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ABSTRACT  
  
Background 
Intracranial electrical recordings (iEEG) and brain stimulation (iEBS) are 
invaluable human neuroscience methodologies. However, the value of such data 
is often unrealized as many laboratories lack tools for localizing electrodes 
relative to anatomy. To remedy this, we have developed a MATLAB toolbox for 
intracranial electrode localization and visualization, iELVis. 
 
New Method 
iELVis uses existing tools (BioImage Suite, FSL, and FreeSurfer) for preimplant 
magnetic resonance imaging (MRI) segmentation, neuroimaging coregistration, 
and manual identification of electrodes in postimplant neuroimaging. 
Subsequently, iELVis implements methods for correcting electrode locations for 
postimplant brain shift with millimeter-scale accuracy and provides interactive 
visualization on 3D surfaces or in 2D slices with optional functional neuroimaging 
overlays. iELVis also localizes electrodes relative to FreeSurfer-based atlases 
and can combine data across subjects via the FreeSurfer average brain. 
 
Results 
It takes 30-60 minutes of user time and 12-24 hours of computer time to localize 
and visualize electrodes from one brain. We demonstrate iELVis’s functionality 
by showing that three methods for mapping primary hand somatosensory cortex 
(iEEG, iEBS, and functional MRI) provide highly concordant results. 
 
Comparison with Existing Methods 
iELVis is the first public software for electrode localization that corrects for brain 
shift, maps electrodes to an average brain, and supports neuroimaging overlays. 
Moreover, its interactive visualizations are powerful and its tutorial material is 
extensive. 
 
Conclusions 
iELVis promises to speed the progress and enhance the robustness of 
intracranial electrode research. The software and extensive tutorial materials are 
freely available as part of the EpiSurg software project: 
https://github.com/episurg/episurg  
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1. INTRODUCTION 
 
Since the early 20th century, the intracranial electroencephalogram (iEEG) and 
intracranial electrical brain stimulation (iEBS) have been invaluable tools for 
mapping pathological and functional brain regions in patients being evaluated for 
resective brain surgery (Penfield & Jasper, 1954). In addition to their clinical 
utility, these invasive measures have provided a unique window on human brain 
function for both clinical and basic research.  
 
There has been a dramatic increase of interest in iEEG and iEBS research over 
the past decade, for several reasons. Firstly, iEEG has proven to be a fine-
grained measure of mean local firing rates (Crone, Korzeniewska, & 
Franaszczuk, 2011; Miller, Sorensen, Ojemann, & Nijs, 2009) as well as local 
synaptic potentials (e.g., Golumbic et al., 2013). Secondly, there is mounting 
evidence that iEBS can improve (Suthana et al., 2012) or manipulate (Parvizi et 
al., 2012; Mégevand et al., 2014) brain function with great precision. Finally, a 
growing number of public databases of iEEG data (e.g., www.ieeg.org, 
www.epilepsiae.eu) are increasing access to these rare data.  
 
Despite the growing popularity iEEG and iEBS research, many researchers 
encounter technical challenges when attempting to analyze these data. These 
include: [1] precisely identifying the anatomical location of electrodes, [2] 
correcting for postimplant brain deformities (i.e., “brain shift”) so that postimplant 
data can be coregistered to preimplant neuroimaging, [3] effectively visualizing 
electrode data in a way that communicates their locations relative to other neural 
measures (e.g., magnetic resonance imaging, MRI, and functional magnetic 
resonance imaging, fMRI), and [4] mapping idiosyncratic electrode montages into 
a common space for multi-patient analyses. Although some excellent public 
software has been produced that solves some of these issues (Table 1), there is 
not yet a well-developed, scriptable, public software package for solving all of 
them. Consequently, iEEG and iEBS research groups currently develop lab-
specific solutions from existing packages and their own custom code. This 
inefficient and error-prone solution to localization and visualization makes it 
difficult to compare findings across research groups. 
 
