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Abstract

Motivation: Multi-regional sequencing provides new opportunities to investigate genetic heterogeneity
within or between common tumors from an evolutionary perspective. Several state-of-the-art methods
have been proposed for reconstructing cancer sub-clonal evolutionary trees based on multi-regional
sequencing data to develop models of cancer evolution. However, the methods developed thus far are not
sufficient to characterize and interpret the diversity of cancer sub-clonal evolutionary trees.
Results: We propose a clustering method (phyC) for cancer sub-clonal evolutionary trees, in which
sub-groups of the trees are identified based on topology and edge length attributes. For interpretation,
we also propose a method for evaluating the diversity of trees in the clusters, which provides insight into
the acceleration of sub-clonal expansion. Simulation showed that the proposed method can detect true
clusters with sufficient accuracy. Application of the method to actual multi-regional sequencing data of
clear cell renal carcinoma and non-small cell lung cancer allowed for the detection of clusters related to
cancer type or phenotype.
Availability: phyC is implemented with R(>=3.2.2) and is available from
https://github.com/ymatts/phyC.
Contact: ymatsui@med.nagoya-u.ac.jp

1 Introduction
Cancer is a heterogeneous disease. The genetic diversity is driven by
several evolutionary processes such as somatic mutation, genetic drift,
migration, and natural selection. The clonal theory of cancer (Nowell,
1976) is based on Darwinian models of natural selection in which
genetically unstable cells acquire a somatic single nucleotide variant
(SSNV), and selective pressure results in tumors with a biological fitness
advantage for survival.

∗to whom correspondence should be addressed

The development of multi-regional sequencing techniques has
provided new perspectives of genetic heterogeneity within or between
common tumors (Schuh et al, 2012; Newurger et al., 2013; Carter et al.,
2012; Campbell et al., 2008; Yachida et al., 2010). The read counts from
multi-region tumor and matched normal tissue sequences from each patient
are then used to infer the tumor composition and evolutionary structure
from variant allele frequencies (VAFs); i.e., the proportion of variant alleles
that contains SSNVs. Using the VAF, the cancer evolutionary histories can
be reconstructed as a tree, termed a sub-clonal evolutionary tree, which
reflects how the identified SSNVs are accumulated for each patient.

Recently, new state-of-the-art methods have been proposed for
reconstructing cancer sub-clonal evolutionary trees based on multi-
regional sequencing data to develop models of cancer evolution, and have
been applied to many types of cancers in multiple patients (Jiao et al.,
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2013; Roth et al., 2014; Miller et al., 2014; Zare et al., 2014; ,Strino et al.,
2013; Qiao et al., 2014; Salem et al., 2015; Popic et al., 2015). Most of the
reconstruction methods developed to date are based on two assumptions:
(i) no mutation occurs twice in the course of cancer evolution, and (ii) no
mutation can be lost (Nik-Zainal et al., 2012) (Figure 1A). In this tree,
the root and its subsequent node represent a normal cell and founder cell,
respectively. Sub-clones are described as nodes below the founder cell, and
edge lengths indicate the number of SSNVs that are newly accumulated in
descendant nodes (Figure 1B). For details, see Beerenwinkel et al. (2014).

Although the reconstruction methods developed thus far have revealed
intra-tumor heterogeneity by analysis of individual sub-clonal evolutionary
trees, methods for obtaining a detailed understanding of inter-tumor
heterogeneity according to evolutionary patterns with a set of the trees are
lacking. A variety of sub-clonal evolutionary trees can be considered as the
consequence of underlying tumor evolutionary principle, which may lead
to resistance to chemotherapeutics and targeted therapies (Swanton, 2014;
Venkatesan and Swanton, 2016). Characterizing inter-tumor heterogeneity
by patterns of evolutionary tree is important for developing new targeted
therapies and for preventing the emergence of drug resistance. Several
studies have suggested specific evolutionary patterns of tumors with
various and at times conflicting result. For example, Gerlinger et al. (2014)
identified parallel evolution of sub-clones in clear cell renal cell carcinomas
(ccRCCs), whereas no such parallel evolution was evident in studies on
non-small cell lung cancer (NSCLC) (de Bruin et al., 2014; Zhang et al.,
2014). Zhang et al. (2014) also showed that in a relapsed group of patients,
the fraction of SSNVs in sub-clones was significantly larger than that of
founder cells. These studies indicate that both the sub-clonal branching
patterns and fraction of SSNVs in sub-clones are important factors for
identifying the cancer type or phenotype of related subgroups.

