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Abstract. Peptide sequences from a proteome can be partitioned into N mutually exclusive sets and used to identify 
their parent proteins in a sequence database. This is illustrated with the human proteome (http://www.uniprot.org; id 
UP000005640), which is partitioned into eight subsets KZ*R, KZ*D, KZ*E, KZ*, Z*R, Z*D, Z*E, and Z*, where Z ϵ {A, N, 
C, Q, G, H, I, L, M, F, P, S, T, W, Y, V} and Z* ≡ 0 or more occurrences of Z. If the full peptide sequence is known then 
over 98% of the proteins in the proteome can be identified from such sequences. The rate exceeds 78% if the positions 
of four internal residue types are known. When the standard set of 20 amino acids is replaced with an alphabet of size 
four based on residue volume the identification rate exceeds 96%. In an information-theoretic sense this last result 
suggests that protein sequences effectively carry nearly the same amount of information as the exon sequences in the 
genome that code for them using an alphabet of size four. An appendix discusses possible  in vitro methods to create 
peptide partitions and potential ways to sequence partitioned peptides.
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1.  Introduction
Partitioning of peptides into mutually exclusive subsets of sequences with known properties can make protein 

sequencing and/or identification based on database search easier. If a full or partial sequence from a subset is known 
identification of the parent protein is more efficient because the search space is considerably smaller. Here it is shown 
by computation that a partition with N = 8 sets can lead to protein identification rates in excess of 90%. An appendix 
discusses practical methods for in vitro cleaving of proteins, physical separation of cleaved peptides into subsets, and 
full or partial sequencing of partitioned peptides.

2.  Peptide partitions and their properties
Consider peptide sequences in a proteome that have the form X1Z*X2, where X1 and X2 are drawn from a small 

number of residue types, Z is one of the remaining residue types, and Z* ≡ 0 or more occurrences of Z. Table 1 shows 
three such partitions for different X1 and X2 at some pH value.

Table 1. Three partitions of the form X1Z*X2; Z ϵ {A, N, C, Q, G, H, I, L, M, F, P, S, T, W, Y, V}
X1  ϵ X2  ϵ Partition

{K} {D,E,R} {KZ*D, KZ*E, KZ*R, KZ*, Z*D, Z*E, Z*R, Z*}

{D} {K,E,R} {DZ*K, DZ*E, DZ*R, DZ*, Z*K, Z*E, Z*R, Z*}

{K,D} {E,R} {KZ*E, KZ*R, DZ*E, DZ*R, KZ*, DZ*, Z*E, Z*R, Z*}

The following are some properties of such partitions; they are derived in part from computations performed on the 
complete sequence database of the human proteome (20207 sequences).

Table 2. Partitioned subset sizes for the human proteome (Uniprot database id UP000005640; 20207 sequences) and protein identification efficiency 
(column 4 ÷ 20207)*100 of full peptide sequences. (Last row:  U = union.)

Partition subset Total no. of 
peptides

No. of protein-
identifying peptides

No of proteins 
identified

Percentage 
identified

KZ*R 139423 38110 14247 70.51
KZ*D 125351 34830 12983 64.25
KZ*E 194024 45440 14304 70.79
KZ* 189713 44067 13736 67.98
Z*R 499784 128902 18305 90.59
Z*D 411189 110708 17691 87.55
Z*E 609872 140051 18254 90.34
Z* 345450 111045 18467 91.39

KZ*R U KZ*D U KZ*E 458798 54309 18212 90.13
Union of all 8 subsets 2514806 287809 19885 98.4