To remedy this problem, we have pooled the resources of five different 
iEEG/iEBS research groups to develop a freely-available, open source software 
toolbox and processing pipeline that can assist researchers in localizing 
electrodes, correcting for brain shift, overlaying electrode locations with 
neuroimaging data, and visualizing their locations relative to individual anatomy 
and group-level templates. The toolbox, called iELVis (Intracranial ELectrode 
VISualization), consists of MATLAB functions with a handful of Bash scripts for 
neuroimaging coregistration and overlay creation. iELVis relies on FreeSurfer 
(www.freesurfer.net) for MRI segmentation and for mapping to the FreeSurfer 
average brain for group analyses. In addition, iELVis relies on BioImage Suite 
(www.bioimagesuite.org; Papademetris, Jackowski, & Rajeevan, 2011) for 
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manually tagging electrode locations in postimplant CT or MRI scans. and FSL or 
FreeSurfer for coregistering pre- and post-implant neuroimaging. 
 
The key contributions of iELVis are that it: 

1. implements a set of standard tools for electrode localization/visualization, 
using MATLAB code supported by thorough tutorials and documentation 

2. establishes a pipeline and toolset to standardize localization across 
multiple laboratories 

3. implements new quality control metrics to help identify erroneous 
localizations  

4. produces interactive, multi-view representations of the brain that can 
simultaneously represent multiple data modalities (e.g., iEEG, iEBS, & 
fMRI) 

 
This paper describes the main features and workflow of iELVis. More extensive 
documentation and tutorial materials are available on the toolbox wiki, 
http://episurg.pbworks.com. This includes two example datasets and example 
code that illustrate how to use all the functionalities described here. The toolbox 
can be downloaded from https://github.com/episurg/EpiSurg. 
 
 
2. ELECTRODE LOCALIZATION 
 
The first step in electrode localization is to preprocess and automatically segment 
a patient’s preimplant T1 MRI using FreeSurfer. The preprocessing aligns the 
MRI to a standard FreeSurfer coordinate space that is used for all iELVis 
processing and visualization. The segmentation assigns each brain voxel to one 
of 46 regions such as the hippocampus, amygdala, cerebral cortex, or white 
matter (Figure 1: A left). The segmentation also estimates the pial surface for 
each cerebral hemisphere and smooths over the sulci in the pial surface to derive 
a proxy for the leptomeningeal surface1 (Figure 1: A middle & right). The 
leptomeningeal surface (Schaer et al., 2008) is created because it is useful for 
identifying subdural electrode locations since subdural electrodes traverse sulci. 
Finally, the individual’s brain is mapped to the FreeSurfer average brain (see 
subsequent section). This procedure requires up to 24 hours on a conventional 
workstation. Manual intervention is rarely necessary. The exceptions are patients 
with gross brain abnormalities such as tumors and lobectomies for whom the 
automatic segmentation may fail around the abnormal regions, and the medial 
wall of the anterior medial temporal lobe, which tends to be underestimated. 
 

                                                
1 In previous papers (Dykstra et al., 2011, Yang, Wang, et al., 2012) the 
smoothed pial surface was called the “dural surface.” We think “leptomeningeal 
surface” is more accurate given that subdural electrodes lie below the dural 
membrane. 
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Once FreeSurfer has completed processing the MRI, a postimplant computerized 
tomography (CT) or MRI scan is rigidly aligned to the preimplant MRI via an 
affine transform with six degrees of freedom (Figure 1: B). iELVis provides Bash 
scripts for performing this coregistration using the flirt tool (Jenkinson & Smith, 
2001; Jenkinson, Bannister, Brady, & Smith, 2002) from the Oxford Centre for 
Functional MRI of the Brain Software Library (FSL: www.fmrib.ox.ac.uk/fsl) or 
using FreeSurfer’s bbregister (Greve & Fischl, 2009). While flirt attempts to align 
the entire volume, bbregister aligns image boundaries. Another practical 
difference is that the results of bbregister are easy to manually edit using 
FreeSurfer’s tkregister2 graphical user interface (GUI). Accuracy of the CT-MRI 
coregistration can be readily visually verified by the alignment of the skull in both 
volumes. MRI-MRI coregistration accuracy is even easier to visually confirm. In 
our testing, both flirt and bbregister typically give very similar results with no need 
for manual intervention. However, when one method fails, the other will almost 
always succeed. 
 
