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Abstract

results from any network biology tool.
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Background: Networks are popular and powerful tools to describe and model biological processes. Many
computational methods have been developed to infer biological networks from literature, high-throughput
experiments, and combinations of both. Additionally, a wide range of tools has been developed to calibrate
experimental data onto reference biological networks, in order to extract meaningful modules. Many of these
methods assess results' significance against null distributions of randomized networks. However, these standard
unconstrained randomizations do not preserve the functional characterization of the nodes in the reference
networks (i.e. their degrees and connection signs), hence including potential biases in the assessment.

Results: Building on our previous work about rewiring bipartite and undirected-unweighted networks, we
propose a method for rewiring any type of unweighted networks. In particular we formally demonstrate that the
problem of rewiring a signed and directed network preserving its functional connectivity (F-rewiring) reduces to
the problem of rewiring two induced bipartite networks. Additionally, we reformulate the lower bound to the
iterations’ number of the switching-algorithm to make it suitable for the F-rewiring of networks of any size.
Finally, we present BiRewire3, an open-source Bioconductor software enabling the F-rewiring of any type of
unweighted network. We illustrate its application to a case study about the identification of modules from gene
expression data mapped on protein interaction networks, and a second one focused on building logic models
from more complex signed-directed reference signaling networks and phosphoproteomic data.

Conclusions: BiRewire3 it is freely available at https://www.bioconductor.org/packages/BiRewire/,
and it should have a broad application as it allows an efficient and analytically derived statistical assessment of

1 Background

Representing and modeling biological processes as net-
works, in particular signaling and gene regulatory re-
lations, is a widely used practice in bioinformatics and
computational biology, bridging these research fields
to the vast repertoire of tools and formalisms provided
by graph- and complex-network-theory. Furthermore,
these representations facilitate an integrative analysis
of experimental observations, either by derivation of
these networks from the data, or by mapping the lat-
ter on the former. Hence, network-based approaches
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have become a popular paradigm in computational bi-
ology ({1, 2]).

In the last few years this has allowed the design of a
broad assortment of algorithms and tools whose aim
ranges from providing an interpretative framework for
the modeled biological relations, to the identification
of network-modules able to explain phenotypic traits
and experimental data from large reference signaling
graphs ([3, 4]). Many methods in this last class aim at
identifying a sub-network, for example, composed by
the most differentially expressed or significantly mu-
tated genes ([5, 6, 7, 8, 9]), or that it is targeted by a
given external perturbation ([10, 11, 12, 13, 14]). To-
ward this aim different optimization procedures have
been used to analyze experimental data, identifying a
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pathway that is deregulated in a given disease or whose
activity is perturbed upon a given drug treatment.

In many approaches, directed signed networks (DSNs,
formally defined in the following sections) are used
to model pathways and to interlink pathways from a
given collection. In these networks, nodes represent
biological entities (typically proteins) while edges rep-
resent the biological relationships between them (e.g.,
the activity of protein A affects that of protein B).
These edges have a direction to discriminate effectors
and affected nodes in a modeled relation, and a sign
to specify whether the modeled relation is an activa-
tion (positive sign) or an inhibition (negative sign).
Unsigned /undirected edges modeling generic interac-
tions can be also present. When available, sign and
direction allow a more detailed detection of the nature
of the interaction between the nodes. In this study,
the number, sign and direction of a node’s connections
are cumulatively denoted by the functional charac-
terization level (FCL) of the corresponding modeled
biological entity (from now entity).

In a reference network modeling a set of interlinked
pathways or protein-protein-interactions, the FCL
might be high for a node that models a functional hub.
For example a kinase phosphorylating a large number
of substrate proteins will have a high number of out-
going edges with positive signs. Similarly, a gene acti-
vated by a large number of transcription factors will
have a high number of positive in-coming edges. On
the other hand the FCL might be strongly biased by
the relevance of an entity in a given research field and
the corresponding resource from which the network
has been assembled. For example, in a cancer-focused
reference network it is reasonable to find nodes that
have a high FCL just because they have oncogenetic or
tumor-suppressive properties, thus have been studied
more than others. As a consequence, solutions to the
network optimization problems tackled in bioinformat-
ics (and mentioned above) can be strongly influenced
by the topology of the initial network, and by the FCL
of its nodes.

In an attempt to overcome this issue, some tools as-
sess this bias by comparing their provided sub-network
solutions with those that would be obtained (using
the same experimental data and the same algorithm)
across a large number of trials starting from a ref-
erence network that is a randomized version of the
original one. Many other tools neglect this aspect and
the significance of the solution is computed by ran-
domizing the experimental data only. For both op-
tions, the expectation of some topological properties
(for example the inclusion of a given edge or node)
of the sub-network solutions is estimated by analyz-
ing the random solutions obtained across the trials. In
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this way, the significance of these properties is quanti-
fied as the divergence from their expectation, testing
against the null hypothesis that there is no association
between the analyzed experimental data and the out-
putted sub-network solutions.