1) Partitioning makes protein identification based on comparison of peptide sequences with sequences in a proteome 
database simpler because it reduces the search space considerably. This can be seen in Table 2, which shows the number 
of peptides in each subset of an 8-set  partition and the computed number of protein-identifying peptides in it;  the 
average reduction of the search space is around 8. Also, on computing the set union operation (U) over the identifying 
peptides in different subsets the percentage of identifiable proteins in a proteome increases appreciably. For example 
with KZ*R U KZ*D U KZ*E the number exceeds 90%. With all sets the rate exceeds 98%. Note that with Z* an element 
can be a protein identifier and at the same time be a subsequence of a peptide in any of the other seven subsets. This is 
because it only needs to be a unique identifier for a protein containing an element of Z*; being in the distinct subset Z* it 
carries context information that is hidden. Thus in the protein sequence that it identifies it is not preceded by K in any 
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sequence in the proteome, it is either followed by K or is the last peptide at the end of the protein sequence, and it is not 
followed by R, D, or E.
2) With partitioned peptides, sequencing of peptides in one subset is not affected by peptides in another because they 
occur in two distinct and physically separate sequencing procedures. For example, sequencing of peptides in KZ*R is 
independent of sequencing in KZ*D. Thus peptides in the two subsets can be sequenced in parallel and the results 
logically combined.
3) Sequences in {KZ*R}, {KZ*D}, and {KZ*E} do not have internal residues from {K,R,D,E}. When sequencing a 
peptide in any of these subsets its internal sequence need be checked against 16 rather than 20 residue types. Similar 
statements can be made about the other subsets.
4) In most cases, when sequencing a peptide a small number k of internal residue types may be sufficient to identify it  
and its container protein. With k = 2, 3, and 4 there are 120, 560, and 1820 ways to choose residue types. Figure 1 
shows the number of proteins in the human proteome  (20207 proteins) that are identifiable from partial sequences in 
KZ*R, KZ*D, and KZ*E for k = 2 and 4. (Residue types are selected in the order of their frequency of occurrence in the 
proteome; see Figure A-5 in the Appendix.) A set union operation further increases the total number of identifiable 
proteins. The maximum number identifiable can be obtained by exhaustive search through all 120, 560, or 1820 tagging 
choices with k = 2,  3, or 4; it can be expected to exceed 78% of the total number of proteins.

Figure 1. Number of peptides in KZ*R, KZ*D, and KZ*E in the human proteome identifiable from two (left panel) or four (right 
panel) internal residues. The fourth bar in each group is the frequency of cumulative unions from LS to MW or from LSAG to 
HCMW. Thus the rightmost bar in the two cases is the percentage total of identifiable peptides in the proteome (66%, left panel; 78%, 
right panel).

3.  A partition based on a reduced amino acid alphabet
Amino acids vary in volume [1] but in most cases the differences are small. In [2] they are coarsely partitioned into 

four  subsets  labeled  Minuscule,  Small,  Intermediate,  and  Large.  These subsets  are encoded here with the reduced 
alphabet {B, U, X, Z}. (This alphabet, which is not part of the 1-letter standard amino acid code, was chosen to make 
the  database  search  algorithms  simpler.)  The  mapping  is  as  follows:  {G,A,S,C}  →  B,  {T,D,P,N,V}  →  U, 
{E,Q,L,I,H,M,K} → X,  {R,F,Y,W} → Z.  The sequences  in  the proteome database are recoded with this  reduced 
alphabet and protein identifying peptides are obtained by searching for them in the sequence database.

Table 3. Calculated number of peptides in peptide sequences coded with reduced amino acid alphabets identifying container protein 
and protein identification efficiency in human proteome (Uniprot database id UP000005640; 20207 sequences)

Partition subset No of 
peptides

Reduced amino acid alphabet
{B, U, X, Z} {G, B, U, X, Z, W}

No. of identifying 
peptides (a)

No. of uniquely 
id'd proteins (b)

Identification 
efficiency (c)

No. of identifying 
peptides (a)

No. of uniquely 
id'd proteins (b)

Identification 
efficiency (c)