After the postimplant scan has been aligned to the preimplant MRI, the 
postimplant scan (in the preimplant MRI space) is imported into BioImage Suite’s 
Electrode Editor GUI to manually identify electrode locations (Figure 1: C-D). 
Depending on the number of electrodes, a user can typically tag all electrodes in 
30 to 60 minutes. Next, electrode coordinates are saved to a BioImage Suite 
mgrid file which can be imported into MATLAB and visualized over the pial 
surface using iELVis functions (Figure 1: E). Other neuroimaging interfaces (e.g., 
FreeSurfer’s tkmedit) could be used in lieu of BioImage Suite for identifying 
electrode coordinates if users record electrode locations in a text file compatible 
with iELVis conventions. 
 
Finally, the subdural electrodes are projected out to the leptomeningeal (i.e., the 
smoothed pial) surface to correct for brain shift (Figure 1: F). Brain shift is caused 
by factors such as loss of cerebrospinal fluid, swelling, and the displacement of 
the brain by electrodes (Hastreiter et al., 2004). This deformity is typically most 
severe near a craniotomy and can be more than 1 cm (Dalal et al., 2008; Hill, 
Smith, & Simmons, 2000). In contrast, implants requiring only burr holes typically 
produce minimal brain shift (Sweet, Hdeib, Sloan, & Miller, 2013). iELVis includes 
two algorithms for brain shift correction. The first of these, devised by Dykstra, 
Chan and colleagues (Dykstra et al., 2011), projects each subdural electrode to 
the leptomeningeal surface using an iterative optimization algorithm that attempts 
to minimize the change in each electrode’s location and the distance with its one 
to five closest neighbors. Based on comparisons with intraoperative photographs 
of electrode locations in five patients, the Dykstra algorithm appears to localize 
electrodes under the craniotomy with median (interquartile range) error of 3 
(2.39) mm or less (ibid.). Since electrodes near the craniotomy are typically most 
affected by brain shift, accuracy is likely even better for strips of electrodes that 
are inserted far from or without craniotomies. The second algorithm was created 
by Yang, Wang and colleagues (Yang et al., 2012) and projects grids of 
electrodes to the leptomeningeal surface via an inverse gnomonic projection. 
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More specifically, the algorithm approximates the leptomeningeal surface under 
each grid as part of a larger sphere and iteratively adjusts the projection of the 
grid plane onto the sphere to minimize the difference between the projected and 
known electrode geometry. Subdural strips of electrodes are simply assigned to 
the location of the nearest point on the leptomeningeal surface. When the results 
of this algorithm were compared with electrode locations in intraoperative 
photographs in eight patients, the median (interquartile range) error of the Yang-
Wang method was 0.74 (0.75) mm for sub-craniotomy electrodes (Yang et al., 
2012). Once the subdural electrodes have been corrected for brain shift, several 
diagnostic plots are produced to help identify potential errors (Figure 2).  
 
Note that neither algorithm corrects the location of penetrating depth electrodes 
for brain shift. Since depth electrodes typically target medial structures (e.g. the 
hippocampus) that are minimally affected by brain shift, this is likely not a serious 
shortcoming. Moreover, depth-only implants (i.e., stereotactic EEG) generally 
produce minor brain shift as a craniotomy is not performed (Gonzalez-Martinez et 
al., 2014; Sweet, Hdeib, Sloan, & Miller, 2013). 
 
 
3. MAPPING ELECTRODES TO AN AVERAGE BRAIN 
 
iELVis supports mapping electrodes to the FreeSurfer average brain for 
combining data across patients (i.e., “group analyses”). FreeSurfer maps 
individual brains to its average brain by aligning their gyrification patterns. This 
mapping thus accurately preserves the gyral location of subdural electrodes at 
the cost of greatly distorting some inter-electrode distances (Figure 3). 
 