In this paper, we propose a new clustering method for cancer sub-
clonal evolutionary trees based on tree topologies and edge attributes that
describe the relationships of sub-clones and the number of SSNVs that
accumulate in the sub-clones (Figure 1D). Our conceptual framework is
based on object-oriented data analysis (Marron, et al., 2014), in which the
observation units are non-numeric objects such as functions and trees.

Comparison of phylogenetic trees has long been discussed in the
context of the evolution of species, and several comparative analytical
methods have been developed, including nearest neighbor interchanging
(Waterman and Smith, 1978), subtree transfer distance (Allen and Steel,
2001), quartet distance (Estabrook et al., 1985), Robinson-Foulds distance
(Robinson and Foulds, 1981), path length metrics (Steel and Penny, 1993),
and Billera-Holmes-Vogtmann (BHV) distance (Billera, et al., 2001).
However, these distances are defined for phylogenetic trees with the same
set of leaves, and therefore cannot accurately deal with the following
problems, (p1)–(p4), that are specific to the context of cancer sub-clonal
evolutionary trees.

(p1) The parental sub-clone has one child sub-clone or more than two child
sub-clones (no bifurcation)
(p2) The number of sub-clones varies among patients (different numbers
of leaves)
(p3) SSNV contents differ among patients (different leaf labels)
(p4) The number of detected SSNVs varies among patients (bias of edge
attributes)

These problems motivated us to develop a method for transforming
tree objects via transformation of the tree topologies and edge attributes
to allow for effective comparison among trees, a procedure we refer
to as tree registration. Given the complexity of cancer evolution, strict
comparison of observed cancer sub-clonal evolutionary trees is unrealistic.
In particular, the structures and sizes of observed evolutionary trees differ

owing to the wide variation in sub-clonal evolution, and because the sub-
clones themselves contain numerous progressor SSNVs that differ among
patients. Alternatively, we focus on the biologically important features
that may be related to cancer type- or phenotype-associated evolutionary
structures, such as drug-sensitive sub-clonal evolution. Moreover, caner
progression can be considered as the consequence of a complex sequence
of several evolutionary events such as somatic mutation, genetic drift,
migration, and natural selection, which do not happen at the same rate for
every patient. Accordingly, for comparison of cancer evolutionary trees
between two patients, the relative number of SSNVs should be considered
rather than the fixed number of SSNVs.

The main contributions of this paper are development of (i) a tree
registration method for cancer evolutionary trees, (ii) a clustering method
of the registered trees, and (iii) an evaluation method of the clusters, which
can be applied using our software phyC in the R environment.

In the registration, we resolve the issues raised in (p1)–(p4) though
development of a method for transforming tree objects by mapping tree
topologies and their attributes to make the trees comparable (figure 1C).
The registered trees are embedded in Euclidean space, which enables
defining the distance between the cancer sub-clonal evolutionary trees.
Based on this distance, we divide a set of the trees into several sub-
groups with a clustering method (figure 1D). We developed two tools
for interpretation of the clusters: multidimensional scaling (MDS) and a
sub-clonal diversity plot.

We evaluated the performance of phyC using simulated VAFs that
mimic the process of cancer sub-clonal evolution under the framework
of cellular automaton (Niida, et al., 2015). We also demonstrate the
applicability ofphyC using two actual datasets to show the interpretability
of the clustering results: a ccRCC (Gerlinger et al., 2014) and NSCLC
(Zhang et al., 2014) dataset.

phyC is implemented with R(>= 3.2.2) and is available from
https://github.com/ymatts/PhyC.

