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Abstract.— Models of phenotypic evolution fit to phylogenetic comparative data are widely used13

to make inferences regarding the tempo and mode of trait evolution. A wide range of models is14

already available for this type of analysis, and the field is still under active development. One of15

the most needed developments concerns models that better account for the effect of within- and16

between-clade interspecific interactions on trait evolution, that can result from processes as17

diverse as competition, predation, parasitism, or mutualism. Here, we begin by developing a very18

general comparative phylogenetic framework for (multi)-trait evolution that can be applied to19

both ultrametric and non-ultrametric trees. This framework not only encapsulates all previous20

classical models of univariate and multivariate phenotypic evolution, but also paves the way for21

the consideration of a much broader series of models in which lineages co-evolve, meaning that22

trait changes in one lineage are influenced by the value of traits in other, interacting lineages.23

Next, we provide a standard way for deriving the probabilistic distribution of traits at tip24
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branches under our framework. We show that a multivariate normal distribution remains the25

expected distribution for a broad class of models accounting for interspecific interactions. Our26

derivations allow us to fit various models efficiently, and in particular greatly reduce the27

computation time needed to fit the recently proposed phenotype matching model. Finally, we28

illustrate the utility of our framework by developing a toy model for mutualistic coevolution. Our29

framework should foster a new era in the study of coevolution from comparative data.30

(Keywords: comparative phylogenetics, trait evolution, coevolution, interspecific interaction,31

character displacement, linear stochastic differential equations)32

Evolutionary biologists have long been interested in the long-term evolution of phenotypic33

traits (Simpson 1944). In 1973, Felsenstein introduced one of the first models of phenotypic34

evolution, with the initial goal to account for shared ancestry when testing for statistical35

correlation between pairs of traits in extant species. In this founding paper, Felsenstein proposed36

that a one-dimensional quantitative trait evolving on a tree could be modeled as a Brownian37

process that splits into two independent Brownian processes at branching times. This model38

mimics a trait that would evolve as a mere effect of stochastic drift; it is now often used as a null39

model, but also to estimate the relative lability (or rate of evolution) of various traits in a given40

group of organisms or of a given trait across different groups of organisms (Thomas et al. 2006;41

Harmon et al. 2010).42

Since these early developments, evolutionary biologists have designed a series of models to43

better understand the evolutionary processes that shape phenotypic evolution (see Pennell and44

Harmon 2013 for a review). The Ornstein-Uhlenbeck (OU) process has been proposed to model45

evolution under stabilizing selection, i.e. with a selective pressure pushing trait values toward a46

given optimum (Hansen 1997; Hansen and Martins 1996; Butler and King 2004). The ACDC47

model has been proposed to account for accelerating (AC) or decelerating (DC) rates of48
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phenotypic evolution through time (Blomberg et al. 2003). The latter scenario, where the49

evolutionary rate is high early in the history of a clade and subsequently declines toward the50

present, well known as the early burst (EB) model, has often been used to test support for51

adaptive radiation theory (Harmon et al. 2010; Moen and Morlon 2014). These univariate models52

representing the evolution of a single trait have been extended to multivariate models53

representing the simultaneous evolution of multiple traits, which permit investigators to directly54

test hypotheses about the coevolution between several phenotypic traits (Hansen et al. 2008;55

Bartoszek et al. 2012; Jhwueng and Maroulas 2014). Other extensions have been developed to56

account for variations in model parameters across clades (O’Meara et al. 2006; Revell and Collar57

2009; Eastman et al. 2011; Butler and King 2004; Beaulieu et al. 2012). Finally, some of these58

models have been developed in the context of phylogenies including fossil data (i.e. non59

ultrametric trees, see Ruta et al. 2006; Slater 2015) in addition to phylogenies with only extant60

taxa (i.e. ultrametric trees). Most of these models have been implemented in open-access61

packages (Martins 2004; Harmon et al. 2008; Butler and King 2004; Thomas and Freckleton62

2012; Clavel et al. 2015; Morlon et al. 2015), allowing their application to a broad variety of63

questions and datasets (see, e.g. Labra et al. 2009; Mahler et al. 2010; Dale et al. 2015; Quintero64

et al. 2015; Slater 2015).65

Despite these developments, most currently available models ignore the effect of66

interspecific interactions on trait evolution. Given the importance of species interactions in67

classical evolutionary theories, such as Simpson’s adaptive radiation (Simpson 1944), Ehlrich &68

Raven’s escape and radiate (Ehrlich and Raven 1964) and Van Valen’s Red Queen (Van Valen69

1973) theories, building models that better account for such interactions is fundamental. In a70

first attempt to take into account the role of competition for niche space on character evolution,71

a diversity-dependent (DD) model has been introduced, where the rate of phenotypic evolution72

declines as the number of lineages in the clade increases (Mahler et al. 2010; Weir and Mursleen73

2013). While this model represents an important first step, it still assumes that trait changes in74

one lineage are independent from the value of traits in other, interacting lineages, therefore75

ignoring the widespread idea of trait- (or ecologically-) driven interspecific interactions. More76
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recently, the phenotype matching (PM) model relaxed these hypotheses and more explicitly77

accounted for interspecific interactions by modeling either the attraction or the repulsion of traits78

from a clade-wise average trait value (Nuismer and Harmon 2014; Drury et al. 2016). In the first79

case, referred to as matching mutualism, species traits tend to converge to similar values,80

whereas in the second case, referred to as matching competition, species traits tend to diverge.81

The comparative phylogenetic approach developed by Drury et al. (2016) is one of the82

first that allows fitting a model where the evolution of trait values in one lineage is influenced by83

the trait values of other lineages. This approach focused on the evolution of traits within one84

clade. While within-clade interactions can be particularly relevant for some types of interactions85

(e.g. in the case of competitively driven character displacement, Brown and Wilson 1956), the86

effect of other types of antagonistic or mutualistic interactions on trait evolution is often most87

relevant between distantly related species. For example, host-parasite interactions are thought to88

drive a coevolutionary race between traits involved in host defence and parasite ability to infect.89

Similarly, prey-predator interactions may lead to the coevolution of prey traits involved in90

camouflage, repulsion, or escape strategies, together with predator traits involved in the ability91

to detect and capture its prey (Ehrlich and Raven 1964; Dawkins and Krebs 1979). Mutualistic92

plant-pollinator interactions also are thought to drive the coevolution between plant traits93

involved in pollen accessibility or flower attractiveness to their pollinator (secondary metabolites,94

floral traits), and pollinator traits involved in the ability to detect suitable plants and to exploit95

plant rewards (Fenster et al. 2004; Weiblen 2004; Sletvold et al. 2016). While these types of96

biotic interactions likely play a key role in trait evolution and have been crucial in the97

development of coevolutionary theories (Ehrlich and Raven 1964; Van Valen 1973), there98

currently exists no framework for fitting models of phenotypic evolution incorporating the effect99

of clade-clade interactions.100

The current paper expands the work of Bartoszek et al. (2012) who presented a unified101

framework for studying coevolving traits in independently evolving lineages by providing a102

unified framework for coevolving traits in coevolving lineages. Our framework, based on linear103

stochastic differential equations (SDE), encompasses all models of continuous (multi-)trait104
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evolution mentioned above, and allows the treatment of a much broader set of models. The goal105

of the paper is two-fold: first, by providing general solutions to the distribution of traits at tip106

branches under our unified framework, we hope to help users to find their way in a dense and107

potentially overwhelming literature; second, by showing how the framework can be used to treat108

a broad class of within-clade and clade-clade coevolutionary scenarios, we hope to foster the109

development of models to test long-standing hypotheses on the role of competition, predation,110

parasitism and mutualism in evolution.111

We begin by presenting our framework and showing how previous models as well as novel112

clade-clade coevolutionary models fit within this framework; next, we provide general solutions113

for the distribution of tip trait values under this framework; then, we illustrate how the114

framework can be used to study a toy model of clade-clade coevolution.115

A general framework for phenotypic evolution116

Notation for trees and traits117

We introduce a general formalism to study (multi-)trait (co)evolution when the interaction118

between lineages within a clade or among several clades potentially affects how traits evolve. We119

consider a single or several clades represented by a single or several fixed, binary, time-calibrated120

phylogenetic trees (non-necessarily ultrametric, i.e. the trees can include fossils). Time t runs121

from the root of the oldest tree (t = τ0 = 0) to the most recent tip of all trees (t = T is the122

present if at least one of the phylogenies includes extant species). The K successive branching123

and extinction times when considering the various trees altogether are denoted by (τi)
K
i=1 and the124

time-intervals between two such events are called epochs, following Butler and King (2004). We125

denote by nt the total number of lineages that arose before (and at) time t.126

In the case of trait evolution within a single clade (Fig. 1), we assign numbers (from 1 to127

nt) to lineages by order of arrival. At each branching event τ , one daughter lineage inherits the128

number assigned to the ancestral lineage while the other one is assigned nτ .129

We model the evolution of d one-dimensional quantitative traits. We denote by X(i,j)
t the130
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value of trait j (1 ≤ j ≤ d) on branch i at time t and Xt the column vector containing the values131

of all traits on all lineages at time t, ordered as follows :132

Xt = tr(X
(1,1)
t , X

(1,2)
t , ...X

(1,d)
t , X

(2,1)
t ..., X

(nt,d)
t ), where tr stands for the transposition.133

In the case of trait evolution in c distinct (co)evolving clades, we begin by arbitrarily134

ordering the clades from 1 to c; then, we assign numbers to lineages following the formalism135

introduced above, first numbering lineages from clade 1, then clade 2, and so on. As above, we136

denote by Xt the column vector containing the values of all traits on all lineages at time t, which137

now is a concatenation of the c column vectors corresponding to each clade.138

Trait evolution through time139

Given one (or several) phylogenetic tree(s), a model of phenotypic evolution is entirely defined by140

initial conditions X0 on the trait values at the root(s) and a set of rules dictating how the vector141

of traits Xt is updated (i) at branching times, (ii) on each epoch (i.e. between two branching or142

extinction times), and (iii) after a death time. These rules are illustrated in Figure 1 for a single143

trait evolving on a single small tree.144

In line with most models of phenotypic evolution, we consider anagenetic character145

evolution, meaning that traits do not change at cladogenesis. Hence, at a given branching time τ ,146

each of the daughter lineages inherits the trait value of their mother lineage. Our framework can147

easily be modified to treat non binary trees including polytomies. In practice, in the case of148

evolution within a single clade, the new vector Xτ is obtained by concatenating the d trait values149

of the branching lineage at time τ at the end of Xτ− (where τ− is the time just preceding the150

branching event). In the case of evolution in several clades, the new vector Xτ is obtained by151

inserting the d trait values of the branching lineage at time τ at the appropriate location in Xτ−152

(i.e., at the end of the part of Xτ− corresponding to the clade in which the branching event is153

occuring).154

On each given epoch (τi, τi+1) (i ∈ {0, 1, ..., K − 1}), we assume that the evolution of the d155

traits on the n lineages is driven by a linear stochastic differential equation of the form :156
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 dXt = (ai(t)− AiXt)dt+ Γi(t)dWt

X(τi) = Xτi

(1)

where ai is a vector of Rnd whose coefficients can vary with time, Ai is a constant square matrix157

of size Rnd × Rnd, Γi is a square matrix of the same size whose coefficients can vary with time,158

and Wt is a nd-Brownian motion (i.e. a vector composed of nd independent standard Brownian159

motions). Intuitively, the deterministic part (ai(t)− AiXt)dt reflects the direct effects of trait160

values for species in the clade(s) at time t on the evolution of these traits, including the effect of161

a trait value in one lineage on both its own evolution (as in the OU process) and the evolution of162

traits in the other lineages (as in the PM process); the stochastic part Γi(t)dWt reflects drift and163

the environmental noise influencing trait evolution. It has been proposed that correlations within164

the covariance matrix Γi represent non-causal correlations, for example linked to joint165

evolutionary responses to shared environmental conditions, while correlations within the166

interaction matrix Ai represent causal effects (Reitan et al. 2012; Liow et al. 2015). More work is167

needed to assess the relevance of the ‘causal/non-causal’ dichotomy, and the difference of168

patterns it can yield in the context of trait evolution on phylogenies. For simplicity, in the169

present paper, we will stick to the term ‘correlations’, and consider only models making the170

simplifying assumption that Γi is diagonal, but the framework could be equally adapted to171

incorporate correlations through these Γi matrices.172

Finally, when a lineage goes extinct at a given time τ , its d trait values no longer evolve173

(i.e. they are frozen at the extinction time), and they no longer have any influence on the174

evolution of the traits of other lineages until reaching the end of the process at time t = T . In175

practice, this means that the vector Xτ is simply equal to Xτ−, and that the d lines and columns176

in ai, Ai and Γi corresponding to the now extinct lineage are all set to zero.177

We will show later that this general formulation encapsulates all classical models of178

phenotypic evolution, ensures analytical tractability, and further allows the incorporation of a179

broad set of interspecific coevolutionary scenarios.180

Given the above, initial conditions on X0, and the collection of (ai), (Ai) and (Γi) on each181

epoch fully define a process of trait evolution on one or several trees.182
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Figure 1: Formalism used throughout the paper, to model the evolution of one trait on a

non-ultrametric tree. Epochs are separated with vertical dashed lines.

All models written under the formalism that we propose can easily be simulated183

numerically. First, the whole trajectory of the process can be simulated using a numerical scheme184

for SDE such as the Euler-Maruyama scheme (Gardiner et al. 1985) on each epoch, and185

augmenting the vector of traits at branching times with traits corresponding to the branching186

lineage (see Appendix D.1 and Fig. 5). Second, we show in the next section how to compute187

numerically the tip distribution. Tip values can then directly be drawn in a fast way from the tip188

distribution.189

Application: existing and novel models of trait evolution190

We first show that the general formulation above encapsulates all classical models of phenotypic191

evolution, before showing how it further allows considering a much broader set of models,192

including models of within and between clades coevolution.193

Models of phenotypic evolution have traditionally been characterized by a stochastic194

differential equation specifying how a given trait evolves along a single lineage. Applying195

Equation (1) to trait k, on epoch i yields:196
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dX
(k)
t =

(
a

(k)
i (t)−

ntd∑
l=1

A
(k,l)
i X

(l)
t

)
dt+

ntd∑
l=1

Γ
(k,l)
i (t)dW

(l)
t (2)

where the two sums are taken over all traits and all lineages. The term
∑ntd

l=1A
(k,l)
i X

(l)
t is the197

term that specifies how the value of trait k and all other traits in all other lineages influence the198

evolution of trait k. Given a well-known differential equation specifying how a given trait evolves199

along a single lineage for a previously proposed model of phenotypic evolution (second column in200

Table 1), deriving the corresponding expressions for a, A and Γ using Equation (2) is201

straightforward. Table 1 summarizes these expressions for existing univariate models running on202

ultrametric trees.203

The first three models (BM, ACDC and DD) are models in which trait evolution along a204

lineage is influenced neither by the trait value of this lineage nor the trait value of any other205

lineage. The corresponding A matrices are null matrices, as would be the case for any model with206

the latter property. The fourth model (OU) is a model in which trait evolution along a lineage is207

influenced by its own trait value, but not the trait values of other lineages. The corresponding A208

matrix is diagonal, as would be the case for any model with this property. Finally, the last model209

(PM) is a model in which trait evolution along a lineage is influenced by its own trait value and210

the trait values of other lineages, such that A has non-negative off-diagonal values. A remarkable211

property of A under this model is that all its off-diagonal values are identical. This is explained212

by the fact that the PM model is a neutral model, in the sense that the effect A(k,l) of lineage l on213

lineage k is the same for all lineages k 6= l. All other models in which the off-diagonal elements of214

A are identical would have this same property, known in probability theory as exchangeability.215

Several variations around these models can still be embedded in our general framework: i)216

