thickness was more predictive of lower executive function scores in 
older children. 
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5  Discussion 
The aim of the current study was to explore how structural brain correlates of 
components of the working memory change over developmental time. Our 
findings show that neural structures  contributing to the executive component 
of the working memory system are not invariant across age, but interact with 
it. Specifically, the corpus callosum and bilateral posterior temporal white 
matter, and a cortical thickness in the left occipitotemporal cortex were found 
to contribute diffferently to the executive component of working memory 
depending on age.  

5.1  Scores associated with the verbal, visuo-spatial, and 
executive factor increase with age 

Rather than relying on an individual task to measure working memory 
performance, we used a battery of tasks to asses verbal and visuospatial short-
term and working memory. We derived a factor solution that provides very 
good agreement with the structure expected for this particular assessment 
battery (T. Alloway, 2007). The loading of the tasks onto these factors was 
consistent with a model of working memory wherein short-term memory tasks 
for verbal and visuo-spatial materials load onto separate factors, and tasks 
with a higher executive demand load onto an additional factor (A. D. 
Baddeley & Hitch, 1974). Regression modelling indicated a significant linear 
relationship between factor scores and age for all factors. This finding is line 
with previous studies that indicate linear increases in short-term and working 
memory capacity throughout childhood and adolescence (Gathercole et al., 
2004, Conklin, Luciana, Hooper, & Yarger, 2007, Swanson, 1999). Having 
replicated the widely reported working memory factor structure, and the age-
related improvements in performance, we could then explore how changes in 
brain structure interact with these developmental relationships. 

5.2  White matter organization but not cortical thickness 
changes with age 

The second step in the analysis was to explore which aspects of 
neurophysiology change show the greatest degrees of age-related change. FA 
was significantly related to age in almost all components. Previous studies 
also found a positive relationship between age and FA in the mid-childhood to 
adolescence range for most white matter tracts (Muftuler et al., 2012, Barnea-
Goraly, 2005, Qiu, Tan, Zhou, & Khong, 2008). Increasing FA is likely to 
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reflect the contribution of different biological processes (Alexander et al., 
2011), including differences in fibre organisation (Dubois et al., 2007), and 
increasing myelination (Dean et al., 2014, Giorgio et al., 2008).  

No association between age and cortical thickness was found. This was 
unexpected as a number of studies reported decreasing cortical thickness with 
age (Wierenga, Langen, Oranje, & Durston, 2014, Sowell, 2004, Tamnes et al., 
2009, Wierenga et al., 2014). However, these studies included participants 
from early childhood to adulthood (Tamnes et al., 2009, Sowell et al., 2006, 
Wierenga et al., 2014), or mapped changes longitudinally over a shorter 
period (Sowell, 2004, Shaw et al., 2006). The narrower age range in the 
current study could account for the absence of age-related changes in cortical 
thickness in the current study.  

In summary, analysis of the relationship between age and brain 
morphology suggests that FA is a good indicator of brain development in 6 to 
16 year age range. This suggests that the neural changes across this age span 
are primarily driven by the development of structural connections and 
integration within brain systems. 

5.3  Brain morphology and age interact in the development of 
the executive component of working memory 

The main analysis investigated the relationship between working memory 
factor scores and brain morphology and the extent to which these 
relationships are moderated by age. Significant interactions between age and 
brain morphology measures were found for the executive aspect of working 
memory performance in two white matter and one cortical thickness 
component. The white matter comprised the corpus callosum and bilateral 
posterior white matter, while the cortical thickness component was located in 
the left posterior temporal lobe. The anatomical structures identified in the 
current study have been previously implicated in working memory. For 
instance, diffusion parameters of corpus callosum subregions were found to 
relate to working memory capacity in children with traumatic brain injury 
(Treble et al., 2013) and have been reported to show changes following 
working memory training (Takeuchi et al., 2010). Posterior temporal white 
matter has also been shown to relate to working memory performance 
(Golestani et al., 2014, Burzynska et al., 2011).  

Previous behavioural studies indicate that strategies in working memory 
tasks changed over development (Hitch et al., 1991, Gathercole et al., 1994). 
Further, the neural correlates of cognitive development show a general shift 
from using general resources in younger children to adult-like recruitment of 
specialised networks of regions in older participants (Johnson, 2011). 
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Functional neuroimaging studies indicate that this developmental progression 
is also observed for working memory (Ciesielski et al., 2006, Vogan et al., 
2016, Scherf, Sweeney, & Luna, 2006, Crone, Wendelken, Donohue, 
Leijenhorst, & Bunge, 2006). Over development, different cognitive resources 
and neural systems may therefore support task performance. The findings of 
the current study indicate that younger children benefited more from 
microstructural integrity of the corpus callosum and posterior temporal white 
matter, whereas the relationship was attentuated in older children and 
adolescents. In contrast, higher cortical thickness in a posterior temporal area 
was associated with lower levels of performance in older but not in younger 
children. This may suggest that the executive factor in working memory is 
supported by different brain systems depending on age. For younger children, 
communication mediated by the corpus callosum and posterior white matter 
is critical, while the structure of the left posterior temporal cortex is 
important for performance in older children.  

Empirical studies grounded in the interactive specialisation view of brain 
development have indicated that core areas of processing are involved across 
the life span, but additional non-specific areas contribute in younger children. 
This developmental tendency has been convincingly demonstrated for face 
(Kadosh, Kadosh, Dick, & Johnson, 2010, Kadosh, Johnson, Henson, Dick, & 
Blakemore, 2013) and language processing (Weiss-Croft & Baldeweg, 2015), 
but working memory has not been investigated in this way so far. The current 
data show greater importance of white matter in corpus callosum and 
posterior temporal white matter in younger children for the executive 
component of working memory, and greater importance of left 
occipitotemporal cortical thickness in older children. The importance of 
callosal connections may indicate a reliance on a more distributed system, 
potentially involving recruitment of functionally homologous areas in both 
hemispheres, in younger children. In turn, the involvement of the left 
temporal lobe may indicate increased specialisation and lateralisation of the 
working memory system in older children. Although these final suggestions 
remain speculative, and to be tested. 

6  Conclusion 
The aim of the current study was to investigate how the relationship between 
individual differences in brain structure and working memory performance 
changes with age. The results indicated higher contribution of callosal and 
temporal white matter in younger children and higher contribution of left 
temporal cortex in older children for performance associated with the 
executive component of working memory. The current study indicates that 
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the contribution of particular anatomical structures may change over 
development, potentially reflecting a shift from early reliance on a distributed 
system supported by long-range connections to later reliance on specialised 
local circuitry. The study underscores the importance of considering the 
crucial role that development may play in understanding brain-cognition 
relationships. 
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