To our knowledge, all the existing methods assessing
their solution significance through reference network
randomizations make use of a simple edge shuffling.
This means that in a randomization trial each edge
of the network is simply set to link two randomly se-
lected nodes. This implicitly means that null models
resulting from this randomization strategy are totally
unconstrained with regards to the degree of the nodes
and the way they are linked to each other in the orig-
inal network. Therefore, the impact of the FCL of the
nodes in the original reference network on the out-
putted sub-network solution is not considered. In or-
der to take this into account and to comprehensively
avoid biases in the results, a constrained randomiza-
tion strategy preserving the FCL of all the nodes in
the original network must be used.

The problem of randomizing an undirected and un-
weighted network while preserving the degree of its
nodes, i.e. the total number of incident edges for each
node, is known in graph theory as network rewiring
and unfortunately presents itself with analytical and
numerical challenges ([15]). With the additional con-
strain that the network to rewire is bipartite (i.e. nodes
can be partitioned into two sub-sets such that there
are no edges linking nodes in the same set), this prob-
lem reduces to randomizing a binary matrix preserv-
ing its marginal totals, i.e. its row-wise and column-
wise sums. Several algorithms exist to solve this prob-
lem ([16, 17]) but the computationally efficient ran-
domization of moderately large matrices (therefore
the rewiring of large bipartite networks) is still chal-
lenging. Additionally, to our knowledge, none of the
methods published is formally shown to be able to
actually simulate samplings from the uniform distri-
butions of all the possible binary matrices with pre-
scribed marginal totals. Such proof exists for methods
rewiring directed binary networks based on swap-and-
fill strategies applied to their adjacency matrices [18]
but not dealing with DSNs. Finally, some recent meth-
ods have been proposed to solve the related (but yet
different from FCL preserving rewiring) problem of
randomizing metabolic networks in a mass-balanced
way [19].

In [20] we showed how an algorithm based on
a Monte Carlo procedure known as the switching-
algorithm (SA) ([21]) can be used to efficiently ran-
domize large cancer genomics datasets preserving the
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mutation burdens observed across patients and the
number of mutations harbored by individual genes,
hence to efficiently rewire large bipartite networks. To
this aim we derived a novel lower bound for the number
of steps required by the SA in order for its underlying
Markov chain to reach a stationary distribution. Ad-
ditionally, we implemented the SA in the R package
BiRewire (publicly available on Bioconductor (]20]))
and we showed a massive reduction in computational
time requirements of our package and bound with re-
spect to other existing R implementations ([22]) and
bounds ([21]).

Here (i) we introduce the problem of rewiring a DSN

modeling a biological network in a way that the FCL
of all the modeled entities is preserved: F-Rewiring,
(ii) we formally show how this problem reduces to
rewiring 2 bipartite networks, (iii) we provide a gener-
alized bound to the SA for bipartite networks of any
size, and (iv) we show the validity of the Markov chain
convergence criteria used in our previous work for F-
rewiring DSNs.
Finally, we provide an overview of the functions in-
cluded in a new version of BiRewire for F-Rewiring,
and we show results from two case studies where so-
lutions obtained with two network optimization meth-
ods (BioNet ([9]), and CellNOpt ([23])) are assessed
for statistical significance and intial reference network
biases against constrained null models generated with
BiRewsre.

2 Methods

2.1 Preliminary notations

The problem we are tackling is the computationally ef-
ficient randomization of a directed and signed network
(DSN) (formally defined below) in a way that some
local features of its individual nodes are preserved.

In such a network G = (V, E), the edges in FE can be
encoded as triplets (a,b,*) where a is called source
node, b is called target node and x is a label denoting
the sign of the relation occurring among them, which
could be positive, * = +, or negative, x = —.
According to this definition, in a DSN the edge (a, b, +)
is different from the edge (a,b,—), thus making this
formalism more flexible than that provided by a di-
rected weighted network (with weights € {+1,—1}).
In fact, differently from such a model, in a DSN two
edges with same terminal nodes and direction but dif-
ferent sign can coexist. In addition, a DSN is differ-
ent and less general than a multidigraph (a directed
multigraph), because only two possible edges with the
same direction can coexist between the same couple of
nodes.

Given an edge e € E, we define the function A(e) :

Page 3 of 12

E — {+, —}, mapping each edge to its sign label.
Given a node v € V, we define its in-bound-star I(v)
as the set of edges in E having v as destination,
I(v) = {e € E : e = (a,v,*)}. Similarly, consid-
ering the edges having v as source defines its out-
bound-star, O(v) = {e € E : e = (v,b,%)}. Im-
posing as additional condition for an edge to be in-
cluded in these sets that of having a fixed sign la-
bel, defines positive and negative in-bound and out-
bound stars. Formally, the v positive- (respectively neg-
ative) in-bound-star is the set of edges in G having
v as destination and positive (respectively negative)
label, IT(v) = {e € I(v) : M(e) = +} (respectively
I=(v) ={e € I(v) : A(e) = —}). Analogously, the v
positive- (respectively negative) -out-bound-star is the
set of edges in G having v as source and positive (re-
spectively negative) label, O (v) = {e € O(v) : A(e) =
+} (respectively O~ (v) = {e € O(v) : A(e) = —}).