As described in Dykstra et al. (2012), iELVis maps subdural electrode locations 
from a patient’s brain to the average brain by first assigning each electrode to the 
closest point on the patient’s pial surface (after the leptomeningeal surface-based 
brain shift correction described above). The pial surface is warped to a sphere 
which FreeSurfer has gyrally aligned to a spherical version of its average brain’s 
pial surface (Fischl et al., 1999). Each point on the patient’s spherical surface is 
assigned to the nearest neighbor on the average brain spherical surface, which 
has a one-to-one vertex correspondence to the average brain pial surface. 
 
By default, penetrating depth electrodes are mapped to the FreeSurfer average 
brain via an affine transformation to MNI305 space, which is compatible with that 
of the FreeSurfer average brain. However, penetrating electrodes within deep 
structures such as the amygdala and hippocampus might be best grouped 
across patients by using volumetric anatomical atlases (see following section). 
Depth electrode contacts that lie in cerebral grey matter can be mapped to the 
average brain via surface based mapping if users manually edit the iELVis 
electrode location files to indicate that the contact is a subdural electrode instead 
of a depth electrode.  
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4. CATEGORIZING ELECTRODES USING ANATOMICAL ATLASES 
 
In addition to mapping individual brains to standard spaces, it is often useful to 
map them to standard anatomical atlases. Anatomical atlases can be used to 
define regions of interest to select subsets of electrodes for analysis or to 
combine data across patients for group analyses (e.g., Groppe et al., 2013). 
Pooling data across brains can be especially useful for iEEG/iEBS research 
which typically employs a very limited number of patients with idiosyncratic 
electrode placement.  
 
iELVis currently supports five FreeSurfer based anatomical atlases, four cortical 
and one volumetric. Two of these, the Desikan-Killiany and Destrieux atlases 
(Desikan et al., 2006; Destrieux, Fischl, Dale, & Halgren, 2010), are based on the 
major gyri and sulci. The Desikan-Killiany atlas (Figure 4: A) divides the cortical 
surface into 35 areas, while the Destrieux atlas has a finer grained 75 area 
parcellation (Figure 4: B). These atlases are particularly useful for functional 
areas that largely follow gyrification patterns (e.g., primary motor and sensory 
cortex, Broca’s area). The other two cortical atlases are derived from resting 
state fMRI functional networks (Yeo et al., 2011). More specifically, Yeo and 
colleagues collected resting state fMRI data from 1000 neurotypical, young 
adults and grouped together cortical areas with high functional connectivity. They 
found two well-formed groupings of areas consisting of 7 and 17 networks 
(Figure 4: C-D). The 7-network atlas consists of the following groupings: default 
mode, frontoparietal, somatomotor, dorsal attention, ventral attention, limbic, and 
visual. These networks are somewhat broken up into the more fine-grained 
groupings of the 17-network atlas. For example, the 7-network atlas 
somatomotor network divides into dorsal and ventral somatomotor areas around 
the boundary of hand and face sensorimotor cortex. 
 
The volumetric atlas labels 44 subcortical areas, including the amygdala, 
hippocampus, and white matter (Figure 4: E). In addition, cortical voxels are 
labelled according to the Desikan-Killiany atlas. As mentioned previously, depth 
electrode contacts that lie in cortical grey matter can be manually relabeled as 
subdural contacts. This will allow them to be localized using the higher resolution 
surface based atlases with iELVis. 
 
 
5. MULTIMODAL OVERLAYS 
 
Particularly in the context of invasive epilepsy monitoring, multiple modalities of 
brain mapping data are often acquired from the same individual. iELVis supports 
the simultaneous visualization of most such data. Specifically, it can visualize 
neuroimaging data (e.g., blood-oxygen-level dependent contrasts or cortical 
thickness), single contact electrode data (e.g. power changes), and bipolar 
contact electrode data (e.g. bipolar stimulation effects). Figure 5 displays an 
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example of this. Specifically, it shows the overlay of three methods of mapping 
hand sensorimotor cortex: fMRI, iEEG, and iEBS. In addition, the iEEG and iEBS 
data are overlaid on the Yeo-17 area atlas to illustrate how well the Yeo et al. 
anatomically based functional networks compare with the patient’s functional 
mapping. All three functional mapping methods are in strong agreement (Figure 
5: Columns A-B). The peak and boundaries of the fMRI statistical map are tightly 
consistent with that of the iEEG activations. The iEBS mapping is also highly 
consistent with the other two modalities, however it appears that iEBS includes 
an electrode that is a bit ventral and anterior of hand sensorimotor cortex 
because it was paired with another electrode placed squarely over hand 
sensorimotor cortex during stimulation. 
 