Models in which the rate of phenotypic evolution depends on a variable Y (t) that itself varies217

through time (see, e.g. global temperature T (t) in Clavel and Morlon 2016) can be formalised218

similarly to ACDC, with time t replaced by Y (t). ii) Models accounting for the biogeographic219

background in which species coevolved (e.g. all the “+GEO” models in Drury et al. 2016) can be220

incorporated in our framework through the design of the A matrix (see details in Appendix C.3).221

iii) Considering non-ultrametric trees including fossils amounts to replacing vector V and222
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Key Model name

Evolution along lineage k a A Γ

BM Brownian motion, random genetic drift

dX
(k)
t = σdW

(k)
t 0 0 σI

ACDC Accelerating or decelerating rate, early burst

dX
(k)
t = σ0e

rtdW
(k)
t 0 0 σ0e

rtI

DD Diversity-Dependent

dX
(k)
t = σ0e

rntdW
(k)
t 0 0 σ0e

rntI

OU Ornstein-Uhlenbeck, stabilizing selection

dX
(k)
t = ψ(θ −X(k)

t )dt+ σdW
(k)
t ψθV ψI σI

PM Phenotype Matching

dX
(k)
t = ψ(θ −X(k)

t )dt

+S
(

1
nt

∑nt
l=1X

(l)
t −X

(k)
t

)
dt+ σdW

(k)
t

ψθV (ψ + S)I − S
nt
U σI

Table 1: Expression of a, A and Γ for models of trait evolution that have been proposed in

the literature. The unity vector (vector full of 1) is denoted by V , I refers to the identity matrix

(diagonal matrix with diagonal values equal to 1), and U refers to the unity matrix (matrix full

of 1). Their size is the same as the size of the vector of traits Xt considered. Parameters are σ:

rate of neutral phenotypic evolution; ψ: strength of stabilizing selection; θ: optimal phenotype;

S: strength of between-lineage competition driving individual phenotypes away from clade-wise

average phenotype; σ0 : rate of phenotypic evolution at the root of the tree; r : parameter

controling the exponential rise or decay of the rate of phenotypic evolution with time (ACDC) or

with the number of lineages (DD).

matrices I and U by their homologs Valive, Ialive and Ualive, where the subscript specifies that the223

vector and matrices have 0 on lines and columns corresponding to lineages that are extinct in the224

given epoch. iv) Considering subclades in which trait evolution follows distinct modes or similar225

modes with distinct parameter values (as in Butler and King 2004) is also straightforward. One226

just needs to specify distinct parameters in a, A and Γ on the lines and columns corresponding to227
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lineages in the distinctive subclade. v) Multivariate trait evolution models, in which several228

distinct traits evolve in a correlated manner (Hansen et al. 2008; Bartoszek et al. 2012) are easily229

written in our framework, as shown with some examples in Appendix B.2. In multivariate models230

with lineages evolving independently from one another (e.g. multivariate combinations of BM,231

ACDC, DD and OU models), A and Γ are block diagonal matrices, with blocks of size the232

number of traits, each of them describing correlated multivariate evolution along a particular233

lineage. In this case, trait-trait correlations introduced through the A matrix correspond, as in234

Bartoszek et al. (2012), to the case when a given trait on a lineage is attracted to (or repulsed235

from) a linear combination of other traits in this lineage.236

By considering previous models under this light, it becomes very clear that the set of237

models that have been considered so far represents a very small fraction of all the models that238

could potentially be considered. In particular the A matrix, which dictates how the value of a239

given trait influences the evolution of other traits – either different traits in the same lineage, or240

the same trait in other lineages, or yet different traits in other lineages – has so far been very241

constrained. It has been considered to be zero (BM, ACDC, DD), diagonal (OU), block diagonal242

(multivariate), and only recently with non-zero off-diagonal values (PM). Relaxing these243

constraints means that a much broader array of models incorporating the effect of interspecific244

interactions on phenotypic evolution can be considered. In particular, lineages do not need to be245

interchangeable. Evolution in complex networks of interactions can be considered by designing a246

priori the A matrix according to the known network. The effect of clade-clade interactions can be247

modeled by filling the A matrix with non-zero entries A(k,l) with k and l corresponding to248

lineages from different clades. For example, under a scenario of two clades coevolving with no249

effect of within-clade interactions, this leads to a A matrix with two off-diagonal blocks.250

We can thus imagine a variety of coevolutionary scenarios, the only major constraint251

being that the effect of a trait value on the evolution of other traits is assumed to be linear252

(Equations (1) & (2)). Given a scenario, we can write the corresponding evolution of each trait253

on a given lineage on each epoch (Equation (2)), and deduce the collection of (ai), (Ai) and (Γi)254

defining the evolutionary process (Equation (1)). Below, we first show how to derive the255
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probabilistic distribution of traits at tip branches for any model that can be written under this256

framework before illustrating the approach with a particular model of clade-clade interaction.257

Distribution of tip trait values258

The distribution of traits is Gaussian259

Deriving the probabilistic distribution of traits at tip branches is key to our ability to fit260

phenotypic models to comparative data using maximum likelihood or Bayesian approaches. It261

also provides a very efficient way to simulate tip values for specific models, by drawing from the262

expected tip distribution.263

We show (Appendix A.1) that if X0 has a Gaussian distribution (including the particular264

case when X0 is constant) and Xt evolves according to our general framework, then Xt remains a265

Gaussian vector at each time t. The trait vector Xt, of size ntd, is thus uniquely defined by its266

expectation vector mt and covariance matrix Σt, and has the following density:267

∀x ∈ Rntd, f(x) =
1√

(2π)ntd det(Σt)
e−

1
2
tr(x−mt)Σ−1

t (x−mt)

In particular, the distribution of tip trait values at present time T is Gaussian with268

expectation vector mT and covariance matrix ΣT . We can compute mT and ΣT iteratively:269

starting with initial conditions m0 and Σ0 for Xτ0 = X0, we compute, until reaching the present:270

1. mτ−i+1
and Στ−i+1

at the end of each epoch i271

2. mτi+1
and Στi+1

at the branching time τi+1272

Evolution of the distribution on each epoch273

Knowing the expectation vector and covariance matrix (mτi ,Στi) at the beginning of epoch i, we274

show (Appendix A.2) that mτ−i+1
and Στ−i+1

at the end of epoch i are given by the following275
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analytical expressions:276

mτ−i+1
= e(τi−τi+1)Aimτi +

∫ τi+1

τi

e(s−τi+1)Aiai(s)ds (3a)

Στ−i+1
=
(
e(τi−τi+1)Ai

)
Στi

tr
(
e(τi−τi+1)Ai

)
+

∫ τi+1

τi

(
e(s−τi+1)AiΓi(s)

)
tr
(
e(s−τi+1)AiΓi(s)

)
ds (3b)

Alternatively, we can write the evolution of m and Σ on epoch i as a set of ordinary277

differential equations (ODE), and integrate these ODEs numerically, with initial conditions given278

by (mτi and Στi). Each component k (resp. (k, l)) of the expectation vector (resp. covariance279

matrix) evolves on epoch i according to (Appendix A.3) :280

d

dt
m

(k)
t = a

(k)
i (t)−

ntd∑
m=1

A
(k,m)
i m

(m)
t (4a)

d

dt
Σ

(k,l)
t = −

ntd∑
m=1

A
(k,m)
i Σ

(m,l)
t + A

(l,m)
i Σ

(m,k)
t − Γ

(l,m)
i (t)Γ

(k,m)
i (t) (4b)

Equations (3a, 3b) and the ODE system described by Equations (4a, 4b) are281

mathematically equivalent. The first formulation is more computationally efficient when the282

integrals can be simplified analytically. For example when A is symmetric Equations (3a, 3b) can283

be simplified (Appendix C.1) and computed very efficiently. The second one provides a more284

intuitive interpretation of the components that influence the evolution of trait distribution, and285

is easily implementable for any model.286

Evolution of the distribution at branching times287

Knowing the expectation vector and covariance matrix (mτ−i+1
,Στ−i+1

) at the end of epoch i, which288

precedes the branching of a given lineage j, we build mτi+1
and Στi+1

at the branching event, as289

illustrated in Figure 2.290

Recall that in the case of evolution within a single clade, Xτi+1
is obtained by291

concatenating the d trait values of lineage j at time τ−i+1 at the end of Xτ−i+1
. The d new292

components in Xτi+1
are thus the exact copies of the trait values of lineage j, and have the same293

expectation and covariance matrix. Hence, the expectation vector mτi+1
is simply obtained by294
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concatenating mτ−i+1
with the d components of mτ−i+1

corresponding to lineage j. The covariance295

matrix Στi+1
is obtained as follows: the covariance matrix corresponding to the previously296

existing lineages is unchanged, given by Στ−i+1
; to this main block, we add below (and to the297

right) a copy of the d lines (respectively the d columns) corresponding to the covariances between298

the d traits in lineage j and all the other traits; finally, we fill the last missing block in the299

bottom right corner of Στi+1
with the block corresponding to the covariance matrix among the d300

traits in lineage j (i.e. the d× d diagonal block of Στ−i+1
starting from line (j − 1)d+ 1).301

In the case of evolution in multiple clades, mτi+1
and Στi+1

are constructed following a302

similar procedure, by augmenting mτ−i+1
and Στ−i+1

with copies of blocks corresponding to lineage303

j, inserted at the appropriate location. We illustrate this update step in Figure 2.304

Figure 2: Toy example illustrating how to build the expectation vector and covariance matrix

at branching times when there is one (top row) or two (bottom row) clades. Lineage j branches at

time τi+1 (middle). The vectormτi+1
and matrix Στi+1

(on the right) are constructed by augmenting

mτ−i+1
and Στ−i+1

(on the left) with copies of blocks corresponding to lineage j (materialized by colors

and numbers).
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Tip trait distribution for particular models305

Applying this general iterative procedure along a phylogenetic tree provides closed analytic tip306

distribution formulae for a wide variety of models. In Appendix B, we re-derive known tip307

distributions for models without lineage-lineage interaction, thus providing a unified review of308

mathematical results associated to these models. Tip distributions for classical univariate models309

(BM, ACDC, DD, OU) on ultrametric and non-ultrametric trees are summarized in Table S1.310

We confirm, as has been shown before (Uyeda et al. 2015), that the OU and AC models have311

identical tip distributions on ultrametric trees. We also re-derive results that can be found in312

Bartoszek et al. (2012) providing tip distributions for multivariate models.313

Analytical formulae of tip distributions for models with lineage-lineage interactions have314

not yet been proposed. Drury et al. (2016) developed the inference tools that allow fitting the315

PM model, using the ODE system given in Equations (4a, 4b) (thereafter referred to as ‘ode’316

method). Here, we develop the inference tools based on analytical reduction of Equations (3a,317

3b), (thereafter referred to as ‘analytical’ method, see Appendix C.2), and compare the318

efficiencies of the two methods. Specifically, we simulated 10 pure-birth Yule trees with a319

per-lineage speciation rate of 1 per time unit, conditioned to having a given number of tips at320

present, using the ‘phytools’ R package (Revell 2012). We then computed the tip distribution321

corresponding to the PM model with parameters fixed at (m0, v0, θ, ψ, S, σ) = (0, 0, 1, 0.1, 1, 2)322

using both the analytical and the ode methods. The new analytical method is much more323

efficient than the previous ode method (Fig. 3). While we were previously limited to fitting the324

PM model to trees of less than 150 tips due to memory issues, the analytical methods allows325

fitting trees with up to 600 tips on a desktop computer.326

Drury et al. (2016) also proposed an extension of the PM model accounting for the327

biogeographic history of lineages. In the case when each lineage is present in at most one328

location, the ‘analytical’ method can be extended, providing fast likelihood computation (see329

Appendix C.3). When there are lineages occurring in more than one location at the same time,330

we need to resolve numerically the ODE system in order to compute the likelihood of tip traits.331

While this is more time-consuming than finding a good ‘analytical’ reduction, the new332
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Figure 3: Time needed to compute the distribution of tip data following the PM model with

parameters (m0, v0, θ, ψ, S, σ) = (0, 0, 1, 0.1, 1, 2). Trees are simulated under a pure-birth model

conditioned on having a given number of leaves. Red curve : ‘analytical’ implementation; black

curve: ‘ode’ implementation. Dashed yellow (resp. green) curve represent the slope of time increase

as a power 4 (resp. 3) of the number of leaves.

implementation is more efficient than the one we previously proposed (Drury et al. 2016).333

Modeling trait evolution on coevolving clades334

We illustrate how our framework can be used to study trait coevolution in scenarios of335

clade-clade interactions. We consider a simple model with two interacting clades (numbered 1336

and 2), in which a given trait in clade 1 coevolves with another given trait in clade 2. Following337

the approach introduced above, we define Xt the vector of trait values containing first the trait338

values for clade 1, and then the trait values for clade 2, and we write a stochastic differential339
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Figure 4: Hypothetical clade-clade coevolutionary scenario. Vertical dashed lines delimitate the

successive epochs. The vector Xt contains the trait values on the third (last) epoch, P3 is the

matrix of network interactions, and a3, A3 and Γ3 together define trait evolution according to the

clade-clade matching model defined in Equations (5) and (6).

equation specifying how trait value evolves along a single lineage k. In the spirit of the340

phenotype matching model, we propose here a formulation in which the trait of lineage k is341

attracted to (or repelled from, depending on the sign of S) the average trait value of the lineages342

it interacts with, plus (or minus) a shift:343

dX
(k)
t = S

(
δkd1 + (1− δk)d2 +

1

nk

n∑
l=1

pk,lX
(l)
t −X

(k)
t

)
dt+ σdW

(k)
t (5)

where S represents the attracting or repelling strength of species interactions on trait evolution,344

d1 (resp. d2) represents the shift for lineages from clade 1 (resp. clade 2), σ is the drift345

parameter, δk equals one if lineage k belongs to clade 1 and zero if it belongs to clade 2, pk,l346

equals one if lineages k and l interact and zero otherwise, nk =
∑

l pk,l is the number of lineages347

interacting with lineage k, and n is the total number of lineages.348

When S is positive, the trait value of lineage k is attracted to an optimal trait value given349

by the average trait value of the interacting species (plus a shift d1 or d2). An example of such a350

scenario of clade-clade matching mutualism is the coevolution between the length of floral tubes351
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and the length of butterfly proboscis in a plant-pollinator mutualistic network (illustrated in Fig.352

4). In this example, we assume that the optimal length of a butterfly proboscis is the average353

length of the plant floral tubes it pollinates plus a shift d2, while the optimal length of a plant354

floral tube is the average proboscis length of its butterfly pollinators plus a shift d1. With355

d1 + d2 = 0, both traits can reach their optimal state, leading to a stable situation with butterfly356

proboscis a bit longer (if d1 > 0) or shorter (if d1 < 0) than plant floral tubes. With d1 + d2 6= 0,357

traits cannot reach their optimal state, resulting in a runaway process where both traits tend to358

evolve toward an ever-moving optimum. For example, with positive d1 and d2, the butterflies359

proboscis tends to get longer to better access the nectar, while the floral tube also tends to get360

longer to force the butterfly’s body to touch the stamen. The parameters S and σ control361

respectively the strength of the interaction effect and the rate of stochastic phenotypic change.362

The bigger S, the closer the traits will track the optimum; the bigger σ, the bigger the363

fluctuations around this optimum.364

When S is negative, the traits are repelled from the average trait value of the interacting365

species (plus a shift d1 or d2). This may capture natural situations of clade-clade competition366

driving trait displacement. Finally, some antagonistic interactions between traits could require to367

introduce two parameters S1 > 0 and S2 < 0 to capture match-vs-escape scenarios. For example,368

parasites might tend to develop cues matching those of their hosts while hosts develop cues to369

escape their parasites in a co-evolutionary arms race.370

From Equation (5) we deduce the corresponding a, A and Γ on each epoch:

a = S(∆d1 + (V −∆)d2)