By naturally extending the definition of node degree
(i.e. the number of edges connected to a node) to these
formalisms, we call positive-in-degree of a node v the
quantity |IT(v)| equal to the number of edges with
positive label having v as destination. Similarly we de-
fine the v negative-in-degree, positive-out-degree and
positive-in-degree, the quantities |~ (v)|, |O*(v)| and
|O~ (v)], respectively.

In the light of the introduced notation, the object of
this study can be redefined as the randomization of
the edges of a DNS G while preserving not only its
general node-degrees (network rewiring), but also all
the signed degrees defined above, for all the nodes:
network F-rewiring.

A biological pathway can be naturally represented
through a DNS G = (V, E). In this case the nodes
in V would represent biological entities, and the edges
in F would represent functional relationships occur-
ring among them, whose type would be defined by the
sign label (+ for activatory and — for inhibitory in-
teractions), with directions indicating effector /affected
roles (source/destination of the edges). In this case the
signed degrees introduced above would define the func-
tional characterization level (FCL) of the individual bi-
ological entities considering all the possible roles that
they can assume within a given pathway.

Particularly the positive-out-degree of a node v would
correspond to the level of characterization of the corre-
sponding biological entity as activator of other entities;
the negative-out-degree would correspond to its char-
acterization as inhibitor; finally, the positive-, respec-
tively negative-, in-degree of a node would correspond
to the level of characterization of the corresponding
entity as activated, respectively inhibited, by other en-
tities in the same DSN.

As a consequence, the ultimate goal of this study is
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to efficiently randomize a pathway (or a collection of
interlinked pathways) in a way the functional charac-
terization levels of its individual entities are preserved.

2.2 F-rewiring of a directed signed networks is reducible
to the rewiring of two bipartite networks: reduction
proof

Let us consider a directed signed network (DSN) G =

(V,E), with A(e) € {—,+}, Ve € E and a transforming

function f(G), from the set of all the possible DSNs to

the set of all the possible pairs of bipartite networks

(B4, B_), such as B, = (S, Dy, E.), whose node sets

are defined as S, = {v € V : I(v,z,%) € E}, and

D, ={v eV :3(x,v,%) € B}, with x € {+, —}. Wor-

thy of note is that the same node of G can be both a

source (therefore belonging the set S.) for some edge

in F, and a destination (therefore belonging to the set

D,) for some other edge in E. As a consequence f

should also relabel the nodes (for example adding a

subscript to the nodes in D). Here, for simplicity we

will neglect this relabeling.

As a conclusion, the function f maps G to two bi-

partite networks (BNs) (By,B_) such that B, =

(S4, D4+, E4) is the BN induced by the positive edges

of G, where all the sources of these edges are included

in the first node set S, all the destinations in the sec-
ond set D, and two nodes across these two sets are
connected by an undirected edge if they are connected
in the original network G by a positive edge that goes
from the node in the first set to that in the second
one. The second bipartite network of the pair B_ is
similarly induced by the negative edges of G. Formally

E, = {(s,d) : s € S,,d € D, and 3(s,d,*) € E},

with * € {+, —}. An example of this transformation is

shown in Figure 1A.

It can be shown that such a function f realizes a bijec-

tion between the set of all the possible DNSs and the

set of all the possible pairs of BNs ([24]). As a conse-
quence its inverse f~! is a function from the set of all
the possible pairs of BNs to the set of all the possible

DSNs, and it is defined as f~*(By, B2) = G = (V, E),

where

V=5 US,UD;UD,,

E={(s,d,+) : (s,d) € E; with s € Sy and d € D1}

U{(s,d, =) : (s,d) € Eo with s € Sy and d € Ds}.

With a little abuse of notation, we assume that f~!
re-assignes to the nodes their original labels before
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Figure 1 F-rewiring of directed signed networks is
reducible to the rewiring of two bipartite graphs:
(A) Scheme of the transformation function mapping a directed
signed network (DSN) to two bipartite networks (BNs)
induced by the positive, respectively negative, edges of the
original network; (B) scheme of the inverse function that, after
the two BNs induced by the edges of the original network have
been rewired via the switching-algorithm, maps back the
resulting rewired BNs to a DSN.

constructing the node/edge sets of G, if they were re-
labeled by the function f. An example of this inverse
transformation is shown in Figure 1B.