2 Methods
We denote n reconstructed cancer sub-clonal evolutionary trees as X =

{xi; i = 1, 2, . . . , n}, and the edges and edge lengths are denoted as
{eij ; i = 1, 2, . . . , n, j = 1, 2, . . . ,mi} and {|eij |; i = 1, 2, . . . , n

j = 1, 2, . . . ,mi}, respectively. Without loss of generality, {ei1; i =

1, 2, . . . , n} indicates the edge from the normal cell to the founder cell.
Given the number of terminal nodes Ni; i = 1, 2, . . . , n, we define
the shortest path that is a set of edges connecting the root and terminal
nodes with the minimum number of edges, denoted as pik ={{eil; i =

1, 2, . . . , n, l ∈ Pik};k = 1, 2, . . . , Ni}, wherePik ⊆ {1, 2, . . . ,mi}.
We define depth as the number of edges in the shortest path, and we denote
dik = n(Pik), where n(·) represents the number of elements in a set.

2.1 Registration

We developed a registration method for cancer evolutionary trees. The goal
of the registration is to transform the observed trees such that dissimilarities
can be defined with consideration of the tree topologies and edge attributes.
To solve the problems (p1)–(p4), we provide the following approaches,
(q1) and (q2):

(q1) Reference tree encoding
(q2) Normalizing edge lengths

To account for (p1)–(p3), we consider a reference tree-encoding
approach. In this approach, we prepare a very large bifurcated tree called
a reference tree (corresponding to as the maximum tree in Feragen et al.,
2013) and encode the observed tree topologies and edge lengths onto the
reference. Zero-length edges are regarded as degenerated edges (Figure
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Fig. 1. Overview of the proposed method. (A) Example of sub-clonal evolution. A founder cell is established after a normal cell acquires several passenger mutations and driver mutations
(founder SSNVs), and sub-clones evolve by acquiring progressor SSNVs. Each color (purple, orange, dark blue, light blue, and green) of circles represents different sub-clones. (B) Example
of sub-clonal evolutionary tree in the case of (A). A root and immediate node represent the normal cell and founder cell, respectively. Subsequent nodes indicate sub-clones and edge lengths
indicate the number of SSNVs acquired in sub-clones. (C) Example of the registration of a tree. To resolve (p1)–(p4) for comparison of the evolutionary trees, a sufficiently large bifurcated
tree is constructed, which is the reference tree (note that we have omitted bifurcation from the root for clearer visualization). The tree topologies and attributes are mapped to the reference
tree beginning with those with largest depth to those with the smallest depth. In the case of a tie, the sub-trees are mapped from those with the largest edge length. Zero-length edges are
regarded as degenerated edges (dashed lines). Edge lengths are normalized by the sum of all edge lengths within tumors. The resulting trees can be represented as topology vectors ti

and edge length vectors ui . (D) Clustering cancer evolutionary trees to summarize the evolutionary history of cancer for each patient. The trees are reconstructed based on the VAFs and
then n cancer sub-clonal evolutionary trees are divided into K subgroups based on tree topologies and edge attributes. Through the registration, n evolutionary trees can be represented as
m-dimensional n vectors in Euclidean space, and a standard clustering algorithm can be applied.

1C). The advantage of this approach is that once we encode the observed
tree onto a reference tree, the comparison can be simply achieved for
trees of the same structures and sizes. To account for the issue (p4), we
developed a method for normalization of the edge length to remove the
bias of the detected number of SSNVs.

Here, we describe the details of the registration method. First, we set
the maximum depth in X as dmax(X) =max {dik; i = 1, 2, . . . , n,
k = 1, 2, . . . , Ni} and define the reference tree as follows.

Definition 1 (Reference tree). The reference tree is a bifurcated tree
with the minimum depth of dmax(X).

Thus, the reference tree has m = 2(2dmax(X) − 1) edges (figure
1C). We denote the reference tree as Xref with edges and edge lengths
Ek; k = 1, 2, . . . ,m and |Ek|;k = 1, 2, . . . ,m, respectively. The
registration can then be defined with the reference tree.

Definition 2 (Registration). Registration is a mapping f : X 7→ Xref .