Note that the Yeo-17 network dorsal somatomotor area captures the ventral 
boundary of hand somatomotor cortex (Figure 5: Column C). However, the atlas 
area extends far beyond the dorsal boundary of the hand region and likely 
includes other somatomotor regions (e.g., arm and leg). 
 
Finally, note that the visualization of electrode data on the inflated pial surface 
(Figure 5: Column A) makes it possible to relate electrode data to sulcal 
neuroimaging data and, potentially, to visualize penetrating depth electrodes that 
lie in sulcal grey matter. This is useful not only because most of the cortical 
surface is sulcal (Valiante, 2012) and often obscured in standard iEEG 
visualizations, but also because the inflated surface provides a better sense of 
the surface-based distance (as opposed to Euclidean) between electrodes. This 
could be very helpful for understanding the spread of cortical activity such as 
seizures (Jenssen, et al., 2011; Schevon et al., 2012) or how functional 
interactions between cortical areas varies as a function of distance (Keller, Bickel 
et al., 2011). 
 
 
6. DISCUSSION 
 
Despite the increasing importance and popularity of iEEG and iEBS research, 
public software tools for dealing with the unique technical challenges of this work 
are limited. With the iELVis toolbox, we have addressed the need for an open 
source, well-documented software package that solves many common 
iEEG/iEBS technical challenges. iELVis provides a family of MATLAB functions 
for identifying the anatomical locations of electrodes with mm-scale resolution, for 
surface-based mapping of electrode locations to an average brain for group 
analyses, for mapping electrode locations to five anatomical atlases, and for 
simultaneously, interactively visualizing electrode and neuroimaging data. The 
toolbox works on all major operating systems, is well-documented, includes well-
developed tutorial and documentation materials, and is easy to integrate with 
other popular neuroscience freeware packages such as EEGLAB (Delorme & 
Makeig, 2004; Delorme et al., 2011), FieldTrip (Oostenveld, Fries, Maris, & 
Schoffelen, 2011), and SPM (http://www.fil.ion.ucl.ac.uk/spm/). 
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While the iELVis toolbox meets the typical, basic localization needs of iEEG/iEBS 
research, the current version of the toolbox has some shortcomings. In particular, 
an issue with the surface based mapping to the average brain is that small 
differences in electrode locations in the patient’s native space can result in large 
differences in average brain coordinates if an electrode lies near gyral borders 
(e.g., near the boundary between the temporal and frontal lobes). Similarly, small 
differences in electrode locations can affect the anatomical region assigned to 
electrodes that lie near the borders of different atlas regions. A simplistic way to 
deal with this would be to remove these boundary electrodes from group 
analyses since their anatomical location is uncertain. Alternatively, subdural 
electrode data may be spatially smeared across nearby cortical vertices to 
account for the uncertainty of electrode locations (Kadipasaoglu et al., 2014; 
Kubanek & Schalk, 2015). A complication with this is approach is that it is unclear 
what the smearing kernel should be and such smearing fails to deal with volume 
conduction. The best alternative may be to localize the neural sources of the 
electrode data (Akalin Acar, et al., 2011) and to map those data to the average 
brain or atlases. This method could remove the need for a somewhat arbitrary 
smoothing kernel and would account for volume conduction. In particular, it could 
identify sulcal activity that likely contributes to subdural iEEG/iEBS data (Towle, 
Carder, Khorasani, & Lindberg, 1999). 
 