Proposition 2.1. Let be G = (V, E) a DSN modeling
a pathway (or a set of interlinked pathways) P, and
f the transformation function described above f(G) =
(By,B-). If Ry and R_ are rewired versions of By
and B_ respectively, then f~Y(Ry,R_) = H is a ran-
domized version of G in which the signed-directed de-
grees of all the nodes v € V, i.e. the quantities | It (v)],
[T~ (v)|, |OF(v)], |O~(v)|, are kept equal to their origi-
nal values. This implies that H is an F-rewired version
of G, hence a randomization of P in which the func-
tional characterizations of the individual entities are
preserved.

Proof. First of all we need to show that # is a ran-
domized version of G, in other words that H is a di-
rected signed network with the same nodes set and
number of edges of G and the same signed-directed
node degrees but a different edge set.

To this aim let be H = (W, F) = f~1(Ry,R_). Since
a rewiring does not affect the node set of the trans-
formed network, R, has the same node set of By, and
R_ has the same node set of B_. On the other hand,
B, and B_ are the two bipartite networks induced by
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the positive and negative edges (respectively) of G. For
construction, the union of their nodes gives V. Taken
together these observations imply that W =V

From the definition of f, B, contains the positive
edges in E and B_ the negative edges of E (whose ter-
minal nodes have been possibly relabeled). From the
definition of rewiring, the edge set of Ry contains the
same number of edges of By but at least one edge not
contained in B. Similarly the edge set of R_ contains
the same number of edges of B_ and at least one edge
not contained in B_. Therefore, from the definition of
/71, |F| = |E| and F contains at least two edges that
are not included in E. This imply that F' # E.

As a conclusion G and H have the same set of nodes
and number of edges but different edge sets.
Secondly we need to show that the signed degrees of
all the nodes of H are equal to those of all the nodes
ingG.

Let us assume that the positive-in-degrees of H are dif-
ferent from those of G. From the f~! definition, this
implies that Ry contains at least a node in the source
set for which the degree is different from that of its
counterpart in B;. However, this contradicts R, be-
ing a rewired version of B;. With the same argument
it is possible to prove that all the signed-directed node
degrees of H are equal to those of G. O

2.3 Switching-algorithm lower bound for bipartite
networks of any size
To rewire a bipartite network B = (S,D,FE), the
switching-algorithm (SA) ([21]) performs a cascade of
switching-steps (SS). In each of these SS two edges
(a,b) and (c,d) are randomly selected from E and re-
placed with (a,d) and (e, b) if these two new edges are
not already contained in E. In this case the SS under
consideration is said successful.
Underlying the SA is a Markov chain whose states are
different rewired versions of the initial network G and
a transition between states is realized by a successful
SS.

In [20] we prove that if executing a sufficiently large
number of SS the SA can efficiently simulate samplings
from the uniform distribution of all the possible bipar-
tite networks with predefined node sets and prescribed
node degrees. Therefore it can be used to rewire a bi-
partite network B that it is on average no more similar
to B than are similar to each other two bipartite net-
works By and By sampled from the real uniform dis-
tribution of all the possible bipartite networks, with
the same node sets and node degrees of B. To this
aim, the number of SS to be performed before sam-
pling the (k + 1)-th rewired network must be large
enough to assure that the algorithm has forgotten the
k-th sampled rewired network (the starting network G
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for kK = 0). Formally, the number of SS between two
following samplings must be at least equal to the burn-
in time of the Markov chain underlying the SA, which
is needed to reach a stationary distribution ([25, 26]).
An example of this is shown in Figure 2: the 5 plots
show results from a simulation study in which the SA
has been used to rewire a synthetic bipartite network
of 50 + 50 nodes and an edge density of 20% generated
on purpose, and rewired versions of this network have
been sampled at different intervals of SSs. A sampling
interval of 1 SS produces sampled networks that are
strongly related to each other (first plot). Gradually
increasing the sampling interval (from 5 to 20 SS, 2nd
to 4th plot), reduces the sampled network similarities
but some local dependencies are maintained. At a sam-
pling interval of 300 SS (5th plot) the Markov chain
underlying the SS has reached its stationary distribu-
tion, the sampled network are completely unrelated
and there are no dependencies. Therefore, for the bi-
partite network under consideration, a number of SS
> 300 is sufficient to simulate samplings from the uni-
form distribution of all the possible bipartite networks
with 50 + 50 nodes and node degrees equal to those
of the original network.

An empirical bound N’ for the minimal number of

SS to be performed by the SA between two consecutive
samplings has been proposed in [21] as being equal to
100 times the number of edges of the bipartite network
to rewire, thus making the rewiring of moderately large
networks computationally very expensive.
By analyzing the trend of similarity to the original
network along the sample path of the Markov chain
simulation implemented by the SA, in [20] we proposed
a novel lower bound to the number of SS needed to
rewire large bipartite networks equal to

|E]

A Te)

In (1 —d)|E]], (1)

where E is the set of edges of the network to rewire
B =(S,D,E)and d = |E|/(]S||D]) is its edge density.
In [20] we show that this bound is much lower than N’
and that our SA implementation and bound provide a
massive reduction of the computational time required
to rewire large bipartite networks (with thousands of
nodes and tens of thousands of edges) with respect to
other SA implementations ([22]) and the bound N'.