We define the mapped trees as Y = {f(xi); i = 1, 2, . . . , n}, and
more specifically, the mapped edge and edge length are set as {Eik;
i = 1, 2, . . . , n, k = 1, 2, . . . ,m} and {|Eik|; i = 1, 2, . . . , n,
k = 1, 2, . . . ,m}, respectively. The number of edges differs between

the observed tree and the reference tree, and we also need to account for
any unmapped edges. Since the degenerated edges can be regarded as
the zero-length edge when considering the distance of trees (Feragen et
al.,2013), we can define |Eik′ | = |eij |; k′ ∈ A for the mapped edge
index setA ⊆ {1, 2, . . . ,m} and |Eik′ | = 0; k′ ∈ B for the unmapped
edge index B = {1, 2, . . . ,m}\A.

To resolve (p3), we developed the mapping rule eij 7→ Eik for j =

1, 2, . . . ,mi, k = 1, 2, . . . ,m, such that the observed trees are mapped
onto the reference tree begining with sub-trees with the largest depths
to those with the smallest depths (Figure 1C). When the depths are the
same among the sub-trees, we use the edge length and map the sub-trees
beginning with the largest edge lengths.

In the last step of the registration, we perform normalization for the
edge length. Zhang et al. (2014) importantly suggested that the ratio of the
number of SSNVs in a trunk to that in the sub-clones is related to certain
phenotypes such as whether or not the cancer is recurrent. Therefore, we
consider that the ratio of the number of accumulated SSNVs is an important
factor to characterize and compare the cancer sub-clonal evolutionary trees,
and we divided each edge length by the total number of SSNVs within
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patients.

|Eik|/
m∑

k=1

|Eik|, for all k. (1)

2.2 Clustering set of registered trees

To define the dissimilarity between the registered trees, we begin with
the space of the set of the registered trees. Theoretically, the space of a
registered trees is the special case of BHV space (Birella, et al., 2001),
where the space of a semi-labeled tree is a disjointed Euclidean space. In
BHV space, each tree topology corresponds to a Euclidean orthant, and if
the tree topologies are the same, then they will lie in the same orthant where
the coordinates correspond to the edge lengths. Since we only encode the
observed trees onto the reference tree with the same topology, the registered
trees do indeed lie in the same orthant.

Corollary 1 (Euclidean embedding). The registered trees lie in
Euclidean space.

We represent the registered tree yi as a vector in Euclidean space
as follows. The binary vector is defined as t′i = (ti1, ti2, . . . , tim);
tij ∈ {0, 1}, whose elements correspond to the presence of each edge.
If an edge is present, then tij = 1; otherwise, tij = 0. We also
define edge attributes, whose elements correspond to each edge length
as u′i = (ui1, ui2, . . . , uim); uij ∈ R. Using t and u, the tree yi can
be represented as

zi = tiu
′
i. (2)

We set z′i = (zi1, zi2, . . . , zim); zim ∈ R. Thus, n registered trees
are represented as the n×m matrix Z = (z′1, z

′
2, . . . , z

′
n).

We define the dissimilarity as follows:

s(xi, xj) :=
√

(zi − zj)′(zi − zj). (3)

The basic statistics of the cancer sub-clonal evolutionary trees can also
be defined. The tree average is defined as µ = 1

n

∑n
i=1 zi and the tree

variance is defined as σ2 = 1
n

∑n
i=1(zi − µ)′(zi − µ).

Based on the tree representation in (2), which can be regarded as n
observations with an m features matrix, we can simply apply standard
clustering algorithms and divide the n trees into subgroups. Hierarchical
clustering was then implemented using phyC.

2.3 Graphical representation

Interpreting clustering results is a key issue for tree comparison, which
requires understanding the features of the cancer sub-clonal evolutionary
trees in clusters. In particular, visual representation can be a powerful tool
for such interpretation. Therefore we developed two computational tools
for comparing trees and understanding the cluster features.