An additional shortcoming of iELVis is that it does not implement any method for 
correcting depth electrodes for postimplant brain shift when the depth electrodes 
are implanted along with subdural electrodes that require a craniotomy. As 
already mentioned, the degree of brain shift near depth contacts is typically minor 
given that they are anchored to the skull and are usually distant from the 
craniotomies that produce the most significant brain shift. However, it would be 
useful to have tools for depth electrode brain-shift correction as sometimes depth 
electrodes lie near the craniotomy and if brain shift is severe it may affect even 
deep structures. A more significant limitation is that the automatic FreeSurfer pial 
surface construction, which iELVis depends on, often fails near abnormal brain 
regions (e.g., tumors or previous resections) and typically underestimates the 
medial extent of the medial temporal pial surface. The pial surface can potentially 
be manually corrected in FreeSurfer, however it may be that alternative surface 
based electrode localization algorithms (e.g., Hermes, Miller, Noordmans, 
Vansteensel, & Ramsey, 2010) might be more effective in cases of significant 
failure. Finally, an inconvenience of iELVis is its current dependence on multiple 
non-MATLAB based third-party software packages. This complicates installation 
and maintenance of iELVis. However, in our experience these dependencies 
require minimal additional effort, especially since many laboratories already use 
FreeSurfer and FSL for neuroimaging analysis, and the core functionalities of 
these decade-old packages are quite stable.  
 
In the future, we plan to develop iELVis further to address some of these 
limitations and to add new functionality. For example, we aim to add tools to 
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quantify the degree of confidence that an electrode can be assigned to a 
particular anatomical region in order to identify electrodes whose anatomical 
locus is in doubt (Mercier et al., 2016). Moreover, we hope to make it possible to 
spatially smooth electrode data over the cortical surface or to localize the neural 
generators of iEEG data in order to improve group analyses. Finally, we hope to 
add compatibility with additional brain atlases such as probabilistic maps of visual 
areas (L. Wang, Mruczek, Arcaro, & Kastner, 2015b) and individual-data derived 
resting-state fMRI network parcellations (Fox et al., 2016; D. Wang et al., 2015a), 
and to remove some dependencies on third party software. We also welcome 
contributions from other iEEG/iEBS researchers and have established a users 
group and contribution guidelines to facilitate this (http://episurg.pbworks.com). 
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TABLE: 
 
Package URL Platform Dependencie

s 
Functionality 

BioImage 
Suite 

http://bioimagesuite.yale.edu/ Windows, 
OS X, Linux 

None • GUIs for manual 
electrode 
localization and 
annotation 

• Postimplant 
CT/MRI to 
preimplant MRI 
coregistration 

• Can 
simultaneously 
visualize 
neuroimaging and 
intracranial 
electrode data 

BrainMapper https://github.com/vkrish1/brainmapperApp 
 
 

 

OS X None • Postimplant CT to 
preimplant/postim
plant MRI 
coregistration 

• Correction for 
brain shift 

• Maps electrode 
locations to a 
cortical atlas 

eConnectom
e 

http://econnectome.umn.edu/ MATLAB 
(Windows, 
OS X, Linux) 

None • Visualizes 
subdural electrode 
univariate and 
bivariate data 
overlaid on the 
brain’s surface 

FieldTrip http://www.fieldtriptoolbox.org/tutorial/human_e
cog 

MATLAB 
(Windows, 
OS X, Linux) 

• Relies on 
FreeSurfer 
for T1 MRI-
derived 
cortical 
surface 
reconstructi
on 

• Relies on 
SPM for 
pre- and 
post-
implant 
neuroimagi
ng 
coregistrati
on 

• Postimplant 
CT/MRI to 
preimplant MRI 
coregistration 

• GUI for  manual 
localization of 
electrodes in 
intraoperative 
photographs or 
postimplant 
neuroimaging 

 

iELVis https://github.com/epiSurg/EpiSurg MATLAB 
(Windows, 
OS X, Linux) 
with some 
Bash scripts 
for 
neuroimagin
g 
coregistratio
n (OS X, 
Linux) 

• Relies on 
FreeSurfer 
for T1 MRI 
segmentati
on and 
cortical 
surface 
reconstructi
on 