Here we provide a generalization of the lower bound
N making the SA effective and computationally effi-
cient in rewiring bipartite networks of any size. This
is led by the observation that a DSN modeling a path-
way (and the two bipartite networks induced by its
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positive and negative edges, respectively) can be even
composed by a modest number of nodes and edges.

As shown in the supplementary data of [20] (from
now on going, equations from this paper will have
GSD, for Gobbi supplementary data, as prefix), Equa-
tion 1 follows from the GSD-Equation 11 (page 20)
and it is a simplified form of

€ et

LRI (@ _ ﬁ)

o, (2)

where ¢ = |S||D] is the total number of possible edges
of the original network, d = |E|/t is its edge density,
p, is the probability of a SS to be successful. € is the
accuracy of the bound in terms of distance (quantified
through the convergence metric that we used to moni-
tor the Markov chain underlying the SA, based on the
number of edge shared by the original network and its
rewired version at the generic k-th SS, and defined in
GSD-Equation 9, page 19) from the real fixed point Z.

Under the assumption of a uniform degree distribu-
tion[!) we showed that p, = (1—d)? (GDS-Equation 4,
page 16). As a consequence Equation 2 can be rewrit-
ten as:

Bl (12 - 12F)

€ et

N= 2(1 —d) ’ 3)

which for € = 1, gives Equation 1.

Equation 3 expresses the lower bound of the number
of SS as a function that accounts for the network topol-
ogy and the estimated distance of the Markov chain
underlying the SA from its steady-state, according to
the convergence metric used in [20]. More detailed, this
distance is equal to |2*) —z|, where 2(*) is the number
of common edges between the original network and its
rewired version after k SS, and T is the expected num-
ber of common edges between the original network and
its rewired version after the Markov chain underlying
the SA has reached its stationary distribution.

In our previous bound definition ¢ was defined in
terms of number of edges, and IV defined as in Equa-
tion 1 in order to have |z(*¥) — | <1 for k > N.

For large bipartite networks, i.e. |E| > 10000, a value
of € = 1 guarantees a relative error § < 0.01% of edges
for a number of SS k£ > N. However, for relatively
smaller networks, for example when |E| = 100, a value
of € = 1 implies a substantially increase in the relative
error to 6 = 1%, making the estimated lower bound N

(1 Qur proof applies also to non uniform degree distri-
butions, leading to the same conclusions for the case
of directed signed networks. Here we use the uniform
case for simplicity.
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increasingly suboptimal with respect to the estimated
real fixed point.

For this reason here we redefine the lower bound N
for the number of SS as a function of its relative er-
ror ¢, which quantifies its sub-optimality with respect
to the estimated real fixed point. Through the simple
substitution € = |E|d, Equation 3 can be rewritten as:

v Bl = d)in (454

) _ Q|E|
2py

_ (1-d)(in(1-d)

where 2 TR —In9) depends only on the level
of accuracy 9, the density d of the original network and
the probability p, of a successful SS. For uniformly
distributed degrees!!l, i.e. p, = (1 — d)?, this bound
reads as:

1—d
N:|E|ln(5). ()
2(1 — d)

A value of § = 0.00005 (corresponding to e = 1 edge
when |E| ~ 20000), is used by default by our new im-
plementation of the SA in the new version of the pack-
age BiRewire but this parameter can also be set to a
user defined value, making our tool and bound suit-
able for the rewiring of bipartite networks of any size.
Additionally, the choice of a suitable value for this pa-
rameter can be determined by visually inspecting the
SA Markov chain convergence with a new dedicated
function (described in Section 3.1)

2.4 Convergence criteria for signed directed networks
In [20] we showed that the convergence criteria we
used to estimate our lower bound N for the number
of switching-steps (SS) needed to rewire bipartite net-
works can be applied also to the more generic case of
undirected networks.

To show the validity of this criteria for F-rewiring of
directed signed networks (DSNs) let us observe that
the Jaccard Index (J) used to assess the similarity be-
tween two DSN with the same set of nodes and same
number of edges: G = (V, E) and H = (V, F) is defined
as

|ENF| x
J = =
(G,%) |[EUF| 2|E|—=z
where © = |E N F| is the number of common edges

and the last equivalence holds because the two DSNs
have the same number of edges. When estimated for
bipartite networks, our N guarantees that the number
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of common edges between an initial network B and its
rewired version at the N-switching-step is asymptoti-
cally minimized.