KZ*R 139423 18097 10060 49.78% 21976 11215 55.5%
KZ*D 125351 16267 9019 44.63% 19785 10048 49.72%
KZ*E 194024 19945 10185 50.4% 24291 11270 55.77%
KZ* 189713 19737 9832 48.65% 24077 10877 53.82%
Z*R 499784 57937 15770 78.04% 72752 16642 82.35%
Z*D 411189 48944 14700 72.74% 61304 15673 77.56%
Z*E 609872 58914 15690 77.64% 74552 16612 82.2%
Z* 345450 47968 15370 76.06% 59570 16423 81.27%

KZ*R U KZ*D U KZ*E 458798 54309 15744 77.91% 66052 17139 84.81%
Union of all 8 sets 2514806 287809 19581 96.9%

(a) Number of peptides in partition subset that can uniquely identify their container protein
(b) Total number of proteins in proteome uniquely identified by the identifying peptides in column marked (a) 
(c) Protein identification efficiency = number in column marked (b) * 100/20207
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By redefining the subsets three more volume-based partitions with 5 or 6 subsets are possible: 1) {G} → {G} 
{A,S,C} → B, {T,D,P,N,V} → U, {E,Q,L,I,H,M,K} → X, {R,F,Y,W} → Z; 2) {G,A,S,C} → B, {T,D,P,N,V} → U, 
{E,Q,L,I,H,M,K}  → X,  {R,F,Y}  →  Z,  {W} →  {W};  and  3)  {G}  → {G},  {A,S,C}  →  B,  {T,D,P,N,V}  →  U, 
{E,Q,L,I,H,M,K} → X, {R,F,Y} → Z, {W} → {W}. Table 3 presents two sets of results for the 8 subsets of the peptide 
partition {Z*D, Z*E, KZ*D, KZ*E, Z*, KZ*, Z*R, KZ*R} using the reduced codes {B, U, X, Z} and {G, B, U, X, Z, W}. 
(Compare these results with Figure 1, which shows the identification efficiency of partitions KZ*R, KZ*D, and KZ*E in 
which the positions of 4 or 6 residue types in a peptide are known.)

As an example, consider the 8 partitioned subsets discussed earlier, namely Z*D, Z*E, KZ*D, KZ*E, Z*, KZ*, Z*R, 
and KZ*R. There are a total of 2,514,806 peptides in the full partition. Consider one of the subsets, KZ*R. It has 139423 
peptides. When recoded with the reduced alphabet 18097 of them can identify their parent protein. The number of 
unique proteins identified is 10060, which is 49.78% of the 20207 proteins in the human proteome. (With the full 
alphabet,  the corresponding numbers  are 38110,  14247,  and 70.51%.)  When the results  from different  subsets  are 
subjected to the union operation the identification rate increases significantly. For example, the identification efficiency 
of  KZ*R U KZ*D U KZ*E with a 4-character alphabet is 77.91%, while with the union of all eight sets it is 96.9%. 
(Further post-processing using HMM or similar learning-based algorithms [3-6] can result in further improvements in 
identification, but such a development is outside the scope of the present report.)

These results show that almost all (> 96%) proteins in the proteome can be identified when they are coded with a 
reduced  four-character  alphabet.  This  suggests  that  at  the  identification  level  protein  sequences  contain,  in  an 
information-theoretic sense, about the same amount of information as the exons in the genome that code for them. 
Whether this is biologically significant or is a computational artifact remains to be seen.
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A-1 Peptide partitioning in vitro
Partitioning of peptides can be done  in vitro in two steps: cleaving and separation. High-specificity peptidases or chemical 

agents are available to cleave before or after a specific residue [7,8], where 'before' or 'after' means cleavage on the N-terminal or C-
terminal side of the residue. (Peptide sequences are usually listed from N-terminal to C-terminal.) Some of these peptidases/agents 
are listed in Table A-1 below. Peptides can be separated using a variety of methods based on the electric charge they carry. (This 
charge can be calculated using the Henderson-Hasselbach equation [9].) Examples of separation methods [10] include isoelectric 
focusing (IEF), paper chromatography (PC), and ion-exchange chromatography (IEC).