• Relies on 
BioImage 
Suite for 
electrode 
localization 

• Relies on 
FreeSurfer 
or FSL for 

• Postimplant 
CT/MRI to 
preimplant MRI 
coregistration 

• Implements Yang, 
Wang et al. (2012) 
and Dykstra et al. 
(2012) methods 
for brain shift 
correction 

• Maps electrodes 
to the FreeSurfer 
average brain for 
group analyses 

• Maps electrodes 
to five FreeSurfer 
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pre- and 
post-
implant 
neuroimagi
ng 
coregistrati
on 

based anatomical 
atlases 

• Can 
simultaneously 
visualize 
neuroimaging and 
intracranial 
electrode data 

moviEEG https://github.com/dtxe/moviEEG MATLAB 
(Windows, 
OS X, Linux) 

None • Visualizes 
subdural electrode 
univariate and 
bivariate data 
overlaid on the 
brain’s surface 

Ntools https://github.com/HughWXY/ntools_elec-BETA MATLAB 
(Windows, 
OS X, Linux) 

• Relies on 
FreeSurfer 
for T1 MRI 
segmentati
on and 
cortical 
surface 
reconstructi
on 

• Implements Yang, 
Wang et al. (2012) 
method for brain 
shift correction 

• Visualizes 
subdural 
electrodes overlaid 
on the brain’s 
surface 

 
 
Table 1: Some existing software packages that support intracranial electrode 
localization or visualization. 
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Figure	1:	Electrode	localization	workflow.	Colored	boxes	and	arrows	indicate	the	software	
package	used	for	each	workflow	step	(FreeSurfer,	FSL,	BioImage	Suite,	or	iELVis).	Italicized	
words	between	boxes	indicate	iELVis	functions	used	to	implement	that	processing	step.	[A]	
FreeSurfer	automatically	segments	various	anatomical	regions	from	a	preimplant	T1	MRI.	This	
produces	a	3D	labeling	of	brain	structures	such	as	white	matter,	hippocampus,	and	neocortical	
grey	matter	which	are	represented	with	different	colors.	In	addition,	FreeSurfer	constructs	pial	
and	leptomeningeal	surfaces.	[B]	A	postimplant	CT	scan	is	rigidly	coregistered	to	the	preimplant	
T1	MRI.	Edges	of	the	CT	scan	are	overlaid	as	red	lines	on	the	T1	MRI.	[C]	Electrodes	are	clearly	
apparent	in	the	CT	scan,	visualized	in	3D	via	a	BioImage	Suite	graphical	user	interface	(GUI).	[D]	
Electrode	locations	are	manually	labeled	using	BioImage	Suite.	Each	strip,	grid,	or	shaft	of	
electrodes	is	represented	with	a	unique	color.	[E]	Electrode	locations	on	the	FreeSurfer	
reconstructed	pial	surface	visualized	with	iELVis	functions	in	MATLAB.	Some	cyan	grid	
electrodes	appear	to	lie	inside	the	temporal	lobe,	due	to	postimplant	brain	compression	(“brain	
shift”).	[F]	Brain	shift-corrected	electrode	locations	on	the	FreeSurfer	pial	surface	visualized	
with	iELVis	functions	in	MATLAB.	Note	that	all	data	are	shown	in	the	standard	FreeSurfer	
coordinate	space	for	the	subject.	 
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Figure	2:	Correcting	for	brain	shift	using	iELVis.	[A]	The	distance	between	electrode	locations	
before	and	after	brain	shift	correction.	Subdural	electrodes	(circles)	are	corrected	for	brain	
shift,	while	depth	electrodes	(squares)	are	not;	the	correction	distance	for	depth	electrodes	is	
therefore	zero.	Color	scale	corresponds	to	the	plot	in	C.	[B]	Electrode	locations	pre-	and	post-
correction	for	brain	shift;	lines	join	pre-	and	post-correction	locations	of	each	electrode.	Post-
correction	electrodes	use	the	same	color	scale	as	the	plot	in	C.	[C]	Electrode	locations	overlaid	
on	the	subject’s	pial	surface,	after	brain	shift	correction,	color	coded	to	reflect	the	correction	
distances	in	A.	In	all	figures,	clicking	on	electrode	symbols	will	produce	the	corresponding	
electrode's	name.	The	three	dimensional	figures	can	be	interactively	rotated.	
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Figure	3:	Mapping	from	individual	anatomy	to	the	FreeSurfer	average	brain	preserves	gyral	
location.	[Left-Top]	Electrodes	on	an	individual’s	pial	surface	are	colored	uniquely.	[Left-
Bottom]	The	individual	brain	is	colored	according	to	cortical	areas	as	defined	by	FreeSurfer’s	
Desikan-Killiany	atlas.	Electrodes	are	colored	to	match	that	of	the	closest	brain	region.	[Right]	
Analogous	electrode	locations	on	the	FreeSurfer	average	brain	with	the	same	color	codes	used	
for	the	individual	brain.	Mapping	to	the	average	brain	preserves	the	gyral	location	of	each	
electrode	at	the	cost	of	distorting	electrode	geometry.	Note	that	the	FreeSurfer	average	brain	
has	exaggerated	sulci	because	the	gyri-aligned	inter-subject	averaging	that	produced	it	smooths	
gyrification	patterns	 	