Ak,l = S(1k=l −
pk,l
nk

) (6)

Γ = σI

where ∆ is the vector of elements δk (see Fig. 4 for an illustration). Matrix A is in general not371

symmetric anymore, as all species k do not have the same number nk of species that they372

interact with.373

As shown by Equation (6), entirely defining a model of clade-clade coevolution requires374

introducing a constant network of interaction on each epoch (the P matrix with elements pk,l).375
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We can potentially re-define epochs to account for events of change in the interaction network in376

addition to speciation and extinction events, thus allowing interaction networks to evolve along377

branches. In practice, we typically (at best) have access to the current interaction network (Fig.378

4), but not the ancestral networks. A solution to this would consist in treating the ancestral P379

matrices as parameters of the model, and searching the ancestral network(s) that maximize the380

fit to the data. Another approach would consist in reconstructing ancestral networks according381

to rules regarding the inheritance of interactions at speciation times. Developing these382

approaches is outside the scope of the current study, but we have shown how to compute tip trait383

distributions once they are developed.384

We illustrate the computation of tip trait distributions for a model in which the ancestral385

networks are known: a generalist model where all species from clade 1 interact with all species386

from clade 2. We consider a ‘Generalist Matching Mutualism’ model of trait evolution (thereafter387

referred to as GMM, and illustrated in Fig. 5a), which is captured by Equation (5) with S388

positive and pk,l = 1 for any two lineages k and l from different clades and pk,l = 0 for any two389

lineages k and l from the same clade. Given that the model fits within our framework, we know390

that the trait distribution at the tips is Gaussian, and we can compute the expectation vector391

and covariance matrix corresponding to the model using Equations (3a, 3b), which we can reduce392

for this specific model in order to speed up the computation (Appendix C.4).393

The tip distribution is relatively fast to compute (e.g. in the order of 0.8 seconds with two394

100-tip trees on a desktop computer), such that fitting the model by maximum likelihood or in a395

Bayesian framework should not be problematic for trees with a few hundred tips. However, we do396

not aim here to carry an in-depth study of this particular model, nor to fit it to empirical data.397

Rather, we use our ability to rapidly compute tip trait distribution to get a first glimpse of the398

model behaviour under distinct sets of parameter values.399

In Figure 5 (c,d,e,f), we plotted the distribution of the average X̄1 of trait values in clade400

1 and the average X̄2 of trait values in clade 2 for traits evolving under the GMM model with401

four parameter sets chosen to lead to four distinct qualitative behaviours. From Equation (5), we402

can easily show that under GMM X̄1 + X̄2 is a drifted Brownian motion with drift term403
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S(d1 + d2) and X̄1 − X̄2 is an OU process with optimum (d1 − d2)/2 and selection strength S.404

The shift parameters d1 and d2 thus directly determine the position of the optimum of the405

distribution. When d1 = −d2, the more likely values for the two average traits X̄1 and X̄2 are406

such that X̄1 = X̄2 + d1 (see Fig. 5c). In contrast, when d1 6= d2, the two communities have407

optimal trait values that are non-compatible, and the traits will tend to increase (resp.408

descrease) if d1 + d2 > 0 (resp. d1 + d2 < 0) (see Fig. 5d). The position of the peak in the tip409

distribution will thus depend also on the depth of the root and on the value of the parameter S.410

Moreover, the parameter S plays an important role in the hump thickness: the bigger S, the411

more constrained X̄1 − X̄2 around (d1 − d2)/2 (see Fig. 5f). The parameter σ also plays a role in412

the thickness of the hump, but in the orthogonal direction : increasing σ flattens the distribution413

by allowing different X̄1 and X̄2 values while retaining the constraint on X̄1 − X̄2 (see Fig. 5e).414

Figure 5: Trait evolution under the Generalist Matching Mutualism (GMM) model a) an illus-

trative generalist network of interactions between two clades. Vertical dashed lines delimitate the

successive epochs. b) One realisation of trait evolution through time on the two phylogenies, with

(m0, v0) = (0, 0) and (S, d1, d2, σ) = (1,−1, 1, 1), simulated using the Euler-Maruyama scheme (see

Appendix D.1). cdef) Expected tip distribution for the average trait value in each clade, with

parameter values (S, d1, d2, σ) = c) (2,−1, 1, 1), d) (2, 0, 2, 1). e) (2,−1, 1, 1.5), f) (0.2,−1, 1, 1).
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Implementation415

Our framework is implemented in the R package ‘RPANDA’ (Morlon et al. 2015), including416

functions: 1) to compute tip distributions, 2) to simulate trait evolutionary trajectories using the417

Euler-Maruyama scheme (see Appendix D.1) and tip data by drawing from the expected tip418

distribution, and 3) to infer model parameters by maximum likelihood. In the most general419

user-defined use of our framework, the input is one or several phylogenetic tree(s) and the420

collection of (ai, Ai,Γi) matrices on each epoch that define a specific model. In this case, the tip421

distribution is computed using the most general ‘ode’ method that solves numerically the ODEs.422

In addition, we implemented all models mentioned in Table 1 as well as GMM with the fastest423

described algorithm to compute their tip distribution. In Appendix E, we provide a tutorial424

explaining the structure of our code and illustrating how to use it.425

Discussion426

We developed a modeling framework for traits coevolving in coevolving lineages and clades. We427

showed that under a wide variety of models where the evolution of a given trait on a given428

lineage is linearly related to its own value and the value of other traits on the same lineage, of429

the same trait on other lineages, and/or of other traits on other lineages, the expected tip trait430

distribution is Gaussian. We showed how to compute this tip distribution in general, as well as431

for specific models, including classical models of phenotypic evolution and new models of432

clade-clade coevolution.433

All classical models of phenotypic evolution, such as univariate and multivariate BM, OU,434

ACDC and DD fit within our framework. They correspond to the situation where the evolution435

of traits on a given lineage is independent of trait values on other lineages. For these models, we436

already know that the tip trait distribution is Gaussian. However, finding the relevant437

computation of the expectation vectors and covariance matrices associated with each model in438

the dense literature of comparative phylogenetics can be overwhelming for neophytes. Our439

Appendix B unifies these computations under a common formalism, providing both the440
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expressions for the various existing models and their mathematical underpinning. This is done in441

the context of trees that are not necessarily ultrametric, meaning that all models can be applied442

to phylogenies including fossils. We hope that this Appendix can serve as a useful review for443

navigating phylogenetic approaches for understanding trait evolution.444

The fact that the distribution of traits remains Gaussian when traits from different445

lineages coevolve is a new result. It is also a convenient result, because it means that computing446

the tip distribution only requires computing the expectation vector and covariance matrix447

associated with the different models. For example, we used this result in Drury et al. (2016) to448

compute tip trait distributions for the phenotype matching model (Nuismer and Harmon 2014)449

and fit it to comparative data by maximum likelihood. Here we vastly extend the set of potential450

coevolutionary models for which tip trait distributions can be computed and provide two general451

approaches for computing the expectation vector and covariance matrix. One of these two452

approaches (the ‘ode’ approach) consists in numerically integrating a set of ODEs. This is the453

approach that was used in Drury et al. (2016). The other approach (the ‘analytical’ approach)454

involves computing integrals and is more efficient when these integrals can be analytically455

reduced, which depends on the form of the model. Applying the ‘analytical’ approach to the PM456

model, we greatly improved its computational efficiency.457

We provide a framework for computing tip trait distributions for a wide class of models458

accounting for within-clade and clade-clade interactions. We hope that this flexibility will foster459

the development and study of various models adapted to the specificities of particular scientific460

questions and biological systems. We did not study at length a particular coevolutionary model461

in this paper, but the PM model was thoroughly studied elsewhere (Drury et al. 2016). The462

Generalist Matching Mutualism model that we introduce here can be seen as a clade-clade463

analogue to the PM model. Both models are ‘generalist’ in the sense that all lineages are464

assumed to interact (within-clade in the case of PM and between clades in the case of GMM).465

This assumption can be relaxed by incorporating additional information. In our biogeographic466

models for example, lineages can only interact if they are sympatric (Drury et al. 2016). More467

generally, any information or hypothesis concerning the network of interactions between lineages468
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can be accounted for into the A matrices.469

There are two main limitations to the modeling framework presented here. The first one is470

that trait evolution is always assumed to respond linearly to trait values in other lineages. Thus,471

non-linear effects such as a stronger selection for divergence when phenotypes are similar cannot472

be accounted for. The second one is the issue of model and parameter identifiability, in particular473

in the absence of fossils. A Gaussian distribution in Rnd can potentially allow identifying several474

models and parameters, but there are distinct combinations for which a similar (or even475

identical) distribution is expected. For example, we already know that parameters of the OU476

model are non identifiable on phylogenies with only extant species (Ho and Ané 2014) and that477

OU and AC have identical tip distributions on ultrametric trees (Uyeda et al. 2015). Thus, while478

we wrote our framework in all generality, with a, A and Γ encompassing as many parameters as479

desired, and parameters that potentially vary between epochs, it is clear that simplifying480

assumptions need to be made in order to reduce this parameter space. Identifiability cannot481

always be checked analytically, as in the case of the OU and AC models. In addition, there can482

be differences between theoretical and de facto identifiability, with models that are identifiable in483

theory but are difficult to identify in practice. For example, we can show analytically that ψ and484

S from the PM model are theoretically identifiable, but in practice in most cases only ψ + S can485

be estimated with precision. Also, de facto identifiability depends on the data available, such as486

the size and shape of a particular phylogeny, and whether it includes fossils or not (Slater et al.487

2012). Furthermore, models taking into account interactions among lineages will have to assess488

the influence of extinct lineages in the past. This has been studied in Drury et al. (2016) for the489

PM model, by simulating trait evolution on trees including dead branches, before fitting the490

model on the reconstructed tree only. Our recommendation is to check identifiability on a491

case-by-case basis, by fitting the set of models under consideration to trait datasets simulated492

directly on the specific empirical phylogenies in hands. We provide the tools for rapidly493

simulating tip values under various models by sampling expected distributions.494

One of the most challenging and exciting developments that we see ahead is to move from495

generalist models to models that account for specific interaction networks. We show in this paper496
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how to compute tip trait distributions for such models, assuming that the ancestral networks are497

known. While some fossil species interaction networks have been compiled (Dunne et al. 2008),498

such data is typically not available. Thus, if we are to really understand if and how species499

interactions affected long-term phenotypic evolution, we need to start developing models for500

reconstructing ancestral networks, analogous to the use of ancestral biogeographic models (see501

Ronquist and Sanmartín 2011 for a review) to incorporate biogeography into models of502

phenotypic evolution (see e.g. DD+GEO or MC+GEO, in Drury et al. 2016). Interestingly, our503

modeling framework could provide an approach to do so, informed by species phylogenies, the504

interaction network of present day species, and current species phenotypes. Indeed, rather than505

assuming that the ancestral networks are known, we could treat them as additional parameters506

to optimize upon, and find the ancestral networks that maximize the likelihood of the current507

data. Whether there will be enough information in the data to distinguish the probability of508

alternative ancestral networks remains to be tested, but the observed phylogenetic signal in509

empirical networks of interactions is encouraging (Ives and Godfray 2006; Rafferty and Ives 2013;510

Hadfield et al. 2014; Hayward and Horton 2014; Martín González et al. 2015). Our ability to511

distinguish the probability of alternative ancestral networks will be increased by proposing512

various scenarios regarding the inheritance of interactions at speciation times, such as scenarios513

in which daughter species interact with many or few of the species that interacted with their514

mother lineage. These upcoming developments can draw upon the existing literature on the515

cophylogeny problem (Conow et al. 2010), and will certainly have an important role to play in516

the on-going effort of understanding the evolution of species interaction networks (Loeuille and517

Loreau 2005; Martinez 2006; Nuismer et al. 2013).518

Our framework for modeling trait evolution on phylogenetic trees includes most previously519

proposed models and can be used to develop a series of new models of within-clade and520

clade-clade coevolution. We hope that this will motivate new theoretical and empirical521

applications aimed at unravelling how species interactions evolve and influence phenotypic522

evolution over macro-evolutionary time-scales.523
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A Derivation of the distribution in a general setting30

A.1 The distribution of trait values is Gaussian31

Recall that a vector is Gaussian if all linear combination of its components follows a normal32

distribution. We will thus show by induction that all linear combinations of the traits follow a33

normal distribution.34

The process of trait evolution starts either at the stem root with a vector of size d defined35

by the initial conditions Xτ0 = tr(X1
0 , ...X

d
0 ), or at the crown root with a vector of size 2d defined36

by the initial conditions : Xτ0 = tr(X1
0 , ...X

d
0 , X

1
0 ..., X

d
0 ), or at any other step, provided the initial37

conditions are Gaussian by assumption.38

Now, assume that Xτi is a Gaussian vector.39

Then, ∀t ∈ (τi, τi+1), after integration we have the following closed expression for the value40

of the process Xt.41

Xt = e−tAi
(
eτiAiXτi +

∫ t

τi

esAiai(s)ds+

∫ t

τi

esAiΓi(s)dWs

)
(S1)

Moreover, we have, for any deterministic function Φ (Gardiner et al. 1985),42

∫ t

tn

ΦsdWs ∼ N
(

0,

∫ t

tn

Φs
trΦsds

)
Hence, Xt is a linear combination of Gaussian vectors, which makes it a Gaussian vector.43

Last, suppose that at time τi+1, the jth branch splits, in which case the vector grows. All44

linear combinations of the components of Xt at time τ−i+1 have a normal distribution. And the d45

additional components added at time τi+1 belong to the components at time τ−i+1. It follows that46

all linear combinations of the new vector still have a normal distribution.47

A.2 Integrating the evolution of the distribution on each epoch48

Still assuming that we know the (Gaussian) distribution of Xτi at the beginning of an epoch49

(τi, τi+1), a few more lines allow us to provide a closed formula for the distribution of Xt at all50
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time t ∈ (τi, τi+1). Indeed, using Equation (S1), and the fact that, if X and Y are two51

independent Gaussian vectors with expectation vectors respectively mX and mY and covariance52

matrices respectively ΣX and ΣY , then :53

DX + d ∼ N
(
DmX + d , DΣX

trD
)

X + Y ∼ N (mX +mY , ΣX + ΣY )

It thus follows that, ∀t ∈ [τi, τi+1],54

mt = e(τi−t)Aimτi +

∫ t

τi

e(s−t)Aiai(s)ds (3a)

Σt =
(
e(τi−t)Ai

)
Στi

tr
(
e(τi−t)Ai

)
+

∫ t

τi

(
e(s−t)AiΓi(s)

)
tr
(
e(s−t)AiΓi(s)

)
ds (3b)

Applying these equations for t = τi+1 thus gives the distribution of the trait vector at time55

τi+1 , which is the result stated in Equations (3a, 3b) in the main text.56

Remark that, unless one of the very first branches immediately dies at the beginning of57

the process at a fixed initial condition, the density of the tip distribution has support in Rnd.58

One can check that Σt stays positive definite (implying that det Σt 6= 0), even when some Γi are59

not positive definite (except the first one).60

A.3 Evolution of the distribution through ODE resolution61

The expectation and covariance formulae provided in Equations (3a, 3b) require to deal with an62

integral which is not always straightforward to compute. Alternatively, one can prefer to take the63

derivative of this expression, get a set of ODEs verified by the expectation and covariance64

elements through each epoch, and subsequently integrate the ODE system. We show now65

another way to derive this set of ODEs.66

First, we write the stochastic differential equation on any epoch (τi, τi+1) and for each67

trait k, which is given in the most general setting by :68
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dX
(k)
t =