Proposition 2.2. Let be Ry and R_ the rewired ver-
sions of two bipartite networks By and B_ obtained
through a number of switching-steps respectively equal
to Ny and N_ (both computed using Equation 4), and
such that (BL,B_) = f(G) (where f is the trans-
formation function defined in section 2.2 and G a
DSN). Then the Jaccard similarity between G and
H=f"Y Ry, R_) is minimized.

Proof. J(G,H) reaches a minimum when the num-
ber of common edges = between G and H reaches a
minimum. z is given by the sum of the number of
common positive and negative edges across the two
networks, namely * = x4y + z_. Given that H =
f71(R4,R_), x4 is the number of common edges be-
tween B; and Ry. Analogously x_ is the number of
common edges between B_ and R_. Since R4 and R_
are rewired version of B, and B_ computed through
N, and N_ (minimizing z and x_, respectively) also
* =24 + r_ is minimized. O

3 Results
3.1 Overview of the new functions included in BiRewire
v3.0.0

The R-package BiRewire (http://bioconductor.
org/packages/BiRewire/) was originally designed to
efficiently rewire large bipartite networks ([20]). We
have performed a major update, by including func-
tions to:

e read/write directed signed networks (DSN) from/to
simple interaction format (SIF) files;

e perform the transformation f (and its inverse
1) to derive bipartite networks induced by posi-
tive and negative edges of a DSN (and vice-versa);

e F-rewire a DSN by applying the switching-algorithm

(SA) to the two corresponding induced bipartite
networks with numbers of switching-steps auto-
matically determined for both networks individu-
ally, using Equation 3;

e sample K rewired versions of a network: this func-
tion runs K instances of the SA in cascade; each of
these instances performs a number of switching-
steps (SS) determined using Equation 3. This
function can take in input a bipartite network,
an undirected network or a DSN (in this case
Equation 3 is used individually for the two bipar-
tite networks induced by the positive and negative
edges of the DSN, respectively);
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e monitor the convergence of the Markov chain un-
derlying the SA on user defined networks. This
routine samples a user-defined number of net-
works at user defined intervals of SS. For each of
these intervals, it computes a Jaccard similarity
[27] pair-wisely comparing the sampled networks
to each other; finally it plots the sampled net-
works in a plane where points proximities reflect
Jaccard similarities of the corresponding networks
and point coordinates are computed through the
generalized multidimensional scaling method t-
SNE ([28]); this function gives in output the net-
work coordinates of such scale reductions and pro-
duce the plots shown in Figure 2. Also in this case
the inputted graph can be a bipartite network, an
undirected network or a DSN;

e perform an analysis of the trends of Jaccard sim-
ilarity across SS. This function performs a user-
defined number of independent runs of the SA,
computing the mean value and a confidence inter-
vals of the observed pairwise Jaccard similarities
between the obtained rewired networks. The re-
sult is a dataset containing the Jaccard similarity
scores computed and sampled at user-defined in-
tervals of SS, and a plot similar to that showed in
Figures 3A and 4A. This function takes in input
a bipartite network or an undirected network or a
DSN.

Worthy of note is that, supporting the analysis of
DSNs, our package can handle also generic directed
graphs, therefore with BiRewire3 it is now possible to
rewire any kind of unweighted networks.

We have developed also a cython wrapper of the cor-
responding C library for Python users. A first re-
lease (with some basic functions) can be found in
https://github.com/andreagobbi/pyBiRewire.

3.2 Case study 1: BioNet

The R package BioNet [29] provides a set of methods
to map gene expression data onto a large reference
biological network, and to identify (with a heuristic
method) a maximal scoring sub-network (MSS), which
a is a set of connected nodes (or module) with unex-
pectedly high levels of differential expression ([30]).
Several other methods moving along the same lines
exist (as, among others, EnrichNet ([6])). Here we fo-
cus on BioNet because it can be considered a typi-
cal example among these methods, and we show how
BiRewire3 can be used to estimate the impact of the
reference network topology and the functional char-
acterization level (FCL) of its node on the optimal
module outputted by this tool.
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The initial reference network used by BioNet (the
Interactome) is a large undirected protein-protein-
interaction network assembled from HPRD ([31]) and
encompassing 9392 nodes and 36504 edges. In [29],
the authors show an application of BioNet to gene
expression data from a diffuse large B-cell lymphoma
patient dataset, with corresponding survival data. Af-
ter determining gene-wise P-values for differential ex-
pression and risk-association, the authors aggregate
them and fit a beta-uniform mixture model to the
distribution of aggregated P-values that yields a fi-
nal score (accounting for both considered factors) for
each gene: the higher this score the more a gene is
differentially expressed across the contrasted groups
of patients. Then the methods proceeds with mapping
these scores onto the Interactome nodes and applying
a heuristic method ([9]) it identifies a sub-network (re-
ferred to as a module) that is a sub-optimal estimate
of the MSS. This module is shown in Figure 3C and
the BioNet package vignette contains detailed instruc-
tions on how to reproduce this result.