Table A-1: Selected peptidases/chemicals, their targets, and where cleavage occurs
Chemical 

agent
Target 
residue

Cleavage 
point

BNPS-
Skatole

Trp (W) After

 (CNBr) Met (M) After

Chemical 
agent

Target 
residue

Cleavage 
point

Formic 
acid

Asp (D) After

NTCB +Ni Cys (C) Before

Peptidase Target 
residue

Cleavage 
point

ArgC Arg (R) After

LysN Lys (K) Before

Peptidase Target 
residue

Cleavage 
point

LysC Lys (K) After

GluC Glu (E) After

In Step 1 proteins in the assay sample are broken into peptides using multiple peptidases or chemical agents in sequence [11]. 
This enables breaking a protein into peptides with desired start and end residues (see Table 1 in the main text). For example LysN 
creates peptides starting with K, while formic acid creates peptides ending in D. When these two are applied in sequence (in any 
order), the result is peptides that start with K and end with D. With four peptidases/chemical agents, there are 24 different orders of 
application. The optimum order may be determined experimentally.

In Step 2 the peptides created in Step 1 are inserted into an electrolyte with a known pH value and separated into subsets based  
on the charge they carry at that pH value. IEF uses an electrolyte with a pH gradient and an electrical field that moves a peptide to a 
point along the gradient where its effective charge is zero. This point is the peptide's 'isoelectric focus' or pI value. IEF has a pI 
resolution of 0.001.
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Figure A-1 is a flow chart that shows cleavage of proteins into peptides of the form Z*D, Z*E, KZ*D, KZ*E, Z*, KZ*, Z*R, and 
KZ*R, followed by IEF. This leads to an 8-subset partition in which the maximum peptide frequency in each subset is separated from 
that in another by a pI value of at least 0.1. For the human proteome the distribution of peptide frequency vs pI for each of the 8 
subsets of the partition is shown in Figure A-2.

(Left) Figure A-1. Flow chart for in vitro separation of peptides into 8 subsets (followed by sequencing and protein identification).
(Right) Figure A-2. Frequency distribution of peptides in 8-subset partition of human proteome vs pI (isoelectric focus pH).

Peptides can be further separated by mass or size using 2-D gel electrophoresis (GE) [12]. Figure A-3 shows a somewhat 
oversimplified example of a computed distribution of peptides in {KZ*R} by mass that resembles analyte separation in the vertical 
dimension in 2-D GE.

Figure A-3. Distribution of peptides in {KZ*R} by mass. (Horizontal bars manually centered.)

In practice each step before sequencing in Figure A-1 requires an extraction step involving elution, filtration, etc., in which the 
target (peptide fragments) is extracted and input to the next step. With the 8-subset partition example considered above five extraction 
steps are required, one after each cleavage step and one after IEF. This means that even if each extraction is 90% efficient, less than  
60% of the sample will enter the sequencing stage.

A-2 Peptide sequencing in practice
Two practical methods to sequence peptides in partitioned subsets are considered here. They are mass spectrometry (MS) [13], 

which sequences peptides in the bulk, and nanopore sequencing, which is a single molecule method [14,15].
In MS, peptides are extracted from the gel after GE and split into ionized fragments before entering the spectrometer, which then 

outputs a mass spectrum for a peptide. A variety of algorithms are available to predict a partial or full sequence from the spectrum by 
comparison with MS spectra databases and identify the container protein [16,17]. With partitioned peptides, the task is simplified 
because a peptide belongs to a restricted subset.