(
a

(k)
i (t)−

ntd∑
m=1

A
(k,m)
i X

(m)
t

)
dt+

ntd∑
m=1

Γ
(k,m)
i (t)dW

(m)
t

Itô’s formula (Gardiner et al. 1985) then gives us :69

d
(
X

(k)
t X

(l)
t

)
= X

(k)
t dX

(l)
t +X

(l)
t dX

(k)
t + d < X

(k)
t , X

(l)
t >

=

(
a

(l)
i (t)X

(k)
t −

ntd∑
m=1

A
(l,m)
i X

(m)
t X

(k)
t

)
dt+

ntd∑
m=1

Γ
(l,m)
i (t)X

(k)
t dW

(m)
t

+

(
a

(k)
i (t)X

(l)
t −

ntd∑
m=1

A
(k,m)
i X

(m)
t X

(l)
t

)
dt+

ntd∑
m=1

Γ
(k,m)
i (t)X

(l)
t dW

(m)
t

+
ntd∑
m=1

Γ
(l,m)
i (t)Γ

(k,m)
i (t)dt

Taking the expectation, it follows that70

d

dt
E
(
X

(k)
t X

(l)
t

)
= a(l)(t)E

(
X

(k)
t

)
+ a

(k)
i (t)E

(
X

(l)
t

)
−

ntd∑
m=1

A
(l,m)
i E

(
X

(m)
t X

(k)
t

)
−

ntd∑
m=1

A
(k,m)
i E

(
X

(m)
t X

(l)
t

)
+

ntd∑
m=1

Γ
(l,m)
i (t)Γ

(k,m)
i (t)

In the same fashion, we get71

d

dt
E(X

(k)
t ) = a

(k)
i (t)−

ntd∑
m=1

A
(k,m)
i E

(
X

(m)
t

)
(4a)

This leads to72

d

dt

(
E(X

(k)
t )E(X

(l)
t )
)

= E(X
(l)
t )

d

dt
E(X

(k)
t ) + E(X

(k)
t )

d

dt
E(X

(l)
t )

= a
(k)
i (t)E

(
X

(l)
t

)
−

ntd∑
m=1

A
(k,m)
i E

(
X

(m)
t

)
E
(
X

(l)
t

)
+ a

(l)
i (t)E

(
X

(k)
t

)
−

ntd∑
m=1

A
(l,m)
i E

(
X

(m)
t

)
E
(
X

(k)
t

)
Putting together these different parts gives us the ODE satisfied by all covariances :73
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d

dt
Cov

(
X

(k)
t , X

(l)
t

)
=

d

dt

(
E
(
X

(k)
t X

(l)
t

)
− E(X

(k)
t )E(X

(l)
t )
)

= −
ntd∑
m=1

[
A

(k,m)
i Cov

(
X

(m)
t , X

(l)
t

)
+ A

(l,m)
i Cov

(
X

(m)
t , X

(k)
t

)
− Γ

(l,m)
i (t)Γ

(k,m)
i (t)

]
(4b)

Note that in a vectorial formalism with the expectation vector m and covariance matrix74

Σ, these sets of ODEs can be written equivalently as follows75

dmt

dt
= ai(t)− Aimt (S2)

dΣt

dt
= −AiΣt − trΣt

trAi + Γi
trΓi (S3)
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B Distribution for some models without interactions76

between lineages77

B.1 Distribution of classic univariate models78

We present in this section how previously known results of analytic tip distribution of univariate79

models fit in, and can be rediscovered with, our framework. Results are summarized in Table S1.80

The scheme is identical for each model :81

1. Reduce Equations (3a, 3b) or (4a, 4b) according to the model.82

2. Look for an analytical solution at any time τi, by calculating manually the expectations83

and covariances at τ1, τ2, τ3, ....84

3. Prove by induction that the analytical solution holds at any time τi.85

We call tk,l the time of the most recent common ancestor to lineages k and l, and tk,k the86

death time of lineage k, equal to T if it survives until present (see Fig. S1). We further note87

1k alive(t) the quantity that equals one if lineage k is alive at time t and zero otherwise, and 1k=l88

that equals one if k = l and zero otherwise. Last, t1 ∧ t2 stands for the minimum of the two89

values t1 and t2.90

The unity vector (vector full of 1) is denoted by V , I refers to the identity matrix91

(diagonal matrix with diagonal values equal to 1), and U refers to the unity matrix (matrix full92

of 1). Their size is the same as the size of the vector of traits Xt considered. Considering93

non-ultrametric trees including fossils amounts to replacing vector V and matrices I and U by94

their homologs Valive, Ialive and Ualive, where the subscript specifies that the vector and matrices95

have 0 on lines and columns corresponding to lineages that are extinct in the given epoch.96

Brownian Motion (BM).—97

We show how to get the well-known expression of the distribution of a trait evolving98

under BM, on non-necessarily ultrametric trees. We take a = bValive, A = 0 and Γ = σIalive, i.e.99

the process follows the equation :100
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Code m0 Σ0 (mT )(k) (ΣT )(k,l)

BM m0 v0 m0 + btk,k v0 + σ2tk,l

OU θ 0 θ σ2

2ψ
e−ψ(tk,k+tl,l−2tk,l)

(
1− e−2ψtk,l

)
OU θ σ2

2ψ
θ σ2

2ψ
e−ψ(tk,k+tl,l−2tk,l)

ACDC m0 v0 m0 v0 +
σ2
0

2r
(e2rtk,l − 1)

DD m0 v0 m0 v0 + σ2
0

∑N−1
j=0 e2rnτj (τj+1 − τj)1tk,l>τj

Table S1: Analytic tip distribution for models without interactions between traits or lineages.

We recall that tk,l is the absolute time of the most recent common ancestor to lineages k and l,

and tk,k is the death time of lineage k, equal to T if it survives until present.

Figure S1: Formalism used in analytic formulae presented in Table S1.

dXt = bValivedt+ σIalivedWt

Equations (3a) and (3b) lead to the following recurrence formulae driving the law of Xt on101

each epoch [τi, τi+1):102

E(Xt) = E(Xτi) + b(t− τi)Valive

Var(Xt) = Var(Xτi) + σ2(t− τi)Ialive

Alternatively, Equations (4a) and (4b) lead to the following recurrence formulae driving103

the law of Xt on each epoch [τi, τi+1):104
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d

dt
E(X

(k)
t ) = b1k alive(t)

d

dt
Cov(X

(k)
t , X

(l)
t ) = σ21k=l1k alive(t)

We can show by induction on i that for any i the expectation and covariance matrix at105

time τi are such that, for any (k, l) :106

E(X(k)
τi

) = E(X0) + b(tk,k ∧ τi) (S4)

Cov(X(k)
τi
, X(l)

τi
) = Var(X0) + σ2(tk,l ∧ τi) (S5)

Indeed, we verify Equations (S4, S5) at step i = 1.107

Now, suppose Equations (S4, S5) hold at step n. Using either Equations (3a, 3b) or (4a,108

4b), we get :109

E(X
(k)

τ−n+1

) = E(X0) + b(tk,k ∧ τn+1)

Cov(X
(k)

τ−n+1

, X
(l)

τ−n+1

) = Var(X0) + σ2(tk,l ∧ τn+1)

If τn+1 is a death time of a lineage, Equations (S4, S5) are verified at step n+ 1.110

If τn+1 is a branching time, we verify that the new lineage inherits the expectation and111

covariances of its mother, as well as the same coalescence times with other lineages. It also112

follows that Equations (S4, S5) are verified at step n+ 1.113

Finally, by induction, we get the tip distribution :114

E(X
(k)
T ) = E(X0) + btk,k

Cov(X
(k)
T , X

(l)
T ) = Var(X0) + σ2tk,l

Ornstein-Uhlenbeck (OU).—115

We can get another well-known distribution for a trait evolving under an116

Ornstein-Uhlenbeck process on a tree. We take a = ψθValive, A = ψIalive and Γ = σIalive, i.e. the117

process follows the equation :118
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dXt = (ψθValive − ψIaliveXt)dt+ σIalivedWt

Expressions (3a) and (3b) simplify into the following recurrence formulae :119

E(Xt) = e−ψ(t−τi)Ialive (E(Xτi)− θValive) + θValive

Var(Xt) = e−2ψ(t−τi)Ialive
(
Var(Xτi)−

σ2

2ψ
Ialive

)
+
σ2

2ψ
Ialive

Alternatively, here again, one can prefer to apply Equations (4a) and (4b) :120

d

dt
E(X

(k)
t ) = ψ1kalive(t)

(
θ − E

(
X

(k)
t

))
d

dt
Cov

(
X

(k)
t , X

(l)
t

)
= −ψ(1k alive(t) + 1l alive(t))Cov

(
X

(k)
t , X

(l)
t

)
+ σ21k=l

We can show by induction that for any epoch i, the expectation and covariance matrix at121

time τi are such that, for all (k, l) :122

E(X(k)
τi

) = θ + e−ψ(tk,k∧τi) (E(X0)− θ) (S6)

Cov(X(k)
τi
, X(l)

τi
) = e−ψ(tk,k∧τi+tl,l∧τi−2(tk,l∧τi))

[
σ2

2ψ
+ e−2ψ(tk,l∧τi)

(
Var(X0)− σ2

2ψ

)]
(S7)

Indeed, we verify Equations (S6, S7) at step i = 0.123

Now, suppose Equations (S6, S7) hold at step n. Using either Equations (3a, 3b) or (4a,124

4b), we get :125

E(X
(k)

τ−n+1

) = θ + e−ψ(tk,k∧τn+1) (E(X0)− θ)

Cov(X
(k)

τ−n+1

, X
(l)

τ−n+1

) = e−ψ(tk,k∧τn+1+tl,l∧τn+1−2(tk,l∧τn+1))

[
σ2

2ψ
+ e−2ψ(tk,l∧τn+1)

(
Var(X0)− σ2

2ψ

)]
If τn+1 is a death time of a lineage, Equations (S6, S7) are verified at step n+ 1.126

If τn+1 is a branching time, we verify that the new lineage inherits the expectation and127

covariances of its mother, as well as the same coalescence times with other lineages. It also128

follows that Equations (S6, S7) are verified at step n+ 1.129

Finally, by induction, we get the tip distribution :130
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E(X
(k)
T ) = θ + e−ψtk,k (E(X0)− θ)

Cov(X
(k)
T , X

(l)
T ) = e−ψ(tk,k+tl,l−2tk,l)

[
σ2

2ψ
+ e−2ψtk,l

(
Var(X0)− σ2

2ψ

)]
Two classes of initial distributions are typically considered in the literature :131

1. If we consider a process starting at X0 = θ (i.e. with E(X0) = θ and Var(X0) = 0), we get132

the following expectation vector mT and covariance matrix ΣT at the tips :133

mT = tr(θ, θ, ..., θ) and ΣT =
σ2

2ψ
Υ1

where Υ1 =
[
e−ψ(tk,k+tl,l−2tk,l)

(
1− e−2ψtk,l

)]
1≤k,l≤K

2. When ψ > 0, if we consider a process starting under its stationary distribution (i.e.134

E(X0) = θ and Var(X0) = σ2

2ψ
), it simplifies into the following expectation vector and135

covariance matrix :136

mT = tr(θ, θ, ..., θ) and ΣT =
σ2

2ψ
Υ2

where Υ2 =
[
e−ψ(tk,k+tl,l−2tk,l)

]
1≤k,l≤K

ACDC (accelerating or decelerating rate).—137

In the ACDC process, the rate of phenotypic evolution varies exponentially through time,138

with a = 0, A = 0 and Γ = σ0e
rtIalive (here, r > 0). The process follows the equation :139

dXt = σ0e
rtIalivedWt

Here again, we can simplify Equations (3a, 3b) or (4a, 4b). With Equations (3a, 3b), we140

get the following recurrence formulae driving the law of Xt on each epoch (τi, τi+1):141

E(Xt) = E(Xτi)

Var(Xt) = Var(Xτi) +
σ2

0

2r

(
e2rt − e2rτi

)
Ialivedt
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We can show by induction that for any i, the expectation and covariance matrix at time τi142

are such that, for any (k, l) :143

E(X(k)
τi

) = E(X0) (S8)

Cov(X(k)
τi
, X(l)

τi
) = Var(X0) +

σ2
0

2r

(
e2r(tk,l∧τi) − 1

)
(S9)

Indeed, we verify Equations (S8, S9) at step i = 0.144

Now, suppose Equations (S8, S9) hold at step n. Using either Equations (3a, 3b) or (4a,145

4b), we get :146

E(X
(k)

τ−n+1

) = E(X0)

Cov(X
(k)

τ−n+1

, X
(l)

τ−n+1

) = Var(X0) +
σ2

0

2r

(
e2r(tk,l∧τn+1) − 1

)
If τn+1 is a death time of a lineage, Equations (S8, S9) are verified at step n+ 1.147

If τn+1 is a branching time, we verify that the new lineage inherits the expectation and148

covariances of its mother, as well as the same coalescence times with other lineages. It also149

follows that Equations (S8, S9) are verified at step n+ 1.150

Finally, by induction, we get the tip distribution :151

E(X
(k)
T ) = E(X0)

Cov(X
(k)
T , X

(l)
T ) = Var(X0) +

σ2
0

2r

(
e2rtk,k − 1

)

ACDC and OU processes lead to the same present-time distributions on ultrametric trees.—152

This has been shown previously in Uyeda et al. 2015. More precisely, OU is equivalent to153

a model with accelerating rates at present, and only on ultrametric phylogenies.154

Looking at expressions of expectations and covariance matrices under ACDC and OU155

with initial conditions X0 = θ, we see that we can choose parameters such that we get the exact156

same distribution. First take E(X0) = θ : the two expectation vectors are identical. Moreover,157

we can choose parameters such that the covariance matrices are equal :158
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σ2

2ψ
e−2ψ(T−tk,l)

(
1− e−2ψtk,l

)
=

σ2
0

2r

(
e2rtk,l − 1

)
⇐⇒ σ2

2ψ
e−2ψT

(
e2ψtk,l − 1

)
=

σ2
0

2r

(
e2rtk,l − 1

)
⇐⇒ r = ψ and σ2

0 = σ2e−2ψT

Note that this no longer holds on non-ultrametric trees, neither with different initial159

conditions on the OU.160

Diversity-Dependent (DD).—161

In the DD process, the rate of phenotypic evolution is fixed at the base of the tree and162

varies exponentially with the number of lineages in the reconstructed phylogeny, with a = 0,163

A = 0 and B(t) = σ0e
rntIalive. The process follows the equation :164

dXt = σ0e
rntIalivedWt

Equations (3a, 3b) lead to the following recurrence formulae driving the law of Xt on each165

epoch (τi, τi+1):166

E(Xt) = E(Xτi)

Var(Xt) = Var(Xτi) + σ2
0e

2rnτi (t− τi)Ialive

Note that, alternatively, one can again prefer to apply Equations (4a, 4b). We can then167

show by induction that for any i, the expectation and covariance matrix at time τi are such that,168

for any (k, l) :169

E(X(k)
τi

) = E(X0) (S10)

Cov(X(k)
τi
, X(l)

τi
) = Var(X0) + σ2

0

i−1∑
j=0

e2rnτj (τj+1 − τj)1tk,l>τj (S11)

Indeed, we verify Equations (S10, S11) at step i = 0.170

Now, suppose Equations (S10, S11) hold at step n. Using either Equations (3a, 3b) or (4a,171

4b), we get :172

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2016. ; https://doi.org/10.1101/069518doi: bioRxiv preprint 

https://doi.org/10.1101/069518
http://creativecommons.org/licenses/by/4.0/


E(X
(k)

τ−n+1

) = E(X0)

Cov(X
(k)

τ−n+1

, X
(l)

τ−n+1

) = Var(X0) + σ2
0

n∑
j=0

e2rnτj (τj+1 − τj)1tk,l>τj

If τn+1 is a death time of a lineage, Equations (S10, S11) are verified at step n+ 1.173

If τn+1 is a branching time, we verify that the new lineage inherits the expectation and174

covariances of its mother, as well as the same coalescence times with other lineages. It also175

follows that Equations (S10, S11) are verified at step n+ 1.176

Finally, by induction, we get the tip distribution at present time τN = T :177

E(X
(k)
T ) = E(X0)

Cov(X
(k)
T , X

(l)
T ) = Var(X0) + σ2

0

N−1∑
j=0

e2rnτj (τj+1 − τj)1tk,l>τj

B.2 Distribution of classic multivariate models178

The same methodology applies to classic multivariate models that incorporate interactions179

between traits within lineages but not between lineages. In our formalism, for all i, Ai and Γi are180

block diagonal, with d× d blocks on the diagonal corresponding to the traits within each lineage.181

We call these blocks respectively A∗ and Γ∗. Moreover, the vector ai is the repetition of identical182

sequences a∗ of d elements.183

Writing the matrix products in Equations (3a, 3b) provides us with d× d blocks that184

behave identically on each epoch. Indeed, we can use :185

m∗(k)
τi

=



E(X
(k,1)
τi )

E(X
(k,2)
τi )

...