MDS
To effectively compare the trees, we approximately embedded the

registered trees into lower-dimensional Euclidean space. For this purpose,
we applied classical MDS (CMDS) (Torgerson, 1952), which is a
dimension-reduction technique based on singular value decomposition.
We omit the details of the CMDS algorithm and briefly describe the
method below. Given the symmetric distance matrix S = {sij ; i, j =

1, 2, . . . , n}, the double centered matrix

B = −
1

2
HS2H (4)

is positive semi-definite whereH = 1− 1
n
1n1n

′, and can be diagonalized
as

B = UΛU ′. (5)

The constructed coordinates are obtained by X = UΛ
1
2 . For this

purpose, we use the distance that is defined in (3). CMDS requires
knowing the number of dimensions, which we set to two for the purpose
of convenient visualization. In phyC, we overlaid the tree shapes over
the coordinates and visually compared the tree structures based on
dissimilarity.

Sub-clonal diversity plot
To visualize how sub-clones evolve with respect to SSNV accumulation,

we apply the concept of a lineage-through-time (LTT) plot, which is
commonly used for visualizing the timing of speciation events in studies
of the birth-death process. The LTT plot generally describes the time vs.
number of lineages; in the present case, this is expressed as the number of
sub-clones (y-axis) vs. the fraction of accumulated SSNVs (x-axis), and
the plot is referred to as a sub-clonal diversity plot. In the plot, y = 0

means that there is no sub-clone, and thus only a normal cell exists, and
y = 1 indicates that there is a founder cell. For example, (x, y) = (0.3, 1)

indicates that the founder cell is established with the accumulation of 30%

SSNVs. For y > 1, the growth curve in the plot represents how many sub-
clones emerged for a given fraction of SSNVs. If the curve is upright,
the sub-clones evolve with a small fraction of SSNV accumulation, and
conversely, if the curve grows with gradual steps, the sub-clones acquire a
relatively large fraction of SSNVs. A gradual growth curve was observed
in the case of parallel evolution shown in Gerlinger et al., (2014), which
will be demonstrated below in the implementation of the ccRCC dataset.

3 Results

3.1 Simulation data

We evaluated the performance of the proposed method using simulation
data. We generated a VAF profile of multi-region sequences using the
BEP simulator (Niida et al., 2015; Uchi et al., 2016) based on a cellular
automaton model. Three main parameters were used to mimic cancer sub-
clonal evolution: mutation rate (m), the number of driver genes (d), and
strength of the driver mutation gene (f ). The simulator starts with one
normal cell and grows in a probabilistic manner. In Niida et al. (2015),
the mutation rate was identified as one of the most important factors
contributing to cancer heterogeneity.

We assume two clusters consisting of 30 cancer sub-clonal evolutionary
trees. Using the BEP simulator, we generated tumor VAF profiles over nine
regions. The evolutionary patterns are controlled with the mutation ratem,
and following Niida et al. (2015), we set m = 0.01 (parameter setting 1)
and m = 0.0001 (parameter setting 2) for each cluster, which represents
the cancer heterogeneity characterized as neutral evolution and Darwinian
evolution, respectively. Other parameters were set as d = 8 and f = 1.2

in both clusters. The evolutionary trees were constructed using Wagner
parsimony trees from the VAF profiles with the function acctran in the
R package phangorn (Klaus, 2011), after converting the VAF profiles
to binary profiles: if V AF ≥ 0.05, then we regarded the gene as mutated
and set it to 1; otherwise, it was considered to be not mutated and was set
to set 0.

We performed the registration for 60 trees and calculated the
dissimilarities among the trees. Figure 2 shows the MDS plot based on
the dissimilarity, and each color represents the parameter settings 1 (light
green) and 2 (purple). From the MDS plot, the generated evolutionary trees
appeared to consist of the two clusters.

We performed hierarchical clustering with Ward’s method (Ward,
1963) on the 60 registered trees, which were divided into two subgroups:
A and B. Although four trees of parameter setting 2 were misclassified into
cluster A, our method could effectively classify the sub-clonal evolutionary
trees with a true positive rate of 93% (Table 1).
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The simulation result demonstrated that phyC could accurately
classify sub-clonal structures derived from different evolutionary
principles, based on their evolutionary tree shapes.

