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ABSTRACT  
  
Background 
Intracranial electrical recordings (iEEG) and brain stimulation (iEBS) are 
invaluable human neuroscience methodologies. However, much of the value of 
such data is unrealized as many labs lack tools for precisely localizing electrodes 
relative to anatomy and to other functional measures. To remedy this, we have 
developed a MATLAB toolbox for intracranial electrode localization and 
visualization, iELVis. 
 
New Method 
The iELVis pipeline extends existing tools (BioImage Suite, FSL, and FreeSurfer) 
for localizing electrode locations in CT or MR scans. Once electrode locations 
are identified in postimplant neuroimaging, iELVis implements methods for 
correcting electrode locations for postimplant brain shift with millimeter-scale 
accuracy. iELVis then supports interactive visualization on 3D surfaces or in 2D 
slices alongside functional neuroimaging data. iELVis also localizes electrodes 
relative to FreeSurfer-based atlases and can combine data across subjects via 
the FreeSurfer average brain. 
 
Results 
It takes 30-60 minutes of user time and 12-24 hours of computer time to localize 
and visualize electrodes from one brain. We demonstrate iELVis’s co-registered 
visualization functionality by overlaying concordant results from three methods 
for mapping primary hand somatosensory cortex (iEEG, iEBS, and fMRI). 
 
Comparison with Existing Methods 
iELVis standardizes existing approaches within a common pipeline, while 
advancing and combining the state of the art techniques in (i) brain-shift 
correction, (ii) atlas functionality, and (iii) multimodal visualization for human 
intracranial data.  
 
Conclusions 
iELVis promises to speed and enhance the robustness of intracranial electrode 
research. The software and extensive tutorial materials are freely available as 
part of the EpiSurg software project: https://github.com/episurg/episurg  
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1. INTRODUCTION 
 
Since the early decades of the 20th century, recording the intracranial 
electroencephalogram (iEEG) and performing intracranial electrical brain 
stimulation (iEBS) have been invaluable clinical tools for mapping pathological 
and functional brain regions in patients being evaluated for brain surgery 
(Penfield & Jasper, 1954). In addition to their clinical utility, these invasive 
measures have provided a unique window on human brain function for both 
clinical and basic research. Indeed, in recent years there has been an explosion 
of interest in iEEG and iEBS research for several reasons. Firstly, iEEG has 
proven to be a fine-grained measure of mean local firing rates (Crone, 
Korzeniewska, & Franaszczuk, 2011; Miller, Sorensen, Ojemann, & Nijs, 2009) 
as well as local synaptic potentials (e.g., Golumbic et al., 2013). Secondly, there 
is mounting evidence that iEBS can improve (Suthana et al., 2012) or manipulate 
(Parvizi et al., 2012; Mégevand et al., 2014) brain function with great precision. 
Finally, a growing number of public databases of iEEG data (e.g., www.ieeg.org, 
www.epilepsiae.eu) are increasing access to these rare data.  
 
Despite the growing popularity iEEG and iEBS research, many researchers run 
into technical challenges when trying to analyze these data. These include: [1] 
precisely identifying the anatomical location of electrodes, [2] correcting for 
postimplant brain deformities (i.e., “brain shift”) so that postimplant data can be 
coregistered to preimplant neuroimaging, [3] effectively visualizing electrode data 
in a way that communicates their locations relative to other neural measures 
(e.g., MRI, fMRI), and [4] mapping idiosyncratic electrode montages into a 
common space for “group analyses” that combine data from multiple patients. 
Although some excellent public software has been produced that solves some of 
these issues (Table 1), there is not yet a well-developed, scriptable, public 
software package for solving all of them. Consequently, iEEG and iEBS research 
groups are currently forced to develop lab-specific solutions from existing 
packages and their own custom code. This is an inefficient and error prone 
method to solving these technical challenges that also makes it difficult to 
compare findings across research groups. 
 