To evaluate the impact of the FCLs of the Inter-
actome nodes on the module outputted by BioNet
when used on the DLBC dataset, we generated 1000
F-rewired versions of the Interactome with BiRewire3
and used each of them as initial reference network in
1000 individual BioNet runs, using the DLBC dataset
as input.

To this aim we first conducted a BiRewire3 analy-
sis (using the dedicated function of our package) to
determine the number of switching-steps (SS) to be
performed by the switching-algorithm (SA) in order
to F-rewire the Interactome. This function makes use
of the convergence criteria we designed in [20], which is
based on the estimated time, in terms of SS, in which
the Jaccard similarity (JS) between the original net-
work and its rewired version at the k-th SS reaches
a plateau (Figure 3A). In [20] we showed that this
criteria is equivalent to other established methods to
monitor Markov chain convergence when the states
are networks. In addition its relatively simple formula-
tion consents the analytical derivation of an estimated
plateau time, i.e. our bound N. Neverthless, our pack-
age allows also a visual inspection of the optimality of
the estimated bound N showing how independent are
F-rewired versions of an initial network sampled at a
number of user-defined SS intervals as well as every N
SS (Figure 2).

These preliminary analyses resulted in a required num-
ber of SS equal to N = 170491 (Figure 3A) and showed
that this number of SS is actually sufficient to gener-
ate unrelated F-rewired versions of the Interactome,
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represent sampled networks, arrows indicate a starting
synthetic network, and colors indicate the sampling order.
Point proximities reflect corresponding network similarities
quantified through the Jaccard index. Point coordinates have
been obtained with a generalized multi-dimensional scaling
procedure (t-SNE).

thus to simulate samplings from the uniform distribu-
tion of all the possible networks with the same num-
ber of nodes and FCLs of the Interactome (Figure 3B).
Generating 1000 F-rewired versions of the Interactome
sampled each N SS required ~ 2 hours on a 4 core 2.4
Ghz computer with 8GB memory.

Running 1000 independent instances of BioNet us-
ing each of these F-rewired Interactome as reference
network and the DLBC dataset in input resulted into
1000 different module solutions (rewired solutions).
For each of the nodes included in the original BioNet
module solution (Figure 3C), we quantified the ratio
of rewired solutions including them and we investi-
gated how this quantity related to the corresponding
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Figure 3 BioNet study case. (A) Analysis of the Jaccard index trend across switching-steps (SS) while rewiring the BioNet
reference Interactome and estimation of the lower bound N; (B) visual inspection of the switching-algorithm Markov chain
convergence to verify the suitability of the estimated bound (see Figure 2 legend for further details); (C) Interactome module
outputted by BioNet while analyzing the DLBC dataset; (D) scatter plots of BioNet scores vs. frequency of inclusion in the rewired
solutions for all the nodes included in the BioNet module (left plot) and for all the other Interactome nodes contained in the DLBC
dataset (right plot).

BioNet scores (3D). As expected, we observed a sig-
nificant correlation (R = 0.51, p = 0.001). In fact, as
per the definition of the MSS, it is reasonable that
nodes with high scores (such as, for example NR3C1
and BCL2) tend to be included in the module out-
putted by BioNet regardless their edges and degree in
the reference Interactome. Similarly, nodes with large
negative scores (such as CDC2 and JUN) are included
in the module only because they link high scored nodes
and it is obvious that they do not tend to be included
in the rewired solutions, as in this case the way they
are interlinked to other nodes is crucial.

Nevertheless, a number of nodes (such as, SMAD/,
SMAD2 and PIK3R1) have modest score but tend to
be included very frequently in the rewired solutions.
This hints that what leads the inclusion of such nodes
in the BioNet module is their high FCL. As a con-

firmation of this, SMADJ, SMAD2 and PIK3R1 fall
over the 99th percentile when sorting all the nodes in
the Interactome (and included in the DLBC) based
on their FCL (which in this case corresponds to their
degree). This is a proof that the reference network
provides the BioNet outputted module with a positive
bias, and that at least some nodes are included in the
solution because of their high FCL.

When extending this analysis to the nodes of the
Interactome (included in the DLBC dataset) that
are not present in the module outputted by BioNet
we observed again an expected significant correlation
(R =0.51, p < 10~1), and some nodes (such as JUP,
MMP2 and ITGA6) with high scores frequently in-
cluded in the rewired solutions (the fact that these
nodes do not appear in the BioNet outputted mod-
ule is due to the sub-optimality of the used heuristic).
However we also observed a large number of nodes
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(such as RPL13A, STK17A and IDH3A) scored high
but relatively infrequently included in the rewired so-
lutions. This hints that these nodes are penalized by
their low FCL in the reference Interactome, thus prov-
ing the existence of a negative bias provided by the
reference Interactome to the BioNet outputted mod-
ule, and that at least some nodes are not included in
the solution because of their low FCL.