In  conventional  nanopore  sequencing  of  polymers  (DNA,  RNA,  protein)  the  analyte  translocates  through  the  pore  by  a 
combination of diffusion and electrophoresis in the presence of an electric field. Discrimination among monomers (bases in DNA and 
RNA; residues in peptides) is based on the ability to detect measurable differences in the current blockade due to different monomers. 
Protein sequencing is more difficult than DNA sequencing because of the need to discriminate among 20 residue types against 4 base 
types. This is further complicated by homopolymers because successive blockade levels have the same value. One way to resolve this  
is to use a pore in an atom-thin membrane of graphene or MoS2. The analyte translocation distance through the pore is then less than 
the distance between two successive monomers so blockade transitions between two monomers can be better distinguished.

Sequencing that is based on pore current blockades has to contend with ever present noise, so a high signal to noise ratio (SNR) 
is required. One way to increase SNR is to increase the transmembrane potential and thereby increase pore current levels; however it 
cannot exceed a few 100s of millivolts. Additionally the analyte takes less than 100 ns to pass through the pore, which puts detection 
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beyond the capacity of available detectors. Even with available detector bandwidths, higher bandwidth means higher noise levels. 
Several methods of slowing down the analyte have been proposed [18], most of them fall short. Two potential exceptions to this are: 
1) slowdown based on the use of a hydraulic pressure gradient that is opposed to the transmembrane potential [19]; and 2) use of a 
high viscosity electrolyte (= RTIL or room temperature ionic liquid) [20] in the  cis chamber, which has been found to decrease 
translocation speeds by a factor of ~200 in DNA sequencing with a pore in an atom-thin MoS2 membrane.

In [2] peptide sequencing is based on using a reduced amino acid alphabet with four characters and mapping current blockades 
caused by residues to it. Post-processing of signal data with four measurable levels of discrimination uses a hidden Markov model 
(HMM) to construct the reverse map from reduced alphabet to full alphabet and the peptide sequence therefrom. If the notion of a 
reduced alphabet is combined with that of peptide partitions, nanopore sequencing can in principle identify more than 96% of the 
proteins in the human proteome (see Table 3 in the main text).

The dependence on pore currents to detect monomers can be avoided if selected residue types in a peptide are labeled with 
fluorescent tags and detected optically using Total Internal Reflection Fluoroscopy (TIRF) [21,22]. This results in a partial sequence 
for a peptide, which can be used to identify the parent protein through database search. (Pore current blockades, while still present, 
are not used for monomer detection.)  Figure A-4 shows a schematic.  Peptide translocation through the pore is controlled by a 
combination of transmembrane potential and hydraulic gradient, as in [19], and/or by using an RTIL, as in [20]. As the peptide  
threads through the pore into trans an emerging residue that is tagged fluoresces in the presence of a laser input and is identified by a 
photosensor. With additional signal processing positional information for the tagged residues in the peptide sequence is obtained.

TIRF has a resolution in the submillisecond range, which appears achievable with the above setup. It  can distinguish up to 13 
intensity levels so peptides can contain up to 13 tagged residues of the same type. It has the further advantage of being able to sense 
homopolymers correctly because every residue in the homopolymer is detected by a quantum jump in the photo-intensity, unlike with 
electrical sensing in which pore current measurements yield blockade current levels that are the same for successive identical residues.

Figure A-4 Schematic of cell with hydraulic gradient, transmembrane potential, RTIL in cis, and TIRF. (Not to scale)
(Peptide cartoon shows element of Z*R with 4 tag types: one for end residue R and three for internal residue types Z, X, and B.)

Consider for example sequencing peptides in KZ*R, KZ*D, and KZ*E. Residues K, R, E, and D can be coded using two tags, 
denoted TERM-1 and TERM-2 (K and R; K and E; K and D). A small number k of internal residue types from the set Z can also be  
tagged. With k = 2 let the latter be INTL-3 and INTL-4. A tagged residue causes a step increase in the intensity of the measured 
signal TERM-m(t) or INTL-n(t) from the nanopore for tag type m or n. The residue order can then be constructed from the individual  
signals TERM-1(t), INTL-3(t), INTL-4(t), and TERM-2(t).  Position information can be estimated from time differences between 
successive tag detection times obtained from the signals TERM-m(t) and INTL-n(t) using deconvolution algorithms similar to those 
used in DNA sequencing [3-6]. From the resulting partial sequence the full peptide sequence can be identified by database search. If 
it is also a unique identifier for its container protein the latter can be identified as well. Figure 1 in the main text shows calculated  
frequency distributions of identifying peptides in KZ*R, KZ*D, and KZ*E with two or four internal tag types.