To remedy this problem, we have pooled the resources of five different 
iEEG/iEBS research groups to develop a freely-available, open source software 
toolbox and processing pipeline that can assist researchers in localizing 
electrodes, correcting for brain shift, overlaying electrode locations with 
neuroimaging data, and visualizing their locations relative to individual anatomy 
and group-level templates. The toolbox, called iELVis (Intracranial ELectrode 
VISualization), consists of MATLAB functions with a handful of Bash scripts for 
neuroimaging coregistration and overlay creation. iELVis relies on FreeSurfer 
(www.freesurfer.net) for MRI segmentation and for mapping to the FreeSurfer 
average brain for group analyses. In addition, iELVis relies on BioImage Suite 
(www.bioimagesuite.org; Papademetris, Jackowski, & Rajeevan, 2011) for 
manually tagging electrode locations in postimplant CT or MRI scans. In this 
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paper we present the main features of iELVis and the basic iELVis electrode 
localization workflow. More extensive tutorial materials are available on the 
toolbox wiki, http://episurg.pbworks.com, and the toolbox can be downloaded 
from https://github.com/episurg/EpiSurg. 
 
 
2. ELECTRODE LOCALIZATION 
 
The first step in electrode localization is to automatically segment a patient’s 
preimplant T1 MRI using FreeSurfer. The segmentation assigns each brain voxel 
to one of 46 regions such as the hippocampus, amygdala, cerebral cortex, or 
white matter (Figure 1: A left). The segmentation also estimates the pial surface 
for each cerebral hemisphere and smooths over the sulci in the pial surface to 
derive a proxy for the leptomeningeal surface1 (Figure 1: A middle & right). The 
leptomeningeal surface (Schaer et al., 2008) is created because it is useful for 
identifying subdural electrode locations since subdural electrodes traverse sulci. 
Finally, the individual’s brain is mapped to the FreeSurfer average brain (see 
subsequent section). This procedure requires up to 24 hours on a conventional 
workstation. Manual intervention is rarely necessary. The exceptions are patients 
with gross brain abnormalities such as tumors and lobectomies for whom the 
automatic segmentation may fail around the abnormal regions, and the medial 
wall of the anterior medial temporal lobe, which tends to be underestimated. 
 
Once FreeSurfer has completed processing the MRI, a postimplant CT or MRI is 
rigidly aligned to the preimplant MRI via an affine transform with six degrees of 
freedom (Figure 1: B). iELVis provides Bash scripts for performing this 
coregistration using the flirt tool (Jenkinson & Smith, 2001; Jenkinson, Bannister, 
Brady, & Smith, 2002) from the Oxford Centre for Functional MRI of the Brain 
Software Library (FSL: www.fmrib.ox.ac.uk/fsl) or using FreeSurfer’s bbregister 
(Greve & Fischl, 2009). While flirt attempts to align the entire volume, bbregister 
aligns image boundaries. Another practical difference is that the results of 
bbregister are easy to manually edit using FreeSurfer’s tkregister2 graphical user 
interface (GUI). Accuracy of the CT-MRI coregistration can be readily visually 
verified by the alignment of the skull in both volumes. MRI-MRI coregistration 
accuracy is even easier to visually confirm. In our testing, both flirt and bbregister 
typically give very similar results with no need for manual intervention. However, 
occasionally when one method fails, the other will typically succeed. 
 
After the postimplant scan has been aligned to the preimplant MRI, the 
postimplant scan (in the preimplant MRI space) is imported into BioImage Suite’s 
Electrode Editor to manually identify electrode locations (Figure 1: C-D). 

                                                
1 In previous papers (Dykstra et al., 2011, Yang, Wang, et al., 2012) the 
smoothed pial surface was called the “dural surface.” We think “leptomeningeal 
surface” is more accurate given that subdural electrodes lie below the dural 
membrane. 
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Depending on the number of electrodes, a user can typically tag all electrodes in 
30 to 60 minutes. Next, electrode coordinates are saved to a BioImage Suite 
mgrid file which can be imported into MATLAB and visualized over the pial 
surface using iELVis functions (Figure 1: E). Other neuroimaging interfaces (e.g., 
FreeSurfer’s tkmedit) could be used in lieu of BioImage Suite for identifying 
electrode coordinates if users record electrode locations in a text file compatible 
with iELVis conventions. 
 