Table 1. Clustering result of simulation data

Parameter setting 1 Parameter setting 2
Cluster A 30 4
Cluster B 0 26

Fig. 2. (A) True clusters and evolutionary trees generated from the BEP simulator. Trees
in parameter setting 1 and 2 are grouped according to high and low mutation rates. (B)
Clusters detected by phyC. Trees with each parameter were effectively classified into true
clusters, except for four trees. The true positive rate was 93%.

3.2 Real data

We here demonstrate the application of our proposed method using an
actual ccRCC dataset (Gerlinger et al., 2014) and NSCLC dataset (Zhang
et al., 2014), consisting of 8 and 11 multi-regional tumor samples and
their VAFs were collected among 587 and 7,026 SSNVs, respectively.
Since both studies used the maximum parsimony method to reconstruct
the cancer sub-clonal evolutionary trees, we also adopted this method to
analyze the datasets with our approach. We binarized the VAF profiles
with V AF ≥ 0.05 as one and otherwise zero. Using the binary profile,
we estimated phylogenetic trees using the function acctran in the R
package phangorn and we obtained 19 cancer sub-clonal evolutionary
trees.

ccRCC dataset
The ccRCC dataset consists of 8 sub-clonal evolutionary trees with clinical

information related to treatments. We divided the 8 sub-clonal evolutionary
trees of the ccRCC dataset into 3 subgroups using hierarchical clustering
with Ward’s method. Table 2 shows the clustering result and a configuration
of the 8 trees with CMDS (Figure 3A-1).

Cases EV003 and EV006 in cluster 1 received pretreatment with
everolimus (Gerlinger et al. 2014). The sub-clonal diversity plot shown in
Figure 3B-1 demonstrates that sub-clonal expansions in cluster 1 occurred
after 60% of the SSNVs accumulated, in contrast to cluster 2 (20%) and
cluster 3 (10%), which may indicate that the drug interrupts acquisition
of SSNVs in the sub-clones, leading to lower genetic diversity of the sub-
clones. Cluster 1 reflects the drug-sensitive sub-clones group, and the result
corresponds to the interpretation provided by Gerlinger et al. (2014).

Cases EV005, EV007, and RMH008 in cluster 2 acquired a large
fraction of SSNVs in the sub-clones (Figure 3B-1). Comparison of the
original tree shape demonstrated that the long branches are followed
by several private branches. These three samples were reported as sub-
clones of parallel evolution, i.e., each sub-clone independently evolved
in spatially distinct regions (Gerlinger et al., 2014). Cluster 3, including
RK26, RMH004, and RMH002, acquired the largest fraction of SSNVs
among sub-clones; however, there is no valid interpretation for this result.

These findings demonstrate that our method can produce interpretable
clusters for the drug-sensitive group and parallel evolution group in the
ccRCC data set.

Table 2. Clustering result of the ccRCC dataset

Cluster Sample name

Cluster 1 EV003, EV006
Cluster 2 EV005, EV007, RMH008
Cluster 3 RK26, RMH004, RMH002

NSCLC dataset
The NSCLC dataset consists of 11 sub-clonal evolutionary trees with the

following clinical information: staging (IA, IIA, IIIA, and IB), smoking
status (former, current, and never), and recurrence (yes and no). We divided
the 11 trees into 2 subgroups using hierarchical clustering with Ward’s
method. The clustering result is shown in Table 3, and the configuration
of CMDS is shown in Figure 3A-2.

Case 330 and case 4990 in cluster 2 are labeled as the recurrent group,
but case 356 is not. As shown in Figure 3B-2, there are several long
horizontal regions in the diversity curve, which indicates that each sub-
clone acquired a large portion of SSNVs. This implies that the sub-clones
contained a large fraction of the SSNVs after diverging from the founder
cell, i.e., representing a genetically new generation. Zhang et al. (2014)
reported a similar observation, in which they found a significant difference
(t-test) in the average fractions of SSNVs between the recurrent group and
non-recurrent group. Case 356 is labeled as non-recurrent; however, it
shows a large fraction of SSNVs in the sub-clones compared to that of the
non-recurrent group, leading to a similar tree shape to that of trees of the
recurrent group.