With KZ*R, KZ*D, and KZ*E, the boundary between two peptides that pass through the pore in succession is known from the 
labels of the first and last residues. Whether the peptides enter C-terminal or N-terminal first, their end labels always occur in pairs 
(for example, with labeled internal residues X and Z: K.X.Z..R, K.Z...Z.....R, RXX..Z...K, etc.). With KZ*, Z*R, Z*D, and Z*E, only 
one starting/terminal residue is fixed. With a total of four tag types, the signals for KZ* would be TERM-1(t), INTL-2(t), INTL-3(t), 
and INTL-4(t).  With Z* there is neither a starting nor an ending label, so the first signal is replaced by INTL-1(t). Two successive  
peptides S1 and S2 are detected as follows:

S1 = K.X.Z.. , S2 = K.X.X.. → detected as S12 = K.X.Z.....K.X.X (1a)
S1 = K.X.Z.., S2 = ..X..K → detected as S12 = K.X.Z. ...X..K (1b)
S1 = ..X..Z.B.., S2 =..Z..X.. → detected as S12 = ..X..Z.B....Z..X.. (1c)

In each case the boundary between the two peptides can be discerned by searching for partial sequences S1' and S2' such that S1''..S2'' 
=  the observed S12,  where  S1''  (or  S2'')  =  S1'  (or  S2')  or  its  reverse.  As an example Table A-2 shows the computed number of 
identifiable proteins from peptides with a total of four tag types whose partial sequences are truncated to the first tagged residue at 
one or both ends before search. For example, K.X.Z... is truncated to K.X.Z and ..X..Z.B.. to X..Z.B, while K.Z...Z.....R needs no 
truncation.

Table A-2. No of identifying peptides in three partitioned subsets of the human proteome with start/end and internal residues tagged, 
with and without truncation at one or both ends. (No truncation with KZ*R.)
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Property ↓                            Subset→ KZ*R Z*R Z*
No.  of peptides identifying a protein 14247 18305 18467
Tagged residues K L S R L S A R L S A G
Tagged peptides identifying protein 4053 11560 12882
With end(s) truncated before search - 10668 11398

Nanopore-based peptide sequencing can also be used to quantify proteins in an assay sample. Consider a mixture of proteins 
{(Ni, Pi, Ii): i = 1, 2, ...} where Ni is the number of molecules of the i-th protein in the mixture, Pi the number of peptides per molecule 
of the protein (= the number of peptides created from a single molecule by the cleaving steps in Figure 1, main text), and Ii (0 ≤ Ii ≤ 
Pi) the number of identifying peptides per molecule (this is known by precomputation; see Table 2, main text). Let N total be the total 
number of peptides sensed and Ii-identified the number of identified peptides in protein i. If peptide entry into a cell is totally random, 
then after a sufficiently long run Ni can be estimated as Ñi = Ii-identified /Ii, the corresponding fraction is Gi = Ñi /Ntotal. The number of 
peptides that do not yield identifying information is Nnon-identifying = Ntotal -  ∑Ii-identified, where the summation is over all the identified 
proteins. This number includes peptides that are found in more than one protein as well as impurities in the input sample.

A-3 Frequency distribution of residues in the human proteome
The 20 residue types occur with different frequencies in the human proteome. Figure A-5 shows their distribution. Strategies for 

peptide sequencing and protein identification may take this into account.

Figure A-5 Frequency distribution of residues in the human proteome (Uniprot id UP000005640)
(Z/X/U/B represents 838 ambiguously labeled residues in the sequence database.)
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