Finally, the subdural electrodes are projected out to the leptomeningeal (i.e., the 
smoothed pial) surface to correct for brain shift (Figure 1: F). Brain shift is caused 
by factors such as loss of cerebrospinal fluid, swelling, and the displacement of 
the brain by electrodes (Hastreiter et al., 2004). This deformity is typically most 
severe near a craniotomy and can be more than 1 cm (Dalal et al., 2008; Hill, 
Smith, & Simmons, 2000). In contrast, implants requiring only burr holes typically 
produce minimal brain shift (Sweet, Hdeib, Sloan, & Miller, 2013). iELVis includes 
two algorithms for brain shift correction. The first of these, devised by Dykstra, 
Chan and colleagues (Dykstra et al., 2011), projects each subdural electrode to 
the leptomeningeal surface using an iterative optimization algorithm that attempts 
to minimize the change in each electrode’s location and the distance with its four 
closest neighbors. Based on comparisons with intraoperative photographs of 
electrode locations in five patients, the Dykstra algorithm appears to localize 
electrodes under the craniotomy with median (IQR) error of 3 (2.39) mm or less 
(ibid.). Since electrodes near the craniotomy are typically most affected by brain 
shift, accuracy is likely even better for strips of electrodes that are inserted far 
from or without craniotomies. The second algorithm was created by Yang, Wang 
and colleagues (Yang et al., 2012) and projects grids of electrodes to the 
leptomeningeal surface via an inverse gnomonic projection. More specifically, the 
algorithm approximates the leptomeningeal surface under each grid as part of a 
larger sphere and iteratively adjusts the projection of the grid plane onto the 
sphere to minimize the difference between the projected and known electrode 
geometry. Subdural strips of electrodes are simply assigned to the location of the 
nearest point on the leptomeningeal surface. When the results of this algorithm 
were compared with electrode locations in intraoperative photographs in eight 
patients, the median (IQR) error of the Yang-Wang method was 0.74 (0.75) mm 
for sub-craniotomy electrodes (Yang et al., 2012). Once the subdural electrodes 
have been corrected for brain shift, several diagnostic plots are produced to help 
identify potential errors (Figure 2).  
 
Note that neither algorithm corrects the location of penetrating depth electrodes 
for brain shift. Since depth electrodes typically target medial structures (e.g. the 
hippocampus) that are minimally affected by brain shift, this is likely not a serious 
shortcoming. Moreover, depth-only implants (i.e., stereotactic EEG) generally 
produce negligible brain shift as a craniotomy is not performed (Gonzalez-
Martinez et al., 2014; Sweet, Hdeib, Sloan, & Miller, 2013). 
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3. MAPPING ELECTRODES TO AN AVERAGE BRAIN 
 
iELVis supports mapping electrodes to the FreeSurfer average brain for 
combining data across patients (i.e., “group analyses”). FreeSurfer maps 
individual brains to its average brain by aligning their gyrification patterns. This 
mapping thus accurately preserves the gyral location of subdural electrodes at 
the cost of greatly distorting some inter-electrode distances (Figure 3). 
 
As described in Dykstra et al. (2012), iELVis maps subdural electrode locations 
from a patient’s brain to the average brain by first assigning each electrode to the 
closest point on the patient’s pial surface (after the leptomeningeal surface-based 
brain shift correction described above). The pial surface is warped to a sphere 
which FreeSurfer has gyrally aligned to a spherical version of its average brain’s 
pial surface (Fischl et al., 1999). Each point on the patient’s spherical surface is 
assigned to the nearest neighbor on the average brain spherical surface, which 
has a one-to-one vertex correspondence to the average brain pial surface. 
 