E(X
(k,d)
τi )


and Σ∗(k,l)τi

=



Cov(X
(k,1)
τi , X

(l,1)
τi ) Cov(X

(k,1)
τi , X

(l,2)
τi ) . . . Cov(X

(k,1)
τi , X

(l,d)
τi )

Cov(X
(k,2)
τi , X

(l,1)
τi ) Cov(X

(k,2)
τi , X

(l,2)
τi ) . . . Cov(X

(k,2)
τi , X

(l,d)
τi )

...
... . . . ...

Cov(X
(k,d)
τi , X

(l,1)
τi ) Cov(X

(k,d)
τi , X

(l,2)
τi ) . . . Cov(X

(k,d)
τi , X

(l,d)
τi )


In which case Equations (3a, 3b) lead to the recurrence formulae :186
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m∗(k)
τi+1

= e(τi−τi+1)1k alive(τi+1)A∗
m∗(k)
τi

+ 1k alive(τi+1)

∫ τi+1

τi

e(s−τi+1)A∗
a∗(s)ds

Σ∗(k,l)τi+1
= e(τi−τi+1)1k alive(τi+1)A∗

Σ∗(k,l)τi
tr
(
e(τi−τi+1)1l alive(τi+1)A∗)

+ 1k=l

∫ τi+1

τi

(
e(s−τi+1)A∗

Γ∗
)
tr
(
e(s−τi+1)A∗

Γ∗
)
ds

We can then prove by induction that for any epoch i and any pair of lineages (k, l)187

m∗(k)
τi

= e−τi∧tk,kA
∗
m∗0 +

∫ τi∧tk,k

0

e(s−τi∧tk,k)A∗
a∗(s)ds (S12)

Σ∗(k,l)τi
= e−τi∧tk,kA

∗
Σ∗0

tr
(
e−τi∧tl,lA

∗)
+

∫ tk,l∧τi

0

(
e−τi∧tk,kA

∗
Γ∗
)
tr
(
e−τi∧tl,lA

∗
Γ∗
)
ds (S13)

Indeed, we verify Equations (S12, S13) at step i = 0.188

Now, suppose Equations (S12, S13) hold at step i. Using Equations (3a, 3b), we get :189

m
∗(k)

τ−i+1

= e(τi−τi+1)1k alive(τi)A
∗
m∗(k)
τi

+ 1k alive(τi)

∫ τi+1

τi

e(s−τi+1)A∗
a∗(s)ds

= e(τi−τi+1)1k alive(τi)A
∗
e−τi∧tk,kA

∗
m∗0 +

∫ τi∧tk,k

0

e(τi−τi+1)1k alive(τi)A
∗
e(s−τi∧tk,k)A∗

a∗(s)ds

+ 1k alive(τi)

∫ τi+1

τi

e(s−τi+1)A∗
a∗(s)ds

= e−τi+1∧tk,kA∗
m∗0 +

∫ τi+1∧tk,k

0

e(s−τi+1∧tk,k)A∗
a∗(s)ds

as well as :190

Σ
∗(k,l)
τ−i+1

= e(τi−τi+1)1k alive(τi+1)A∗
Σ∗(k,l)τi

tr
(
e(τi−τi+1)1l alive(τi+1)A∗)

+ 1k=l

∫ τi+1

τi

(
e(s−τi+1)A∗

Γ∗
)
tr
(
e(s−τi+1)A∗

Γ∗
)
ds

= e(τi−τi+1)1k alive(τi+1)A∗
e−τi∧tk,kA

∗
Σ∗0

tr
(
e−τi∧tl,lA

∗) tr(e(τi−τi+1)1l alive(τi+1)A∗)
+

∫ tk,l∧τi

0

e(τi−τi+1)1k alive(τi+1)A∗ (
e−τi∧tk,kA

∗
Γ∗
)
tr
(
e−τi∧tl,lA

∗
Γ∗
)
tr
(
e(τi−τi+1)1l alive(τi+1)A∗)

ds

+ 1k=l

∫ τi+1

τi

(
e(s−τi+1)A∗

Γ∗
)
tr
(
e(s−τi+1)A∗

Γ∗
)
ds

= e−τi+1∧tk,kA∗
Σ∗0

tr
(
e−τi+1∧tl,lA∗)

+

∫ tk,l∧τi+1

0

(
e−τi+1∧tk,kA∗

Γ∗
)
tr
(
e−τi+1∧tl,lA∗

Γ∗
)
ds
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If τi+1 is a death time of a lineage, Equations (S12, S13) are verified at step i+ 1.191

If τi+1 is a branching time, we verify that the new lineage inherits the expectation and192

covariances of its mother, as well as the same coalescence times with other lineages. It also193

follows that Equations (S12, S13) are verified at step i+ 1.194

Finally, by induction, we get the tip distribution :195

m
∗(k)
T = e−tk,kA

∗
m∗0 +

∫ tk,k

0

e(s−tk,k)A∗
a∗(s)ds

Σ
∗(k,l)
T = e−tk,kA

∗
Σ∗0

tr
(
e−tl,lA

∗)
+

∫ tk,l

0

(
e−tk,kA

∗
Γ∗
)
tr
(
e−tl,lA

∗
Γ∗
)
ds

OU-BM model.—196

As a first illustration, consider a model with d = 3 traits with equation on each epoch and197

on each lineage k as follows :198

dX
(k,1)
t = ψ

(
b1 + b2X

(k,2)
t + b3X

(k,3)
t −X(k,1)

t

)
dt+ σ1dW

(k,1)
t

dX
(k,2)
t = σ2dW

(k,2)
t

dX
(k,3)
t = σ3dW

(k,3)
t

These equations describe the evolution of two independent traits evolving following a BM199

(traits 2 and 3), and one trait following an OU with optimal trait value given by a linear200

combination of traits 2 and 3. Its main interest is to infer the dependence of one trait to two201

other independent traits on a phylogeny. Knowing the distribution at the beginning of a given202

epoch, we use Equations (3a, 3b) to compute the distribution at the end of the epoch.203

A is block-diagonal with the following blocks A∗ :204

A∗ =


1 −b2 −b3

0 0 0

0 0 0


Writing ∆ = s− τi+1, it follows that e∆Ai is block diagonal with 3× 3 elements given by :205
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e∆A∗
=


e∆ −b2

(
e∆ − 1

)
−b3

(
e∆ − 1

)
0 1 0

0 0 1


Moreover, Γi is block-diagonal with diagonal blocks :206

Γ∗ =


σ1 0 0

0 σ2 0

0 0 σ3


The matrix product (e∆AiΓi)

tr(e∆AiΓi) is thus block-diagonal with 3× 3 blocks :207


(σ2

1 + b2
2σ

2
2 + b2

3σ
2
3)e2∆ − 2(b2

2σ
2
2 + b2

3σ
2
3)e∆ + (b2

2σ
2
2 + b2

3σ
2
3) −b2σ

2
2(e∆ − 1) −b3σ

2
3(e∆ − 1)

−b2σ
2
2(e∆ − 1) σ2

2 0

−b3σ
2
3(e∆ − 1) 0 σ2

3


These matrices can be used to compute m∗(k)

T and Σ
∗(k,l)
T , with the help of Equations (S12,208

S13).209

OU-OU model.—210

Consider now a model with d = 2 traits with equation on each epoch and on each lineage211

k given by :212

dX
(k,1)
t = ψ

(
b1 + b2X

(k,2)
t −X(k,1)

t

)
dt+ σ1dW

(k,1)
t

dX
(k,2)
t = ψ

(
b3 −X(k,2)

t

)
dt+ σ2dW

(k,2)
t

These equations describe the evolution of one trait evolving following an OU (trait 2), and213

one trait following an OU with optimal trait value given by an affine transformation of trait 2.214

Its main interest is to infer the dependence of one trait to another trait on a phylogeny. Knowing215

the distribution at the beginning of a given epoch, we use Equations (3a, 3b) to compute the216

distribution at the end of the epoch.217
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Ai is block diagonal, with the following 2× 2 blocks A∗ :218

A∗ =

1 −b2

0 1


Again, writing ∆ = s− τi+1, it follows that e∆Ai is block diagonal with 2× 2 elements219

given by :220

e∆A∗
=

e∆ −b2∆e∆

0 e∆


Moreover, Γi is diagonal with repeated values :221

Γ∗ =

σ1 0

0 σ2


The matrix product (e∆AiΓi)

tr(e∆AiΓi) is thus block-diagonal with 2*2 blocks :222

σ2
1e

2∆ + b2
2∆2σ2e2∆ −b2σ

2
2∆e2∆

−b2σ
2
2∆e2∆ σ2

2e
2∆


These matrices can be used to compute m∗(k)

T and Σ
∗(k,l)
T , with the help of Equations (S12,223

S13).224
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C Distribution for some models with interactions225

between lineages226

C.1 Distribution with a constant, A symmetric, and Γ = σI227

When Γ = σI and A is symmetric, Equations (3a, 3b) become :228

E(Xt) = e(τi−t)AiE(Xτi) +

∫ t

τi

e(s−t)Aiai(s)ds

Var(Xt) =
(
e(τi−t)Ai

)
Var(Xτi)

tr
(
e(τi−t)Ai

)
+ σ2

∫ t

τi

e2(s−t)Aids

If Ai is symmetric with coefficients in R, it can be diagonalized by orthogonal passage229

matrices : we can exhibit a matrix Q verifying trQAiQ = Λi is diagonal and Q−1 = trQ.230

E(Xt) = Qe(τi−t)Λi trQE(Xτi) +Q

(∫ t

τi

e(s−t)Λids

)
trQai

Var(Xt) = QeΛi(τi−t)trQVar(Xτi)Qe
(τi−t)Λi trQ+ σ2Q

(∫ t

τi

e2(s−t)Λids

)
trQ

This is the expression that we need for the numerical integration, in particular, of the231

phenotype matching model.232

Note that with A diagonalizable but not symmetric, Equations (3a, 3b) can also be233

reduced, but the transposition of A is no longer A, and it does not lead exactly to the same234

expression.235

C.2 The phenotype matching (PM) model236

We consider here the phenotype matching model introduced in Nuismer and Harmon (2014),237

with the following equation describing the evolution of any trait k on each epoch :238

dX
(k)
t = ψ

(
θ −X(k)

t

)
dt+ S

((
1

nt

nt∑
l=1

X
(l)
t

)
−X(k)

t

)
dt+ σdW

(k)
t

We introduce the line vector u, with value uj that equals 1 if lineage j is alive, and 0

otherwise. In order to use our framework, we further want to express the model in the form given
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by Equation (1). This is achieved by taking :

ai = ψθtru

Ai = (ψ + S)diag(u)− S

utru
truu

Γi = σdiag(u)

where diag(u) is the diagonal matrix with diagonal elements the elements of the vector u.239

First, the tip distribution can be computed using the general algorithm that numerically240

resolves the set of ODEs given in Equations (4a, 4b). Second, the PM model falls within the241

class of models studied in the previous section, that is, with a symmetric A matrix. The tip242

distribution can thus be numerically computed faster using this reduction.243

We describe here a third (and faster) way to derive the tip distribution. It is based on an244

analytical reduction of Equations (3a, 3b) that is specific to the PM model.245

Remark that diag(u) and truu commute, leading to the following calculus,

e(τi−τi+1)Ai = e(τi−τi+1)((ψ+S)diag(u)− S
utru

truu)

= e(τi−τi+1)(ψ+S)diag(u)e−(τi−τi+1) S
utru

truu

= diag
(
e(τi−τi+1)(ψ+S)u

)∑
k≥0

(
−(τi−τi+1)S

utru

)k
(truu)k

k!


Where ew is the line vector with elements ewj . Further, remark that for any k ≥ 1,

(truu)k = (truu)(truu)(truu)...(truu)

= tru(utru)(utru)...(utru)u

= (utru)k−1(truu)

For simplicity, we will write in the following ∆ = τi − τi+1, leading us to246
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e∆Ai = diag
(
e(ψ+S)∆u

)(
I +

∑
k≥1

(−S∆
utru

)k
(utru)k−1(truu)

k!

)

= diag
(
e(ψ+S)∆u

)(
I +

1

utru

(∑
k≥1

(−(τi − τi+1)S)k

k!

)
truu

)

= diag
(
e(ψ+S)∆u

)(
I +

1

utru

(
e−S∆ − 1

)
truu

)
= diag

(
e(ψ+S)∆u

)
+

1

utru
diag

(
e−S∆e(ψ+S)∆u

)
truu− 1

utru
diag

(
e(ψ+S)∆u

)
truu

= diag
(
e(ψ+S)∆u

)
+

1

utru
(eψ∆ − e(ψ+S)∆) truu (S14)

Where the last equality is due to the product by tru, allowing to forget the cases where247

uj = 0 in the exponential.248

We further need to compute∫ τi+1

τi

e(s−τi+1)Aiaids = ψθ

∫ τi+1

τi

eψ(s−τi+1)ds tru

= θ
(
1− eψ∆

)
tru (S15)

We thus get mτ−i+1
with the help of Equations (S14) and (S15).249

Now, in order to simplify Equation (3b), remark that Ai and Γi are symmetric, and so are

e∆Ai and e∆AiΓi. Moreover, Γi is diagonal, and commutes with any other matrix, leading to,

Στ−i+1
= e∆AiΣτie

∆Ai +

∫ τi+1

τi

e2(s−τi+1)AiΓiΓids

The first term can be computed thanks to Equation (S14). For the second one, remark

that truu diag(u) = truu, thus leading to∫ τi+1

τi

e2(s−τi+1)AiΓiΓids = σ2

∫ τi+1

τi

e2(ψ+S)(s−τi+1)ds diag(u)

+
σ2

utru

∫ τi+1

τi

(
e2ψ(s−τi+1) − e2(ψ+S)(s−τi+1)

)
ds truu diag(u)

= σ2 (1− e2(ψ+S)∆)

2(ψ + S)
diag(u) +

σ2

utru

(
1− e2ψ∆

2ψ
− 1− e2(ψ+S)∆

2(ψ + S)

)
truu

(S16)

We thus get Στ−i+1
with the help of Equations (S14) and (S16).250
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C.3 The phenotype matching (PM) model with biogeography251