An indication of both these biases, together with di-
agnostic plots and statistics would complement and
complete the output of many valuable and widely used
tools, such as BioNet.

3.3 Case study 2: CelINOpt

CellNOpt (www.cellnopt.org) is a tool used to train
logic models of signal transduction starting from a ref-
erence directed signed network (DSN) called a prior
knowledge network (PKN), describing causal interac-
tions among signaling species (obtained typically from
literature), and a set of experimental data (typically
phosphorylation), obtained upon various perturbatory
conditions ([23]).

CellNOpt converts the PKN into a logic model and
identifies the set of interactions (logic gates) that
best explain the experimental data. This is performed
through a set of Bioconductor packages supporting
a number of mathematical formalisms from Boolean
models to ordinary differential equations.

Through a built-in genetic algorithm CellNOpt iden-
tifies a family of subnetworks from the reference DSN
(from now, models) together with the value of the ob-
jective function (the model score) quantifying at what
extent each model is able to explain the experimental
data (the lower this value the better is the fit of the
model to the data). By default, the best model with
the lowest score denoted 4 is returned to the end-users.
Note, however, that multiple models may be returned
if they cannot be discriminated given the experimental
evidence. Besides, to account for experimental noise,
users may also provide a parameter, which is called
tolerance (in percentage), that will keep all models
below a threshold defined as A = §(1 + tolerance).
Setting this tolerance parameter is non-trivial and de-
pends largely on the experimental error.

Here we show how BiRewire3 can be used to iden-
tify such a threshold as the maximal value whose
deviance from expectation is statistically significant.
Similarly to the previous case study, this expectation
can be empirically estimated by running a large num-
ber of independent CellNOpt runs using F-rewired
versions of the initial reference signaling network and
the same experimental data. Thus accounting for the
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effect of the node FCLs on both scores and out-
putted models. To this aim, we used the same refer-
ence PKN network and phosphoproteomic data used
in [23], which has about 80 nodes and 120 directed
and signed edges. This was a study on human liver
cell and hence the network is called liver-PKN here-
after. With the BiRewire3 package we generated (in
less than 10 seconds, on a standard unix laptop) 1000
F-rewired versions of the liver-PKN, visually inspect-
ing (as in the previous case study) the optimality
of our estimated lower bound N for the number of
switching-steps (SS) to be performed by the switching-
algorithm (SA) (Figure 4AB) between one sampled F-
rewired network and the following one. Subsequently
we run 1000 independent instances of CellNOpt (us-
ing the CellNOptR package ([23]), v1.16 available on
Bioconductor at https://www.bioconductor.org/
packages/CellNOptR/) on each of these F-rewired
liver-PKN networks and the same phosphoproteomic
dataset (obtaining one rewired model per each analy-
sis), as well as a final run using the original liver-PKN
network (obtaining a family of 1000 different models).
When comparing the two populations of CellNOpt
scores obtained from these two analyses we observed,
as expected, a notably statistically significant differ-
ence (t-test p-value < 10716, Figure 4C). Finally, us-
ing the distribution of scores of the rewired models we
computed empirical p-values for the CellNOpt scores
for the entire model family outputted by the final run
(making use of the original liver-PKN).

For a given score ¢; corresponding to the i—th model
of the family, a p-value was set equal to the num-
ber of rewired models m such that 4,, > §; divided
by 1000 (the number of tested f-rewired liver-PKNs).
More than 90% of the models in the outputted fam-
ily had a CellNOpt score significantly divergent from
expectation (p-value < 0.05) and the estimated score
threshold guaranteeing this (or a greater) divergence
from expectation, thus a minimal impact of the initial
liver-PKN FCLs, was equal to 0.06.

In summary, BiRewire3 could be effectively used to
determine a score threshold on an analytical ground,
based on which meaningful models could be selected
from the family outputted by CellNOpt for further
analyses, and finally assemble a consensual model so-
lution.

4 Conclusion

BiRewire3 is a one-stop tool to rewire in a meaningful
way any type of unweighted networks (undirected, di-
rected, and signed) currently used to model different
datasets and relations in computational biology (in-
cluding presence-absence matrices, genomics datasets,
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pathways and signaling networks) in an computation-
ally efficient way.

Our package is available as free open source software
on Bioconductor and, as we showed in our case studies,
it can be easily combined into computational pipelines
together with a wide range of existing bioinformatics
tools aiming at integrating signaling networks with ex-
perimental data.

This will allow existing software and tools to be com-
plemented with a powerful and robust framework to
compute a wide range of constrained null models, use-
ful for testing the significance of their solutions, and
to investigate how the topology of used reference net-
works can potentially bias their results.

Moreover, the range of applicability of BiRewire3
goes beyond computational biology, and includes all
those fields making use of tools from network theory,
from operative research, to microeconomy, and ecologi-
cal research (an example of the application of BiRewire

application in a micro-economy and technology patent
study can be found at http://arxiv.org/abs/1509.
07285).
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