By default, penetrating depth electrodes are mapped to the FreeSurfer average 
brain via an affine transformation to MNI305 space, which is compatible with that 
of the FreeSurfer average brain. However, penetrating electrodes within deep 
structures such as the amygdala and hippocampus might be best grouped 
across patients by using volumetric anatomical atlases (see following section). 
Depth electrode contacts that lie in cerebral grey matter can be mapped to the 
average brain via surface based mapping if users manually edit the iELVis 
electrode location files to indicate that the contact is a subdural electrode instead 
of a depth electrode.  
 
 
4. CATEGORIZING ELECTRODES USING ANATOMICAL ATLASES 
 
In addition to mapping individual brains to standard spaces, it is often useful to 
map them to standard anatomical atlases. Anatomical atlases can be used to 
define regions of interest to select subsets of electrodes for analysis or to 
combine data across patients for group analyses (e.g., Groppe et al., 2013). 
Pooling data across brains can be especially useful for iEEG/iEBS research 
which typically employs a very limited number of patients with idiosyncratic 
electrode placement.  
 
iELVis currently supports five FreeSurfer based anatomical atlases, four cortical 
and one volumetric. Two of these, the Desikan-Killiany and Destrieux atlases 
(Desikan et al., 2006; Destrieux, Fischl, Dale, & Halgren, 2010), are based on the 
major gyri and sulci. The Desikan-Killiany atlas (Figure 4: A) divides the cortical 
surface into 35 areas, while the Destrieux atlas has a finer grained 75 area 
parcellation (Figure 4: B). These atlases are particularly useful for functional 
areas that largely follow gyrification patterns (e.g., primary motor and sensory 
cortex, Broca’s area). The other two cortical atlases are derived from resting 
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state fMRI functional networks (Yeo et al., 2011). More specifically, Yeo and 
colleagues collected resting state fMRI data from 1000 neurotypical, young 
adults and grouped together cortical areas with high functional connectivity. They 
found two well-formed groupings of areas consisting of 7 and 17 networks 
(Figure 4: C-D). The 7-network atlas consists of the following groupings: default 
mode, frontoparietal, somatomotor, dorsal attention, ventral attention, limbic, and 
visual. These networks are somewhat broken up into the more fine-grained 
groupings of the 17-network atlas. For example, the 7-network atlas 
somatomotor network divides into dorsal and ventral somatomotor areas around 
the boundary of hand and face sensorimotor cortex. 
 
The volumetric atlas labels 44 subcortical areas, including the amygdala, 
hippocampus, and white matter (Figure 4: E). In addition, cortical voxels are 
labelled according to the Desikan-Killiany atlas. As mentioned previously, depth 
electrode contacts that lie in cortical grey matter can be manually relabeled as 
subdural contacts. This will allow them to be localized using the higher resolution 
surface based atlases with iELVis. 
 
 
5. MULTIMODAL OVERLAYS 
 
Multiple modalities of brain mapping data are often acquired from the same 
epilepsy surgery candidate. iELVis supports the simultaneous visualization of 
many of these data types. Specifically, it can visualize neuroimaging data (e.g., 
BOLD activation or cortical thickness), single contact electrode data (e.g. power 
changes), and bipolar contact electrode data (e.g. bipolar stimulation effects). 
Figure 5 displays an example of this. Specifically, it shows the overlay of three 
methods of mapping hand sensorimotor cortex: fMRI, iEEG, and iEBS. In 
addition, the iEEG and iEBS data are overlaid on the Yeo-17 area atlas to 
illustrate how well the Yeo et al. anatomically based functional networks compare 
with the patient’s functional mapping. All three functional mapping methods are in 
strong agreement (Figure 5: left and middle columns). The peak and boundaries 
of the fMRI statistical map are tightly consistent with that of the iEEG activations. 
The iEBS mapping is also highly consistent with the other two modalities, 
however it appears that iEBS includes an electrode that is a bit ventral and 
anterior of hand sensorimotor cortex because it was paired with another 
electrode placed squarely over hand sensorimotor cortex during stimulation. 
 