In this section we describe ways to compute the tip distribution under the PM model, taking into252

account the biogeography (that is, species interact only when they co-occur in the same253

localities). We consider a fixed number of islands NI . Matrix U gives us the presence/absence of254

lineages in the distinct islands, with element uij that equals 1 if lineage j is present on island i255

and zero otherwise. Vector S gives the strength of interaction on each island. The model states256

that the trait of lineage j evolves through phenotype matching with all species that are257

sympatric :258

dX
(j)
t = ψ

(
θ −X(j)

t

)
dt+

NI∑
i=1

Siuij

(∑n
l=1 uilX

(l)
t∑n

l=1 uil
−X(j)

t

)
dt+ σdW

(j)
t

Take for example 5 lineages evolving on 3 distinct islands with the following U matrix on259

a given epoch :260

U =


0 1 1 0 0

1 0 1 1 0

1 0 0 0 1


This means that species number 1 is present on island 2 and 3, species number 2 is only261

present on island 1, and so on... Said differently, we see that species number 3 interacts on island262

1 with species 2, and on island 2 with species 1 and 4. Our species traits are driven by the263

following equations :264
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dX
(1)
t =

(
ψ
(
θ −X(1)

t

)
+ S2

(
X

(1)
t +X

(3)
t +X

(4)
t

3
−X1

t

)
+ S3

(
X

(1)
t +X

(5)
t

2
−X1

t

))
dt+ σdW

(1)
t

dX
(2)
t =

(
ψ
(
θ −X(2)

t

)
+ S1

(
X

(2)
t +X

(3)
t

2
−X2

t

))
dt+ σdW

(2)
t

dX
(3)
t =

(
ψ
(
θ −X(3)

t

)
+ S1

(
X

(2)
t +X

(3)
t

2
−X3

t

)
+ S2

(
X

(1)
t +X3

t +X
(4)
t

3
−X3

t

))
dt+ σdW

(3)
t

dX
(4)
t =

(
ψ
(
θ −X(4)

t

)
+ S2

(
X

(1)
t +X3

t +X
(4)
t

3
−X4

t

))
dt+ σdW

(4)
t

dX
(5)
t =

(
ψ
(
θ −X(5)

t

)
+ S3

(
X

(1)
t +X

(5)
t

2
−X5

t

))
dt+ σdW

(5)
t

265

It thus follows that the vectorial equation can be written :266

dXt =





ψθ

ψθ

ψθ

ψθ

ψθ


−



ψ + 2
3S2 +

1
2S3 0 −S2

3 −S2
3 −S3

2

0 ψ + 1
2S1 −S1

2 0 0

−S2
3 −S1

2 ψ + 1
2S1 +

2
3S2 −S2

3 0

−S2
3 0 −S2

3 ψ + 2
3S2 0

−S1
2 0 0 0 ψ + 1

2S1


Xt


dt+ σdWt

267

Provided no island is empty, the model can be written in our framework with a = ψθV ,268

Γ = σI, and, finally, A which is the matrix with elements :269

(A)jj = ψ +

NI∑
i=1

Siuij(1−
1∑n
l=1 uil

)

(A)jk = −
NI∑
i=1

Siuijuik
1∑n
l=1 uil

Matrix A is symmetric, and we can thus use the developments presented in Appendix C.1270

to speed up the computation time.271

Nonetheless, a better analytical reduction can be derived when islands are exclusive,272

meaning that species are allowed to occur on one island only. Under this assumption, matrix273

UTU is diagonal with element (UTU)ii being the number of lineages belonging to island i. We274
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now introduce the line vector r, of size NI , full of ones. For simplicity, we also write in the275

following ∆ = τi − τi+1. With these notations, and provided no island is empty, the model can be276

written under our framework with :277

ai = ψθ T (rU)

Ai = diag((ψr + S)U)− TUdiag(S)(UTU)−1U

Γi = σdiag(rU)

As for the one island case, we can speed up the computation of the exponential by278

remarking that :279

e∆Ai = e∆ diag((ψr+S)U)e−∆ TUdiag(S)(UTU)−1U

= e∆ diag((ψr+S)U)
∑
k≥0

(−∆TUdiag(S)(UTU)−1U)k

k!

We then observe that :280

(−∆TUdiag(S)(UTU)−1U)k = (−∆TUdiag(S)(UTU)−1U)(−∆TUdiag(S)(UTU)−1U)...(−∆TUdiag(S)(UTU)−1U)

= TU(−∆diag(S))(UTU)−1(UTU)(−∆diag(S))(UTU)−1(UTU)...(UTU)(−∆diag(S))(UTU)−1U

= TU(−∆diag(S))k(UTU)−1U

Thus leading to the following expression :281

e∆Ai = e∆diag((ψr+S)U)

(
I +

∑
k≥1

(−∆TUdiag(S)(UTU)−1U)k

k!

)

= diag(e∆(ψr+S)U)

(
I + TU

(∑
k≥1

(−∆diag(S))k

k!

)
(UTU)−1U

)

= diag(e∆(ψr+S)U)
(
I + TU

(
diag(e−∆S)− I

)
(UTU)−1U

)
= diag(e∆(ψr+S)U)

(
I − TU(UTU)−1U

)
+ diag(e∆(ψr+S)U)TUdiag(e−∆S)(UTU)−1U

= diag(e∆(ψr+S)U)
(
I − TU(UTU)−1U

)
+ diag(e∆(ψr+S)U)diag(e−∆SU) TU(UTU)−1U

= diag(e∆(ψr+S)U)
(
I − TU(UTU)−1U

)
+ diag(e∆ψrU) TU(UTU)−1U (S17)
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Where the second to last line holds under the assumption that each species belong to at282

most one island.283

We further need to compute284

∫ τi+1

τi

e(s−τi+1)Aiaids = ψθ

∫ τi+1

τi

diag(e(s−τi+1)ψrU)ds TUT r

= ψθ

∫ τi+1

τi

e(s−τi+1)ψds TUT r

= θ
(
1− eψ∆

)
TUT r (S18)

We thus get mτ−i+1
with the help of Equations (S17) and (S18).285

We now turn to the reduction of the variance expression. Remark first that Ai and Γi are286

symmetric, and so are e∆Ai and e∆AiΓi. Moreover, Γi is diagonal, and commutes with e∆Ai ,287

leading to :288

Στ−i+1
= e∆AiΣτie

∆Ai +

∫ τi+1

τi

e2(s−τi+1)AiΓiΓids

The first term can be computed thanks to equation (S17). For the second one we get289

∫ τi+1

τi

e2(s−τi+1)AiΓiΓids = σ2

∫ τi+1

τi

e2(s−τi+1)diag(r(ψI+S)U)ds
(
I − TU(UTU)−1U

)
diag(rU)

+ σ2

∫ τi+1

τi

e2(s−τi+1)ψ diag(rU)ds TU(UTU)−1U diag(rU)

= σ2

∫ τi+1

τi

diag(e2(s−τi+1)(ψr+S)U)ds
(
diag(rU)− TU(UTU)−1U

)
+ σ2

∫ τi+1

τi

diag(e2(s−τi+1)ψrU)ds TU(UTU)−1U (S19)

At the end, we get Στ−i+1
with the help of Equations (S17) and (S19).290

C.4 The generalist matching mutualism (GMM) model291

We recall the model formulation here. Assume that we rank first the n1 plant traits, before the292

n2 butterfly traits in the X vector. Traits evolve following the equation :293
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∀k ∈ {1, ..., n1}, dX(k)
t = S

(
d1 +

1

n2

n1+n2∑
l=n1+1

X
(l)
t −X

(k)
t

)
dt+ σdW

(k)
t

∀l ∈ {n1 + 1, ..., n1 + n2}, dX(l)
t = S

(
d2 +

1

n1

n1∑
k=1

X
(k)
t −X

(l)
t

)
dt+ σdW

(l)
t

In the general framework formulation, this leads to :294

a(t) = tr(Sd1, ..., Sd1, Sd2, ..., Sd2)

A =



S 0 . . . 0 −S
n2

. . . . . . −S
n2

0
. . . . . . ...

...
...

... . . . . . . 0
...

...

0 . . . 0
. . . −S

n2
. . . . . . −S

n2

−S
n1

. . . . . . −S
n1

. . . 0 . . . 0

...
... 0

. . . . . . ...
...

...
... . . . . . . 0

−S
n1

. . . . . . −S
n1

0 . . . 0 S


Γ = σI

We would like to be able to compute the expectation and variance easily on each epoch.295

We thus want to reduce Equations (3a, 3b). For simplicity, we will write in the following296

∆ = τi − τi+1. With some work, we can find the generic element of the matrix e∆A.297

First, we decompose A = S(I + Z), where I is the identity matrix, and Z is made of two298

blocks with elements −1
n2

and −1
n1
. I and Z commute, meaning that :299

e∆A = e∆S(I+Z) = e∆SIe∆SZ = e∆Se∆SZ

Moreover, we can find by induction the generic element of the matrix Zk, as presented in300

Figure (S2).301

We then use this to find the generic element of the matrix302

e∆SZ =
∑

k≥0
Sk∆kZk

k!
= I +

∑
k≥1

Sk∆kZk

k!
. We recall that the odd and even parts of the303

exponential are :304
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Figure S2: Generic element of the matrix Zk, ∀k ∈ N∗.

eλ − e−λ =
∑
k≥0

λk

k!
−
∑
k≥0

(−1)kλk

k!
= 2

∑
k≥0

λ2k+1

(2k + 1)!

and eλ + e−λ = 2
∑
k≥0

λ2k

(2k)!

Then, matrices e∆SZ and e∆A are composed of four distinct blocks, which expressions are305

shown in Figure S3.306
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Figure S3: Generic elements of matrices e∆SZ and e∆A.

We thus got the main element from which we can derive the expectation vector mτ−i+1
:

mτ−i+1
= e∆Aimτi +

∫ τi+1

τi

e(s−τi+1)Aiai(s)ds

= e∆Aimτi +

∫ τi+1

τi



Sd1e
S(s−τi+1) + Sd1

e2S(s−τi+1)−2eS(s−τi+1)+1
2

+ Sd2
1−e2S(s−τi+1)

2

...

Sd1e
S(s−τi+1) + Sd1

e2S(s−τi+1)−2eS(s−τi+1)+1
2

+ Sd2
1−e2S(s−τi+1)

2

Sd2e
S(s−τi+1) + Sd1

1−e2S(s−τi+1)

2
+ Sd2

e2S(s−τi+1)−2eS(s−τi+1)+1
2

...

Sd2e
S(s−τi+1) + Sd1

1−e2S(s−τi+1)

2
+ Sd2

e2S(s−τi+1)−2eS(s−τi+1)+1
2


ds

= e∆Aimτi +

∫ τi+1

τi



S d1+d2
2

+ S d1
2
e2S(s−τi+1) − S d2

2
e2S(s−τi+1)

...

S d1+d2
2

+ S d1
2
e2S(s−τi+1) − S d2

2
e2S(s−τi+1)

S d1+d2
2
− S d1

2
e2S(s−τi+1) + S d2

2
e2S(s−τi+1)

...

S d1+d2
2
− S d1

2
e2S(s−τi+1) + S d2

2
e2S(s−τi+1)


ds

= e∆Aimτi +



−S d1+d2
2

∆ + d1
4

(1− e2S∆)− d2
4

(1− e2S∆)

...

−S d1+d2
2

∆ + d1
4

(1− e2S∆)− d2
4

(1− e2S∆)

−S d1+d2
2

∆− d1
4

(1− e2S∆) + d2
4

(1− e2S∆)

...

−S d1+d2
2

∆− d1
4

(1− e2S∆) + d2
4

(1− e2S∆)


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We now turn to the derivation of the covariance matrix, which requires simplifying :∫ τi+1

τi

(
e(s−τi+1)AiΓi(s)

)
tr
(
e(s−τi+1)AiΓi(s)

)
ds = σ2

∫ τi+1

τi

(
e(s−τi+1)Ai

)
tr
(
e(s−τi+1)Ai

)
ds

The expression of this last matrix is given in Figure S4.307
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Figure S4: Generic elements of matrices that help us compute the covariance matrix of the

distribution.
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D Simulation and Inference308

We do not give any new result in this Appendix section. Instead, we present the ways we309

implemented numerically simulations and inferences for all models described in the paper. These310

have been previously described in a number of papers.311

D.1 Numerical methods for simulating data312

Simulating the whole trajectory of the process.—313

We use the Euler-Maruyama scheme, which works like the Euler scheme for ODEs, but314

with the addition of a small Gaussian random variable at each time step (Gardiner et al. 1985).315

We discretize each epoch (τi, τi+1) with a mesh ∆t. We consider m standard Gaussian vectors of316

dimension nd : (Uj)
m
j=1. We approximate our SDE on this interval in the following way :317

Y0 = X0

Yτi+m∆t = Yτi+(m−1)∆t + (ai(τi + (m− 1)∆t)− AiYτi+(m−1)∆t)∆t + Γ(τi + (m− 1)∆t)
√

∆tUm

When a branching occurs, the values of the process on the splitting branch are duplicated318

at the end of the vector Y . We then iterate this operation from the root up to present time.319

This simulation allows us to get the whole trajectory of the process on the tree, which can320

mainly be used to produce pictures as in Figure S5, and eventually get a useful intuition on the321

process. However, we rarely use the whole trajectories, because observed data are only composed322

of tip trait values.323

Simulating values of the process at the tips only.—324

This second simulation protocol allows us to simulate the process values at the tips only.325

Suppose that we know the vector m of expectations and the covariance matrix Σ at the tips of326

the tree.327

We then simply simulate numerically a Gaussian vector with law :328
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Figure S5: Evolution of a Brownian phenotypic trait along a tree, following the SDE : dXt =

σIdWt.

Xtf ∼ N (m , Σ)

This is by far the quickest way to get the tip values. However, as the inference protocol329

relies on the use of the same vector of expectations and covariance matrix, one may prefer to use330

the other simulation protocols to test the consistency between simulation and inference. In case331

there is an issue with the derivation of the tip distribution, there would be a discrepancy between332

simulations and inferences.333

D.2 Parameter inference334

Parameter inference principle.—335

We consider here that we know the topology of the true phylogeny with K tips, its branch336

lengths, and the state of d phenotypic traits at the tip, denoted by X .337

We assume any model of phenotypic evolution relying on linear SDEs, with vector of

parameters p. We can compute the expectation mp and the covariance Σp of the process X at

tree tips. Its law is then : X ∼ N (mp,Σp), and, assuming that the variance matrix is invertible,
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the density of the vector X is :

∀x ∈ RKd, f(x) =
1√

(2π)Kd det(Σp)
e−

1
2
tr(x−mp)Σ−1

p (x−mp)

We can thus write the likelihood of the observed phenotypic traits as,

L(p) = f(X|p)

=
1√

(2π)Kd det(Σp)
e−

1
2
tr(X−mp)Σ−1

p (X−mp)

The maximum likelihood estimators (MLE) are the parameter values that maximize the

likelihood function, that is,

p̂ = argmax
p

L(p)

Equivalently, we can minimize the following function,

− ln(L(p)) =
1

2
Kd ln(2π) +

1

2
ln(det(Σp)) +

1

2
tr(X −mp)Σ

−1
p (X −mp)

or, removing the constants,

U(p) = ln(det(Σp)) + tr(X −mp)Σ
−1
p (X −mp)

Analytical derivation of the MLE.—338

Among all models described in the paper, only the BM model allows the analytic339

derivation of the MLE estimators. Take for illustration a BM model without drift starting with340