Cluster 1 consists of non-recurrent cases, except for case 270. Figure
3B-2 shows small horizontal regions in the diversity curve, which indicates
that each sub-clone acquired a smaller portion of SSNVs compared to
that observed in the sub-clones of cluster 2; that is, most of the SSNV
acquisitions events had already occurred as founder mutations. Although
case 270 is labeled as recurrent, it shows a lower fraction of SSNVs in the
sub-clones compared to that of the recurrent group, and as a result, its tree
shape resembles that of trees of the non-recurrent group.

The difference between the two clusters indicates that acquisition of a
large fraction of SSNVs in sub-clones may influence the survival of cancer
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Fig. 3. (A-1) Three clusters of the ccRCC dataset. Clusters 1 (green) and 2 (orange) reflect drug-sensitive sub-clonal evolution and parallel evolution, respectively; we cannot provide valid
interpretation for cluster 3 (purple) at present. (B-1) Sub-clonal diversity plot of the ccRCC dataset. Each color corresponds to the clusters shown in (A). Sub-clonal expansions in cluster
1 occurred with x = 0.6; (i.e., the proportion of SSNVs in the trunk is 60%). This result is in contrast to that obtained for cluster 2 (x = 0.2) and cluster 3 (x = 0.1). Trees in cluster
2 show gradual growth of diversity curves, indicating that these sub-clones acquire a relatively large fraction of SSNVs. The sub-clones independently evolve in spatially distinct regions
(Gerlinger et al., 2014. (A-2) Two clusters in the NSCLC dataset. Clusters 1 (green) and 2 (orange) reflect the non-recurrent and recurrent group, respectively. Only case 270 and case 356
were misclassified to clusters 1 and 2, respectively. (B-2) Sub-clonal diversity plot of the NSCLC dataset. Each color corresponds to the clusters shown in (A-2). (A-3) Two clusters in the
ccRCC and NSCLC datasets combined. Clusters 1 (green) and 2 (orange) represent the cancer types NSCLC and ccRCC, respectively. (B-3) Sub-clonal diversity plot of the ccRCC and
NSCLC datasets.

Table 3. Clustering result of the NSCLC dataset

Cluster Sample name

Cluster 1 case 317, case 292, case 283, case 324, case 499
case 472, case 339, case 270

Cluster 2 case 330, case 4990, case 356

patients, and this feature could be captured and classified according to
analysis of tree shapes through the proposed method.

Comparison of the ccRCC and NSCLC datasets
In addition to establishing the evolutionary pattern of a certain cancer type

or sub-type, it is also interesting to compare the sub-clonal evolutionary
patterns of different types of cancer. Therefore, we compare the sub-
clonal evolutionary trees derived from the ccRCC and NSCLC datasets.
We applied phyC to the 19 trees reconstructed as described in the previous
sub-sections, which were divided into two distinct clusters (Table 4, Figure
3A-3).

The trees could be mainly classified according to cancer type. One of
the main features of the ccRCC sub-clonal evolutionary trees in cluster
2 was the acquisition of a large fraction of SSNVs in the sub-clones,
leading to the tendency of parallel evolution. In contrast to the ccRCC
trees, the NSCLC sub-clonal evolutionary trees showed that a large fraction
of SSNVs was acquired in the trunk, and not in the sub-clones, which
confirmed that the important event had already occurred in the early stage
of SSNVs acquisition (Zhang et al., 2014).

Some of the trees were classified with different cancer types, including
case 330, case 4990, and case 356 in cluster 2, and EV003 and EV006

in cluster 1. Case 330 and case 4990 in the NSCLC dataset are part of
the recurrent group, and the tree shape of case 356 is similar to that of
the recurrent group (Table 4). Furthermore, their sub-clonal evolutionary
trees were similar to the ccRCC trees, which implies that new aberrant
SSNVs related to recurrence, which were not present during early SSNVs
accumulation, were acquired in sub-clones. EV003 and EV006 in the
ccRCC dataset are samples of drug-sensitive tumors, and their tree shapes
resemble those of NSCLC trees, which further supports that the drug
interrupts the accumulation of SSNVs in the sub-clones.