Note that the Yeo-17 network dorsal somatomotor area nicely captures the 
ventral boundary of hand somatomotor cortex (Figure 5: right column). However, 
the atlas area extends far beyond the dorsal boundary of the hand region and 
likely includes other somatomotor regions (e.g., arm and leg). 
 
Finally, note that the unconventional visualization of electrode data on the 
inflated pial surface (Figure 5: left column) makes it possible to relate electrode 
data to sulcal neuroimaging data and, potentially, to visualize penetrating depth 
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electrodes that lie in sulcal grey matter. This is useful not only because most of 
the cortical surface is sulcal (Valiante, 2012) and often obscured in standard 
iEEG visualizations, but also because the inflated surface provides a better 
sense of the surface-based distance (as opposed to Euclidean) between 
electrodes. This could be very helpful for understanding the spread of cortical 
activity such as seizures (Jenssen, et al., 2011; Schevon et al., 2012) or how 
functional interactions between cortical areas varies as a function of distance 
(Keller, Bickel et al., 2011). 
 
 
6. DISCUSSION 
 
Despite the increasing importance and popularity of iEEG and iEBS research, 
public software tools for dealing with some of the unique technical challenges of 
this work are limited. With the iELVis toolbox, we have addressed the need for an 
open source, well-documented software package that solves many common 
iEEG/iEBS technical challenges. iELVis provides a family of MATLAB functions 
for identifying the anatomical locations of electrodes with mm-scale resolution, for 
surface-based mapping of electrode locations to an average brain for group 
analyses, for mapping electrode locations to five anatomical atlases, and for 
simultaneously, interactively visualizing electrode and neuroimaging data. The 
toolbox works on all major operating systems, is well-documented, includes well-
developed tutorial materials, and is easy to integrate with other popular 
neuroscience freeware packages such as EEGLAB (Delorme & Makeig, 2004; 
Delorme et al., 2011), FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011), 
and SPM (http://www.fil.ion.ucl.ac.uk/spm/). 
 
While the iELVis toolbox meets the typical, basic localization needs of iEEG/iEBS 
research, the current version of the toolbox has some shortcomings. In particular, 
an issue with the surface based mapping to the average brain is that small 
differences in electrode locations in the patient’s native space can result in large 
differences in average brain coordinates if an electrode lies near gyral borders 
(e.g., near the boundary between the temporal and frontal lobes). Similarly, small 
differences in electrode locations can affect the anatomical region assigned to 
electrodes that lie near the borders of different atlas regions. A simplistic way to 
deal with this would be to remove these boundary electrodes from group 
analyses since their anatomical location is uncertain. Alternatively, subdural 
electrode data may be spatially smeared across nearby cortical vertices to 
account for the uncertainty of electrode locations (Kadipasaoglu et al., 2014; 
Kubanek & Schalk, 2015). A complication with this is approach is that it is unclear 
what the smearing kernel should be and such smearing fails to deal with volume 
conduction. The best alternative may be to localize the neural sources of the 
electrode data (Akalin Acar, et al., 2011) and to map those data to the average 
brain or atlases. This method could remove the need for a somewhat arbitrary 
smoothing kernel and would account for volume conduction. In particular, it could 
identify sulcal activity that likely contributes to subdural iEEG/iEBS data (Towle, 
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Carder, Khorasani, & Lindberg, 1999). 
 
An additional shortcoming of iELVis is that it does not implement any method for 
correcting depth electrodes for postimplant brain shift when the depth electrodes 
are implanted along with subdural electrodes that require a craniotomy. As 
already mentioned, the degree of brain shift near depth contacts is typically minor 
given that they are anchored to the skull and are usually distant from the 
craniotomies that produce the most significant brain shift. However, it would be 
useful to have tools for depth electrode brain-shift correction as sometimes depth 
electrodes lie near the craniotomy and if brain shift is severe it may affect even 
deep structures. A more significant limitation is that the automatic FreeSurfer pial 
surface construction, which iELVis depends on, often fails near abnormal brain 
regions (e.g., tumors or previous resections) and typically underestimates the 
medial extent of the medial temporal pial surface. The pial surface can potentially 
be manually corrected in FreeSurfer, however it may be that alternative surface 
based electrode localization algorithms (Hermes, Miller, Noordmans, 
Vansteensel, & Ramsey, 2010) might be more effective in cases of significant 
failure. 
 