(m0, v0) = (0, 0). According to Table 1, the expectation m and covariance matrix Σ at the tips341

are m = 0 and Σ = σ2T , where matrix T has element T (k,l) = tk,l.342

We get the MLE σ̂ by looking analytically for the minimum of U ,

U(σ) = ln(det(σ2T )) + trX T
−1

σ2
X

= ln detT + 2n lnσ +
1

σ2
trXT−1X

dU

dσ
=

2n

σ
− 2

σ3
trXT−1X

Thus leading to,

σ̂2 =
1

n
trXT−1X

Speeding up the MLE estimation by reducing the dimension of the parameter space.—343
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Maximizing the likelihood can take a long time, especially when the dimension of the344

parameter space is large. It can thus be interesting to make assumptions that lower the number345

of parameters, when this is biologically tolerable. Examples include,346

• starting an OU process with m0 = θ,347

• considering no root variance, v0 = 0,348

• starting a PM model with m0 = θ (in which case we easily show that the expectation349

remains θ in all lineages),350

• putting ψ = 0 in the PM model.351

In many models (e.g. BM, OU, ACDC, PM with m0 = θ...), distinct sets of parameters p1352

and p2 are involved in the computation of m and Σ, and the expectation vector m can be353

expressed as m = Cp1. In this case, at a given p2, we can analytically get the parameters p1354

maximizing ln(L(p1, p2)),355

∂

∂p1

U(p1, p2) = 0 ⇐⇒ d

dp1

tr(X − Cp1)Σ−1
p2

(X − Cp1) = 0

Doing so, we get the same formula as in (Hansen 1997; Butler and King 2004), i.e. :

p̂1 =
(
trC1Σ−1

p2
C1

)−1 trC1Σ−1
p2
X
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E Tutorial : using the RPANDA codes to study trait356

coevolution357

The aim of this section is to describe the R codes associated to our framework. We describe the358

class PhenotypicModel, we show how to manipulate the different methods included in the class,359

we illustrate their use around a simple (non-ultrametric) tree, and we finally explain how to use360

our codes to write new models fitting the framework.361

We first need to load usefull R packages, along with our codes, and a small,362

non-ultrametric, tree.363

In [219]: source("Loading.R")

newick <- "((((A:1,B:0.5):2,(C:3,D:2.5):1):6,E:10.25):2,(F:6.5,G:8.25):3):1;"

tree <- read.tree(text=newick)

plot(tree)

364
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E.1 The ’PhenotypicModel’ class365

Our code is structured around one main R class that we called ‘PhenotypicModel’, which is366

intended to mimic the framework that we proposed in the main text. Each object of the367

‘PhenotypicModel’ encompasses informations on the tree, on the parameters of the model, on the368

starting values, and, finally, on the collection of (ai, Ai,Γi) for all epochs.369

Loading a pre-defined model.—370

Because we wanted this code both to be user-friendly and to serve as an illustration of371

what can be written within this framework, we implemented all models in main Table 1 in a372

generic constructor createModel, in the file ‘ModelBank.R’, that takes for arguments the tree373

and the name of the required model.374

Available models include :375

BM Brownian Motion model with linear drift.376

Starts with two lineages having the same value X0 ∼ N (m0, v0).377

One trait in each lineage, all lineages evolving independently after branching following the

equation.

dX
(i)
t = ddt+ σdW

(i)
t

BM_from0 Same as above, but starting with two lineages having the same value X0 ∼ N (0, 0).378

BM_from0_driftless Same as above, but with d = 0.379

OU Ornstein-Uhlenbeck model.380

Starts with two lineages having the same value X0 ∼ N (m0, v0).381

One trait in each lineage, all lineages evolving independently after branching, following the

equation :

dX
(i)
t = ψ(θ −Xt)dt+ σdW

(i)
t

OU_from0 Same as above, but starting with two lineages having the same value X0 ∼ N (0, 0).382
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ACDC ACcelerating or DeCelerating model.383

Starts with two lineages having the same value X0 ∼ N (m0, v0).384

One trait in each lineage, all lineages evolving independently after branching, following the

equation :

dX
(i)
t = σ0e

rtdW
(i)
t

DD Diversity-Dependent model.385

Starts with two lineages having the same value X0 ∼ N (m0, v0).386

One trait in each lineage, all lineages evolving independently after branching, following the

equation :

dX
(i)
t = σ0e

rntdW
(i)
t

PM Phenotype Matching model.387

Starts with two lineages having the same value X0 ∼ N (m0, v0).388

One trait in each lineage, all lineages evolving then non-independently following the

expression :

dX
(i)
t = ψ

(
θ −X(i)

t

)
+ S

(
1

n

n∑
k=1

X
(k)
t −X

(i)
t

)
+ σdW

(i)
t

PM_OUless Simplified Phenotype Matching model.389

Starts with two lineages having the same value X0 ∼ N (m0, v0).390

One trait in each lineage, all lineages evolving then non-independently following the

expression :

dX
(i)
t = S

(
1

n

n∑
k=1

X
(k)
t −X

(i)
t

)
+ σdW

(i)
t

To get a first glimpse at ‘PhenotypicModel’ objects, we first create two such objects. The391

first one is a Brownian Motion (BM), the second one is an Ornstein-Uhlenbeck process (OU).392

Note that both models include m0 and v0 as parameters.393

In [220]: modelBM <- createModel(tree, ’BM’)

modelOU <- createModel(tree, ’OU’)
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Access to the content of the model.—394

The function show (resp. print) is intended to give basic (resp. full) information on a395

specific ‘PhenotypicModel’ object.396

In [221]: show(modelBM)

****************************************************************

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "BM"

*** Parameters of the model : [1] "m0" "v0" "d" "sigma"

*** Description : Brownian Motion model with linear drift.

Starts with two lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving independently after branching.

dX_t = d dt + sigma dW_t

*** Periods : the model is cut into 13 parts.

For more details on the model, call : print(PhenotypicModel)

****************************************************************

In [222]: print(modelOU)

****************************************************************

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "OU"

*** Parameters of the model : [1] "m0" "v0" "psi" "theta" "sigma"

*** Description : Ornstein-Uhlenbeck model.

Starts with two lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving independently after branching.

dX_t = psi(theta- X_t) dt + sigma dW_t

*** Epochs : the model is cut into 13 parts.

[1] 0.00 2.00 3.00 8.00 9.00 9.50 10.00 10.50 11.00 11.25 11.50 12.00

[13] 12.25

*** Lineages branching (to be copied at the end of the corresponding period) :
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[1] 1 1 2 1 5 2 1 7 1 4 6 5 3

*** Positions of the new trait at the end of each period :

[1] 2 3 4 5 6 0 7 0 0 0 0 0 0

*** Initial condition :

function (params)

return(list(mean = c(params[1]), var = matrix(c(params[2]))))

<environment: 0x9617460>

*** Vectors a_i, A_i, Gamma_i on each period i :

function (i, params)

{

vectorU <- getLivingLineages(i, eventEndOfPeriods)

vectorA <- function(t) return(params[3] * params[4] * vectorU)

matrixGamma <- function(t) return(params[5] * diag(vectorU))

matrixA <- params[3] * diag(vectorU)

return(list(a = vectorA, A = matrixA, Gamma = matrixGamma))

}

<environment: 0x9617460>

*** Constraints on the parameters :

function (params)

return(params[2] >= 0 && params[5] >= 0 && params[3] != 0)

<environment: 0x9617460>

*** Defaut parameter values : [1] 0 0 1 0 1

*** Tip labels :

[1] "A" "B" "C" "D" "E" "F" "G"

*** Tip labels for simulations :

[1] "A" "F" "E" "G" "C" "D" "B"

****************************************************************

List of class attributes.—397

The latter command gave us some insight into how a PhenotypicModel is defined. It has398
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the following list of attributes :399

name a name,400

paramsNames the names of all parameters,401

comment a short description,402

period the vector of times at which successive branching and death of lineages occur,403

numbersCopy vector containing the lineage number which branches or dies at the end of each404

period,405

numbersPaste vector containing the lineage number in which a daughter lineage is placed at406

the end of each period (zero if the end of the period corresponds to a death),407

initialCondition a function of the parameters giving the initial mean and variance of the408

gaussian process at the root of the tree,409

aAGamma the functions corresponding to ai(t), Ai, and Γi(t) that define the evolution of the410

process on each period, depending on parameters,411

constraints a function of the parameters giving the definition range,412

params0 a vector of defaut parameter values.413

Each of these attributes can be accessed and changed through the use of the following414

syntax.415

In [223]: modelBM[’name’]

Out[223]: ‘BM’416

In [224]: modelBM[’paramsNames’]

Out[224]: ’m0’ ’v0’ ’d’ ’sigma’417
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In [225]: modelOU[’paramsNames’] <- c("mean0", "var0", "selectionStrength", "equilibrium",

"noise")

show(modelOU)

****************************************************************

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "OU"

*** Parameters of the model : [1] "mean0" "var0" "selectionStrength"

[4] "equilibrium" "noise"

*** Description : Ornstein-Uhlenbeck model.

Starts with two lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving independently after branching.

dX_t = psi(theta- X_t) dt + sigma dW_t

*** Periods : the model is cut into 13 parts.

For more details on the model, call : print(PhenotypicModel)

****************************************************************

However, changes must be made cautiously, in order to keep a coherent model. For418

example, changing ‘paramsNames’ for a shorter vector would not be authorized, but other419

deleterious actions could work and lead to issues with methods associated to PhenotypicModel420

objects.421

In [226]: modelOU[’paramsNames’] <- c("mean0", "var0")

Error in validityMethod(as(object, superClass)): [PhenotypicModel : validation]

There should be the same number of defaut parameters and parameter names.

E.2 Methods associated to the ’PhenotypicModel’ class422

All ‘PhenotypicModel’ objects are associated to methods intended to do the basic operations423

that we need to do with models of trait evolution, i.e.,424

1. simulate tip trait data,425
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2. compute the likelihood of tip trait data,426

3. fit the model to tip trait data.427

Simulating tip trait data.—428

The method simulateTipData works for any PhenotypicModel object. We simply give it429

the model and the set of parameters and it returns a realisation of the process (tip data).430

In [227]: dataBM <- simulateTipData(modelBM, c(0,0,0,1))

dataBM

*** Simulation of tip trait values ***

Simulates step-by-step the whole trajectory, but returns only the tip data.

Computation time : 0.3909395 secs

Out[227]:431

A -2.71863

F 1.043329

E 0.665404

G -3.440327

C 0.272335

D -0.7023421

B -2.010951

432

433

A third, optional, argument, changes the behaviour of the method.434

• "method=1" : first computes the tip distribution at present, before drawing a realization of435

this distribution,436

• "method=2" : simulates step-by-step the whole trajectory of the process, plots the437

trajectories through time, and returns the tip data.438

• "method=3" : (default) simulates step-by-step the whole trajectory of the process, before439

returning only the tip data.440
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In [228]: dataOU <- simulateTipData(modelOU, c(0,0,1,5,1), method=1)

dataOU

*** Simulation of tip trait values ***

Computes the tip distribution, and returns a simulated dataset drawn in this distribution.

Computation time : 0.0009741783 secs

Out[228]:441

A 4.179412

B 5.776153

C 4.984526

D 4.480901

E 5.693471

F 4.636019

G 5.815942

442

In [229]: simulateTipData(modelBM, c(0,0,0,1), method=2)

*** Simulation of tip trait values ***

Simulates step-by-step the whole trajectory, plots it, and returns tip data.

Computation time : 0.479032 secs

Out[229]:443

A 1.850113

F -1.846854

E -0.6321431

G 4.701758

C -0.1940776

D -2.077116

B -0.7752916

444
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445

Getting the distribution of the model under a given set of parameters.—446

The method getTipDistribution computes the mean vector m and variance matrix Σ447

such that, under the model, the tip trait data X follows N (m,Σ).448

The related method getDataLikelihood returns the -ln(likelihood) of a given data set449

under the model, with a given set of parameters.450

In [230]: getTipDistribution(modelBM, c(0,0,1,1))

Out[230]:451
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$mean

A 11

B 10.5

C 12

D 11.5

E 12.25

F 9.5

G 11.25

452

$Sigma

A B C D E F G

A 11 10 8 8 2 0 0

B 10.0 10.5 8.0 8.0 2.0 0.0 0.0

C 8 8 12 9 2 0 0

D 8.0 8.0 9.0 11.5 2.0 0.0 0.0

E 2.00 2.00 2.00 2.00 12.25 0.00 0.00

F 0.0 0.0 0.0 0.0 0.0 9.5 3.0

G 0.00 0.00 0.00 0.00 0.00 3.00 11.25

453

In [231]: getDataLikelihood(modelBM, dataBM, c(0,0,1,1))

Out[231]: 36.0510113479088454

Maximum likelihood estimation of parameters.—455

The method fitTipData uses the latter two methods to find the set of parameters that456

minimizes -ln(likelihood) for a given model, on a given data set. We can apply this method to457

simulated datasets, and compare the maximum likelihood estimators with the parameters used in458

the simulation.459

Note that this function accepts a third, optional, parameter, that is the starting vector460

‘params0’ given to optimize the likelihood. If no value is specified, the function takes the461

attribute ‘params0’ in the PhenotypicModel object.462

In [232]: fitTipData(modelBM, dataBM)

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,
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returns the likelihood and the inferred parameters.

Computation time : 0.02105212 secs

Out[232]:463

$value 13.3539168672421464

$inferredParams m0 0.112360024529455465

v0 4.3703974585017e-08466

d -0.0733871266399529467

sigma 0.64761762031608468

In [233]: fitTipData(modelOU, dataOU)

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 0.2915776 secs

Out[233]:469

$value 7.5162883379935470

$inferredParams mean0 13.5665180225751471

var0 1.6815664554916e-05472

selectionStrength 0.648513938633288473

equilibrium 5.05532921748184474

noise 0.766630199120977475

It doesn’t seem quite good, but it also seems like the choice in the starting parameters476

m0, v0 has a bad influence. As presented in Appendix D.2, in many models (e.g. BM, OU,477

ACDC, PM with m0 = θ. . . ), distinct sets of parameters p1 and p2 are involved in the478

computation of m and Σ, and the expectation vector m can be expressed as m = Cp1. In479

particular, many models verify m = tr(m0,m0, ...m0). When this is the case, the fit of tip data480

can be improved and speeded up by using the third parameter of the function GLSstyle=TRUE.481
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In [234]: fitTipData(modelBM, dataBM, GLSstyle=TRUE)

fitTipData(modelOU, dataOU, GLSstyle=TRUE)

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 0.03260899 secs

Out[234]:482

$value 13.5302740469078483

$inferredParams m0 -0.00550320295296933484

v0 2.28469756397133e-07485

d -0.313019528308928486

sigma 0.663621107698308487

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 0.1760004 secs

Out[234]:488

$value 7.82305350777471489

$inferredParams mean0 5.10957361631891490

var0 3.36222531349288e-05491

selectionStrength 1.87722870245168492

equilibrium -1.98889519193151493

noise 1.91905948952067494

With so few data in hand, we could also prefer to consider directly models starting with495

(m0, v0) = (0, 0). We create two new models ‘BM_from0’ and ‘OU_from0’ with the subtle496
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difference that (m0, v0) = (0, 0) and the models thus retain respectively only two and three497

parameters.498

These two models are included in the ‘ModelBank’ file.499

In [235]: modelBMfromZero <- createModel(tree, ’BM_from0’)

modelBMfromZero[’paramsNames’]

Out[235]: ’d’ ’sigma’500

In [236]: modelOUfromZero <- createModel(tree, ’OU_from0’)

modelOUfromZero[’paramsNames’]

Out[236]: ’psi’ ’theta’ ’sigma’501

In [237]: fitTipData(modelBMfromZero, dataBM)

fitTipData(modelOUfromZero, dataOU)

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 0.01061678 secs

Out[237]:502

$value 13.3540474589618503

$inferredParams d -0.0633929373190768504

sigma 0.647501517840828505

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 0.3246026 secs

Out[237]:506
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$value 12.8406380062571507

$inferredParams psi -0.00173618484753718508

theta -257.683877940727509

sigma 0.598311115102137510

While the first inference seems quite consistent, the second one is obviously wrong.511

We would like here to warn users about the use of the fitTipData method. We did not512

code an appropriate optimizer, and we use instead optim, the optimizer available in R, which513

sometimes seems to be attracted to a wrong region in the parameter space. Starting the514

optimization with different parameter sets might be the best practice to comfort the results.515