Table 4. Clustering result of the ccRCC and the NSCLC datasets

Cluster Sample name

Cluster 1 case 317, case 292, case 283, case 324, case 499
case 472, case 339, case 270, EV003, EV006

Cluster 2 EV005, EV007, RK26, RMH002, RMH004
RMH008, case 330, case 4990, case 356

4 Discussion
Considering the generally high level of inter-tumor heterogeneity, it
is important to be able to identify phenotype- or cancer type-related
sub-clonal evolutionary patterns. Previous studies have classified and
interpreted the branching patterns of such sub-clones with manual
methods, and then separately analyzed the compositions of SSNVs in
each sub-clone. However, development of a quantitative analysis method
is required to best scale datasets containing a large number of samples
with sub-clonal evolutionary trees for characterizing and interpreting the
evolutionary patterns.
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Our approach relies on reconstruction methods of sub-clonal
evolutionary trees, and we used a parsimony approach that is widely
adopted in studies of multi-regional sequencing. The proposed method
only requires knowledge of the edges and edge attributes of rooted trees,
and is therefore widely applicable to outputs of other recently developed
state-of-the-art reconstruction methods, which allowed us to consider the
heterogeneous mixture of cells within a sample.

There are several limitations of the present method that are worth
mentioning, which should be tackled in further investigations. First, we
have ignored the specific content of SSNVs in the sub-clones. We believe
that this is a reasonable assumption to some extent, since the variation
of SSNVs is too large to yield an effective comparison. However, the
effects and consequences of different types of SSNVs can also vary, such
as driver mutations or passenger mutations. Thus, when comparing edges
with the same lengths from different trees, the two edges may not actually
be equivalent if driver genes are included in one edge but not in the other.
Therefore, a method that can incorporate the effect of driver genes in the
sub-clones should be explored in future work.

Second, we have here considered only the SSNVs accumulated
into sub-clonal evolutionary trees, ignoring potential copy number
or epigenetic aberrations; however, these factors may also affect
heterogeneity within a tumor. Multi-regional sequence analysis has
been performed using exome sequencing as well as copy number,
methylation, and mRNA expression array profiling, providing an
integrated interpretation of cancer sub-clonal evolution (Uchi et al., 2016).
To determine the sub-clonal evolutionary patterns from these integrated
data, our method can be extended to the case of multivariate edge attributes,
including copy number variations and hyper- or hypo-methylation, as well
as other genetic and epigenetic aberrations.

Finally, we did not take into account the potential effects of regional
sampling biases and individual variations among tumors or patients.
Gerlinger et al. (2014) pointed out that increasing the sequenced regions
of samples might lead to additional detection of sub-clones, and thus the
complexity of inferred sub-clonal evolutionary trees might be affected by
the sampling strategy. Therefore, a method for sampling bias reduction is
needed to improve the clustering accuracy and plausible interpretation.

5 Conclusion
We developedphyC, which was designed for clustering a set of cancer sub-
clonal evolutionary trees to characterize cancer sub-clonal evolutionary
patterns according to tree shape, based on analysis of tree topologies
and edge attributes. Using this approach, we effectively identified
the evolutionary patterns with different degrees of heterogeneity in a
simulation study. We also successfully detected the phenotype-related and
cancer type-related subgroups when applying this method to actual ccRCC
and NSCLC data. Our method represents the first practical method to
quantitatively and accurately compare a variety of sub-clonal evolutionary
trees with different structures, sizes, and labels, and with biases of
edge length, while further allowing for biological interpretation. Our
results imply that this approach has potential applications for personalized
medicine such as predicting outcomes of chemotherapeutics and targeted
therapies, e.g., drug-resistance, based on sub-clonal evolutionary trees and
we believe that the value and impact of our work will grow as more and
more multi-regional sequencing datasets of patients become available.
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