In the future, we plan to develop iELVis further to address some of these 
limitations and to add new functionality. For example, we aim to quantify the 
degree of confidence that an electrode can be assigned to a particular 
anatomical region in order to identify electrodes whose anatomical locus is in 
doubt. Moreover, we hope to make it possible to spatially smooth electrode data 
over the cortical surface or to localize the neural generators of iEEG data in order 
to improve group analyses. Finally, we hope to add compatibility with additional 
brain atlases such as probabilistic maps of visual areas (L. Wang, Mruczek, 
Arcaro, & Kastner, 2015b) and individual-data derived resting-state fMRI network 
parcellations (Fox et al., 2016; D. Wang et al., 2015a). We also welcome 
contributions from other iEEG/iEBS researchers and have established a users 
group and contribution guidelines to facilitate this (http://episurg.pbworks.com). 
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Package URL Platform Dependencies Functionality 
BioImage 
Suite 

http://bioimagesuite.yale.edu/ Windows, OS 
X, Linux 

None • GUIs for manual 
electrode 
localization and 
annotation 

• Postimplant 
CT/MRI to 
preimplant 
MRI/fMRI 
coregistration 

• Can 
simultaneously 
visualize 
neuroimaging 
and intracranial 
electrode data 

BrainMapper https://github.com/vkrish1/brainmapperApp 
 
 

 

OS X None • Postimplant CT 
to 
preimplant/postim
plant MRI 
coregistration 

• Correction for 
brain shift 

• Maps electrode 
locations to a 
cortical atlas 

eConnectome http://econnectome.umn.edu/ MATLAB 
(Windows, 
OS X, Linux) 

None • Visualizes 
subdural 
electrode 
univariate and 
bivariate data 
overlaid on the 
brain’s surface 

FieldTrip http://www.fieldtriptoolbox.org/ MATLAB 
(Windows, 
OS X, Linux) 

None • GUI for  manual 
localization of 
electrodes in 
intraoperative 
photographs 

iELVis https://github.com/epiSurg/EpiSurg MATLAB 
(Windows, 
OS X, Linux) 
with some 
Bash scripts 
for 
neuroimaging 
coregistration 
(OS X, Linux) 

Relies on 
FreeSurfer for 
T1 MRI 
segmentation 
and cortical 
surface 
reconstruction. 
Relies on 
BioImage Suite 
for electrode 
localization. 

• Postimplant 
CT/MRI to 
preimplant 
MRI/fMRI 
coregistration 

• Implements 
Yang, Wang et 
al. (2012) and 
Dykstra et al. 
(2012) methods 
for brain shift 
correction 

• Maps electrodes 
to the FreeSurfer 
average brain for 
group analyses 

• Maps electrodes 
to five FreeSurfer 
based anatomical 
atlases 

• Can 
simultaneously 
visualize 
neuroimaging 
and intracranial 
electrode data 
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moviEEG https://github.com/dtxe/moviEEG MATLAB 
(Windows, 
OS X, Linux) 

None • Visualizes 
subdural 
electrode 
univariate and 
bivariate data 
overlaid on the 
brain’s surface 

Ntools https://github.com/HughWXY/ntools_elec-
BETA 

MATLAB 
(Windows, 
OS X, Linux) 

Relies on 
FreeSurfer for 
T1 MRI 
segmentation 
and cortical 
surface 
reconstruction. 