For example, here, starting with another initial parameter set leads to a better likelihood516

optimization.517

In [238]: getDataLikelihood(modelOUfromZero, dataOU, c(1,5,1))

Out[238]: 7.17243577660605518

In [239]: fitTipData(modelOUfromZero, dataOU, c(1,5,1))

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 0.188132 secs

Out[239]:519

$value 6.69894523491705520

$inferredParams psi 9.38482325085794521

theta 5.08087953439187522

sigma 2.72996276707977523

Finally, the functions getTipDistribution, simulateTipData and fitTipData all have a524

last optional argument, called v for “verbose mode”. With v=TRUE, the functions gives525

informations in the console, whereas with v=FALSE the function remains silent.526
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E.3 Toward an in-depth understanding of the code structure527

This section can be skipped if you are not interested in using this framework to build your own528

model. Otherwise, it is worth understanding how the different models relate to each others.529

Relationships between the different classes of models.—530

The mother and most general class, for which all the above-mentionned functions are531

defined, is the PhenotypicModel class. When a model is only known as a PhenotypicModel, the532

method that computes the tip distribution, namely getTipDistribution is the most general533

one. It thus computes the distribution by resolving numerically the ODE system presented in534

main text Equations (4a, 4b), which can take a lot of time.535

However, faster algorithms are available to compute the tip distribution under specific536

models (see e.g. analytical tip distribution formulas in Table S1). This is the rationale to define537

daughter-classes :538

PhenotypicBM For the Brownian model.539

PhenotypicOU For the Ornstein-Uhlenbeck model.540

PhenotypicACDC For the Accelerating/Decelerating model.541

PhenotypicDD For the Diversity-Dependent model.542

PhenotypicPM For the Phenotype-Matching model.543

PhenotypicGMM For the Generalist Matching Mutualism model.544

PhenotypicADiag Models for which, ∀i, Ai is symmetric and Γi = σI.545

For each of these daughter-classes, an other, more appropriated, function546

getTipDistribution has been written. PhenotypicModels which are also PhenotypicOU, will547

preferentially use methods defined for PhenotypicOU when they exist.548

Application : three different ways to define an OU.—549
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In the createModel function, the keyword ‘OU’ constructs a model in the class550

PhenotypicOU. In this class, the function getTipDistribution uses the analytical formula show551

in Appendix B.1 to speed up the computation of m and Σ.552

Alternatively, the keyword ‘OUbis’ defines the exact same model, but as an instance of553

the class PhenotypicADiag. Thus, the function getTipDistribution uses the reduction show in554

Appendix C.1 to compute m and Σ.555

Last, the keyword ‘OUter’ still defines the exact same model, but as an instance of the556

class PhenotypicModel. Thus, the function getTipDistribution uses the resolution of the ODE557

system to compute m and Σ.558

The following lines of code show that the function returns the same value with the three559

different methods, but do not take the same amount of time.560

In [240]: modelOU <- createModel(tree, ’OU’)

modelOUbis <- createModel(tree, ’OUbis’)

modelOUter <- createModel(tree, ’OUter’)

params <- c(0,0,0.2,1,2)

In [241]: getTipDistribution(modelOU, params, v=TRUE)

*** Computation of tip traits distribution through the analytical formula for an OU process ***

Computation time : 0.000497818 secs

Out[241]:561

$mean

A 0.8891968

B 0.8775436

C 0.909282

D 0.8997412

E 0.9137064

F 0.8504314

G 0.8946008

562
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$Sigma563

A B C D E F G

A 9.8772266 7.2724966 2.3654513 2.6142280 0.1171813 0.0000000 0.0000000

B 7.2724966 9.8500442 2.6142280 2.8891687 0.1295054 0.0000000 0.0000000

C 2.36545128 2.61422796 9.91770253 3.23775807 0.09593997 0.00000000 0.00000000

D 2.6142280 2.8891687 3.2377581 9.8994816 0.1060301 0.0000000 0.0000000

E 0.11718135 0.12950541 0.09593997 0.10603007 9.92553417 0.00000000 0.00000000

F 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 9.7762923 0.3657529

G 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.3657529 9.8889100

564

In [242]: getTipDistribution(modelOUbis, params, v=TRUE)

*** Computation of tip traits distribution through integrated formula ***

(Method working for models with a constant, A diagonalizable, and Gamma constant)

Computation time : 0.002770185 secs

Out[242]:565

$mean

A 0.8891968

F 0.8504314

E 0.9137064

G 0.8946008

C 0.909282

D 0.8997412

B 0.8775436

566

$Sigma567

A F E G C D B

A 9.8772266 0.0000000 0.1171813 0.0000000 2.3654513 2.6142280 7.2724966

F 0.0000000 9.7762923 0.0000000 0.3657529 0.0000000 0.0000000 0.0000000

E 0.11718135 0.00000000 9.92553417 0.00000000 0.09593997 0.10603007 0.12950541

G 0.0000000 0.3657529 0.0000000 9.8889100 0.0000000 0.0000000 0.0000000

C 2.36545128 0.00000000 0.09593997 0.00000000 9.91770253 3.23775807 2.61422796

D 2.6142280 0.0000000 0.1060301 0.0000000 3.2377581 9.8994816 2.8891687

B 7.2724966 0.0000000 0.1295054 0.0000000 2.6142280 2.8891687 9.8500442

568
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In [243]: getTipDistribution(modelOUter, params, v=TRUE)

*** Computation of tip traits distribution through ODE resolution ***

(Method working for any model)

Computation time : 0.01829243 secs

Out[243]:569

$mean

A 0.8891984

F 0.8504309

E 0.9137081

G 0.8946024

C 0.9092837

D 0.8997429

B 0.8775447

570

$Sigma571

A F E G C D B

A 9.8772243 0.0000000 0.1171837 0.0000000 2.3654834 2.6142593 7.2725143

F 0.0000000 9.7762896 0.0000000 0.3657561 0.0000000 0.0000000 0.0000000

E 0.11718371 0.00000000 9.92553239 0.00000000 0.09594306 0.10603262 0.12950776

G 0.0000000 0.3657561 0.0000000 9.8889077 0.0000000 0.0000000 0.0000000

C 2.36548343 0.00000000 0.09594306 0.00000000 9.91769978 3.23780799 2.61425810

D 2.6142593 0.0000000 0.1060326 0.0000000 3.2378080 9.8994793 2.8891973

B 7.2725143 0.0000000 0.1295078 0.0000000 2.6142581 2.8891973 9.8500418

572

In [244]: dataOU <- simulateTipData(modelOU, c(0,0,0.2,1,2))

fitTipData(modelOU, dataOU)

fitTipData(modelOUbis, dataOU)

fitTipData(modelOUter, dataOU)

*** Simulation of tip trait values ***

Simulates step-by-step the whole trajectory, but returns only the tip data.

Computation time : 0.2363398 secs

*** Fit of tip trait data ***
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Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 0.1814284 secs

Out[244]:573

$value 15.0174906724384574

$inferredParams m0 -26.3722559360675575

v0 0.111663973605588576

psi 0.0973609295443122577

theta 14.9673044542728578

sigma 1.12338425846849579

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 0.7557919 secs

Out[244]:580

$value 15.0174906724384581

$inferredParams m0 -26.3722559360675582

v0 0.111663973605588583

psi 0.0973609295443122584

theta 14.9673044542728585

sigma 1.12338425846849586

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 6.088683 secs
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Out[244]:587

$value 15.0174914969285588

$inferredParams m0 -26.3722559360675589

v0 0.111663973605588590

psi 0.0973609295443122591

theta 14.9673044542728592

sigma 1.12338425846849593

Focusing on the computation time, it is quite easily seen how interesting it can be to do594

some more analytical work and write more appropriated getTipDistribution functions. Still,595

the defaut function written for the mother class PhenotypicModel should always work.596

Using the framework to define a new model.—597

We illustrate here how the current code can be used to numerically study a specific model598

that has not been implemented elsewhere. We focus here on the implementation of the ‘GMM’599

model described in the main text, explaining step by step the following procedure, that is600

generalizable to any model :601

1. we identify what the periods are,602

2. we write the model in a vectorial form on each period,603

3. we implement it naively first,604

4. we make analytical developments to speed up the computation time, and subsequently605

introduce a new class more appropriated to this model.606

For simplicity, we implement GMM for two ultrametric trees here. In our example, the607

two trees will be :608

In [245]: newick1 <- "(((A:1,B:1):3,(C:3,D:3):1):2,E:6);"

tree1 <- read.tree(text=newick1)
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plot(tree1)

newick2 <- "((X:1.5,Y:1.5):3,Z:4.5);"

tree2 <- read.tree(text=newick2)

plot(tree2)

609

610

The first step consists in implementing a function endOfPeriodsGMM(tree1, tree2),611

which takes as input two trees (the trees corresponding to our two interacting clades), and612

returns :613

• the list of successive branching times (τi) (vector periods),614

• information on which branch gives birth at that time (vector copy),615
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• the number assigned to the newly created branch at that time (vector paste),616

• the number of lineages in clade 1 and 2 at each time (vectors nLineages1 and nLineages2),617

• the label of tips at the end (vector labeling).618

For example, our function, called on the two preceding trees, returns :619

In [246]: endOfPeriodsGMM(tree1, tree2)

Out[246]:620

$periods 0 1.5 2 3 4.5 5 6621

$copy 1 3 1 3 5 1 0622

$paste 2 4 3 4 7 5 0623

$nLineages1 2 2 3 4 4 5 0624

$nLineages2 1 2 2 2 3 3 0625

$labeling ’A’ ’E’ ’C’ ’D’ ’B’ ’X’ ’Z’ ’Y’626

The second step now consists in writing the model in the vectorial form required in the627

framework, on each epoch i. The form of the a, A and Γ matrices is shown in Appendix C.4, and628

depends on the number of lineages in the two clades on each epoch.629

We introduce the constructor createModelCoevolution(tree1, tree2), which is a630

function that takes as input two ultrametric trees corresponding to the two clades, and returns631

an object of class PhenotypicModel. It relies on the central function aAGamma that defines the632

collection of (ai, Ai,Γi) on each epoch.633

This first version of the GMM implementation allows us to simulate tip data, to get the634

tip distribution under any parameter set, and to fit tip data.635

In [248]: modelGMMbis <- createModelCoevolution(tree1, tree2, keyword="GMMbis")

modelGMMbis
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Out[248]:

****************************************************************

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "GMMbis"

*** Parameters of the model : [1] "m0" "v0" "d1" "d2" "S" "sigma"

*** Description : Generalist Matching Mutualism model.

Starts with 3 or 4 lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving then non-independtly

according to the GMM expression.

*** Periods : the model is cut into 7 parts.

For more details on the model, call : print(PhenotypicModel)

****************************************************************

In [249]: dataGMM <- simulateTipData(modelGMMbis, c(0,0,5,-5, 1, 1), method=2)

*** Simulation of tip trait values ***

Simulates step-by-step the whole trajectory, plots it, and returns tip data.

Computation time : 0.319762 secs
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636

In [250]: getTipDistribution(modelGMMbis, c(0,0,5,-5,0.5,1))

Out[250]:637

$mean

A 2.493801

E 2.493801

C 2.493801

D 2.493801

B 2.493801

X -2.493801

Z -2.493801

Y -2.493801

638
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$Sigma

A E C D B X Z Y

A 2.196011 1.171214 1.215844 1.215844 1.563892 1.399735 1.341619 1.399735

E 1.171214 2.141458 1.172730 1.172730 1.171214 1.337713 1.279597 1.337713

C 1.215844 1.172730 2.199045 1.248832 1.215844 1.379237 1.321122 1.379237

D 1.215844 1.172730 1.248832 2.199045 1.215844 1.379237 1.321122 1.379237

B 1.563892 1.171214 1.215844 1.215844 2.196011 1.399735 1.341619 1.399735

X 1.399735 1.337713 1.379237 1.379237 1.399735 2.200083 1.190366 1.423215

Z 1.341619 1.279597 1.321122 1.321122 1.341619 1.190366 2.158430 1.190366

Y 1.399735 1.337713 1.379237 1.379237 1.399735 1.423215 1.190366 2.200083

639

In [251]: fitTipData(modelGMMbis, dataGMM, c(0,0,5,-5,1,1))

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 3.728739 secs

Out[251]:640

$value 6.61385667009296641

$inferredParams m0 0.00512480151380221642

v0 2.69680996514239e-05643

d1 5.03536962882004644

d2 -5.83517142115953645

S 0.231631941480316646

sigma 0.361942471141108647

However, this first implementation relies on the PhenotypicModel class, which uses the648

method getTipDistribution that solves the ODE system on each epoch, and thus takes time.649

The analytical reduction presented in Appendix C.4 can also be implemented. To this650

end, we create a new class named PhenotypicGMM, associated with an other function651
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getTipDistribution. Using these developments allows us to compute more rapidly the tip652

distribution under the model.653

In [252]: modelGMM <- createModelCoevolution(tree1, tree2, keyword="GMM")

modelGMM

Out[252]:

****************************************************************

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "GMM"

*** Parameters of the model : [1] "m0" "v0" "d1" "d2" "S" "sigma"

*** Description : Generalist Matching Mutualism model.

Starts with 3 or 4 lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving then non-independtly

according to the GMM expression.

*** Periods : the model is cut into 7 parts.

For more details on the model, call : print(PhenotypicModel)

****************************************************************

In [253]: getTipDistribution(modelGMM, c(0,0,5,-5,0.5,1), v=TRUE)

getTipDistribution(modelGMMbis, c(0,0,5,-5,0.5,1), v=TRUE)

*** Analytical computation of tip traits distribution ***

(Method working for the GMM model only)

Computation time : 0.0008528233 secs

Out[253]:654
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$mean

A 2.493803

E 2.493803

C 2.493803

D 2.493803

B 2.493803

X -2.493803

Z -2.493803

Y -2.493803

655

$Sigma

A E C D B X Z Y

A 2.196010 1.171213 1.215843 1.215843 1.563890 1.399736 1.341620 1.399736

E 1.171213 2.141459 1.172730 1.172730 1.171213 1.337713 1.279597 1.337713

C 1.215843 1.172730 2.199045 1.248832 1.215843 1.379238 1.321122 1.379238

D 1.215843 1.172730 1.248832 2.199045 1.215843 1.379238 1.321122 1.379238

B 1.563890 1.171213 1.215843 1.215843 2.196010 1.399736 1.341620 1.399736

X 1.399736 1.337713 1.379238 1.379238 1.399736 2.200083 1.190366 1.423213

Z 1.341620 1.279597 1.321122 1.321122 1.341620 1.190366 2.158430 1.190366

Y 1.399736 1.337713 1.379238 1.379238 1.399736 1.423213 1.190366 2.200083

656

*** Computation of tip traits distribution through ODE resolution ***

(Method working for any model)

Computation time : 0.01734638 secs

Out[253]:657

$mean

A 2.493801

E 2.493801

C 2.493801

D 2.493801

B 2.493801

X -2.493801

Z -2.493801

Y -2.493801

658
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$Sigma

A E C D B X Z Y

A 2.196011 1.171214 1.215844 1.215844 1.563892 1.399735 1.341619 1.399735

E 1.171214 2.141458 1.172730 1.172730 1.171214 1.337713 1.279597 1.337713

C 1.215844 1.172730 2.199045 1.248832 1.215844 1.379237 1.321122 1.379237

D 1.215844 1.172730 1.248832 2.199045 1.215844 1.379237 1.321122 1.379237

B 1.563892 1.171214 1.215844 1.215844 2.196011 1.399735 1.341619 1.399735

X 1.399735 1.337713 1.379237 1.379237 1.399735 2.200083 1.190366 1.423215

Z 1.341619 1.279597 1.321122 1.321122 1.341619 1.190366 2.158430 1.190366

Y 1.399735 1.337713 1.379237 1.379237 1.399735 1.423215 1.190366 2.200083
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