Individual Brain Average Brain
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Figure	4:	FreeSurfer	anatomical	atlases	supported	by	iELVis.	[A]	Desikan-Killiany	35	area	
cortical	atlas	based	on	gyrification.	[B]	Destrieux	75	area	cortical	atlas	based	on	gyrification.		[C]	
Yeo	7	and	[D]	17	area	cortical	atlas	derived	from	resting	state	functional	networks.	[E]	
Volumetric	atlas	that	includes	subcortical	as	well	as	Desikan-Killiany	cortical	areas.	Electrode	
locations	are	represented	with	black	spheres	(A-D)	or	white	circles	(E).	Due	to	space	limitations,	
the	legends	provide	only	a	partial	list	of	atlas	areas.	A	full	list	of	atlas	parcellations	is	available	
on	the	iELVis	wiki:	
http://episurg.pbworks.com/w/page/104391043/Mapping%20Electrodes%20to%20Atlases	 	
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Figure	5:	Using	iELVis	to	visualize	the	localization	of	hand	sensorimotor	cortex	using	multiple	
modalities:	fMRI,	iEEG	and	iEBS.	Maps	are	visualized	on	the	inflated	(Column	A)	and	non-
inflated	(Columns	B-C)	pial	surface.	For	the	inflated	pial	surface,	gyri	and	sulci	are	represented	
with	light	and	dark	grey,	respectively.	All	data	are	shown	in	the	same	coordinate	space	(i.e.,	
patient-specific	FreeSurfer	space,	see	Fig.	1).	[fMRI	Data]	Parula	(i.e.,	blue-green-yellow)	color	
scale	represents	an	fMRI	statistical	map	with	positive	values	indicating	a	greater	blood-oxygen	
level	dependent	contrast	during	finger	tapping	versus	rest.	[iEEG	Data]	Blue-red	color	scale	
represents	an	iEEG-derived	statistical	map	with	positive	values	indicating	greater	high	gamma	
band	power	during	finger	tapping	versus	rest.	Spheres	represent	electrode	locations.	Black	
spheres	indicate	that	an	electrode	provided	no	usable	data.	[iEBS	Data]	Red	lines	between	
electrodes	indicate	pairs	of	electrodes	that	produced	hand	movement	or	sensation	when	
electrically	stimulated.	Black	lines	indicate	that	either	no	response	or	a	non-hand	sensorimotor	
response	was	elicited	when	the	connected	electrodes	where	stimulated.	[Yeo-17	Atlas]	Column	
C	indicates	the	boundaries	of	various	resting	state	functional	networks	according	to	
FreeSurfer’s	Yeo	et	al.	17	area	atlas.	The	boundary	between	Networks	3	and	4	(i.e.,	the	dorsal	
and	ventral	sensorimotor	networks)	is	congruent	with	the	fMRI,	iEEG,	and	iEBS-defined	ventral-
most	boundary	of	hand	sensorimotor	cortex.	
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