• Implements 
Yang, Wang et 
al. (2012) method 
for brain shift 
correction 

• Maps electrodes 
to the MNI 
average brain for 
group analyses 

 
Table 1: Some existing software packages that support intracranial electrode 
localization or visualization. 
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Figure 1: Electrode localization workflow. [A] FreeSurfer automatically segments 
various anatomical regions from a preimplant T1 MRI. This produces a 3D labeling of 
brain structures such as white matter, hippocampus, and pars opercularis which are 
represented with different colors [A-left]. In addition, FreeSurfer constructs pial [A-
middle] and leptomeningeal [A-right] surfaces. [B] A postimplant CT scan is rigidly 
coregistered to a preimplant T1 MRI. Edges of the CT scan are overlaid as red lines on 
the T1 MRI. [C] Electrodes are clearly apparent in the CT scan, visualized in 3D via 
BioImage Suite. [D] Electrode locations are manually labeled using BioImage Suite. 
Each strip, grid, or shaft of electrodes is represented with a unique color. [E] Electrode 
locations on the FreeSurfer reconstructed pial surface visualized with iELVis functions in 
MATLAB. Some cyan grid electrodes appear to lie inside the temporal lobe, due to 
postimplant brain compression (“brain shift”). [F] Brain shift-corrected electrode 
locations on the FreeSurfer pial surface visualized with iELVis functions in MATLAB. 
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Figure 2: iELVis visualizations to check brain shift correction accuracy. [A] The 
distance between electrode locations before and after brain shift correction. Subdural 
electrodes (circles) are corrected for brain shift, while depth electrodes (squares) are not; 
the correction distance for depth electrodes is therefore zero. Color scale corresponds to 
the plot in C. [B] Electrode locations pre- and post-correction for brain shift; lines join 
pre- and post-correction locations of each electrode. Post-correction electrodes use the 
same color scale as the plot in C. [C] Electrode locations overlaid on the subject’s pial 
surface, after brain shift correction, color coded to reflect the correction distances in A. In 
all figures, clicking on electrode symbols will produce the corresponding electrode's 
name. The three dimensional figures can be interactively rotated. 
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Figure 3: Mapping from individual anatomy to the FreeSurfer average brain 
preserves gyral location. [Left-Top] Electrodes on an individual’s pial surface are 
colored uniquely. [Left-Bottom] The individual brain is colored according cortical areas 
as defined by FreeSurfer’s Desikan-Killiany atlas. Electrodes are colored to match that of 
the closest brain region. [Right] Analogous electrode locations on the FreeSurfer average 
brain with the same color codes used for the individual brain. Mapping to the average 
brain preserves the gyral location of each electrode. 
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Figure 4: FreeSurfer anatomical atlases supported by iELVis. [A] Desikan-Killiany 
35 area cortical atlas based on gyrification. [B] Destrieux 75 area cortical atlas based on 
gyrification.  [C] Yeo 7 and [D] 17 area cortical atlas derived from resting state 
functional networks. [E] Volumetric atlas that includes subcortical as well as Desikan-
Killiany cortical areas. Electrode locations are represented with black spheres (A-D) or 
white circles (E). 
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Figure 5: Using iELVis to visualize localization of hand sensorimotor cortex using 
multiple modalities: fMRI, iEEG and iEBS. Maps are visualized on the inflated (left 
column) and non-inflated (middle and right columns) pial surface. For the inflated pial 
surface, gyri and sulci are represented with light and dark grey, respectively. [fMRI 
Data] Parula (i.e., blue-green-yellow) color scale represents an fMRI statistical map with 
positive values indicating greater BOLD response during finger tapping versus rest. 
[iEEG Data] Blue-red color scale represents an ECoG statistical map with positive 
values indicating greater high gamma band power during finger tapping versus rest. 
Spheres represent electrode locations. Black spheres indicate that an electrode provided 
no usable data. [iEBS Data] Red lines between electrodes indicate pairs of electrodes that 
produced hand movement or sensation when electrically stimulated. Black lines indicate 
that either no response or a non-hand sensorimotor response was elicited when the 
connected electrodes where stimulated. [Yeo-17 Atlas] Right column indicates the 
boundaries of various resting state functional networks according to FreeSurfer’s Yeo et 
al. 17 area atlas. 
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