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Abstract

We introduce the concept of topology weighting, a method for quantifying relationships between

taxa that are not necessarily monophyletic, and visualising how these relationships change across

the genome. A given set of taxa can be related in a limited number of ways, but if each taxon is

represented by multiple sequences, the number of possible topologies becomes very large. Topology

weighting reduces this complexity by quantifying the contribution of each 'taxon topology' to the

full tree. We describe our method for topology weighting by iterative sampling of sub-trees (Twisst),

and test it on both simulated and real genomic data. Overall, we show that this is an informative and

versatile approach, suitable for exploring relationships in almost any genomic dataset.

Scripts to implement the method described are available at g  ithub.com/simonhmartin/twisst.
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Introduction

The relationship (or genealogy) among recombining DNA sequences from closely-related taxa often

varies across the genome,  due to both variation in lineage sorting and introgression  (Maddison

1997).  Numerous  methods  focus  on  inferring,  from this  genealogical  variation,  the  underlying

population branching pattern (the ‘species tree’) (e.g. Heled and Drummond 2010) or demographic

history  (e.g.  Lohse  et  al.  2012).  It  is  now also  possible  to  characterise  the  complete  genomic

landscape  of  relatedness  using  whole  genome  sequences.  For  example,  Hobolth  et  al.

(2007) and Dutheil et al. (2009) developed an approach that uses whole genome sequences to infer

not only the population history, but also how and where in the genome the genealogy changes. More

recent studies have attempted to characterise patterns of relatedness along larger numbers of whole

genomes, either by simply inferring phylogenetic trees for pre-defined windows (Martin et al. 2013;

Fontaine et al. 2015), or by attempting to infer both the trees and the likely breakpoints that separate

them (Gante et al. 2016). An emerging challenge with increasing numbers of sequences, is that both

the inference and interpretation of genealogies becomes difficult,  due to the rapid escalation of

topological complexity. For example, for five haploid sequences, there are fifteen possible unrooted,

bifurcating tree topologies, whereas for ten sequences there are over two million. Here we address

this  challenge of characterising and summarising the genomic landscape of relatedness in large

datasets with multiple genomes from multiple taxa.

One way to deal with the problem of increasing tree complexity is to focus specifically on the

relationships among broader predefined taxa (hereafter “taxon topologies”), and not among all of

the sequences. This is straightforward if each taxon is completely resolved into a monophyletic

clade,  so that  the branching patterns  within each taxon can simply be ignored,  but  it  becomes

challenging when the taxa are not reciprocally monophyletic (i.e. when lineages are not completely

sorted). This is often the case for closely-related taxa, in which lineages from the same population

coalesce (share a most recent common ancestor) in the ancestral population, and may therefore be

more closely related to lineages from other taxa than from their own (Fig. 1A). We note that tree

inference  using  large  genomic  windows,  entire  chromosomes  or  whole  genomes  often  yields

completely-sorted monophyletic taxa, but this may be artificial as such methods are usually forced

to  infer  a  single  best-supported  tree,  even  though  the  region  may  represent  multiple  distinct

incompletely-sorted ancestries. Population genetic statistics based on allele frequencies, such as FST,
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have  the  advantage of  quantifying relatedness  rather  than  simply  qualitatively  describing  the

topology.  However,  by  ignoring  topology  entirely,  they  become difficult  to  interpret  when the

number  of  taxa  is  greater  than  two. There  is  therefore  a  need  for  descriptive  methods  that

incorporate both the qualitative tree-like structure of relationships and the quantitative variation in

taxon relationships across the genome. Examples of such methods include the so-called ABBA-

BABA test (Green et al. 2010; Durand et al. 2011; Martin et al. 2015), and f statistics (Reich et al.

2009,  2012;  Patterson  et  al. 2012),  both  of  which  evaluate  the  support  for  alternative  taxon

topologies using allele frequencies at single nucleotide polymorphisms (SNPs). However, because

individual SNPs are only informative about two separate groupings, these methods do not scale to

more than four taxa.

Here we introduce the concept of topology weighting, which offers a simple and general solution to

the problem of quantifying relationships among taxa that are not necessarily monophyletic. Given a

tree  of  relationships  for  a  set  of  taxa,  each  represented  by  an  arbitrary  number  of  sequences,

topology weighting quantifies the contribution of each individual 'taxon topology' to the full tree.

We  describe  our  approach  to  compute  topology  weightings,  which  we  call  Twisst (topology

weighting  by  iterative  sampling  of  sub-trees),  and  explore  the  utility  of  this  approach  using

simulated data as well as two different genomic datasets from butterflies and fungi. Overall, we

show that this concept provides a useful means to explore relationships using genomic data, both to

test hypotheses and generate new ones.

Materials and Methods

Topology weighting by iterative sampling of sub-trees

A given set of taxa can be related in a limited number of ways. For example, for four taxa labelled

A, B, C and D, there are three possible unrooted bifurcating topologies: ((A,B),C,D), ((A,C),B,D)

and ((A,D),B,C) (Fig. 1A). Given a tree with any number of tips (or leaves), each assigned to a

particular taxon, we define the weighting of a particular 'taxon topology',  τ, as the fraction of all

unique sub-trees – in which each taxon is represented by a single tip – that match the particular

taxon topology:

wτ=
K
N

(1)
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Where  N is the number of possible unique sample sets in which each taxon is represented by a

single sample. This corresponds to the product of the number of samples in each taxon.  K is the

number of  these  unique  sample sets  for  which  the corresponding sub-tree topology matches  τ.

Thus:

 N=∏
j=1

n

s j , K=∑
i=1

N

[xi=τ ] (2)

In which n is the number of defined taxa (groups), sj is the number of samples in taxon j, and xi is

the sub-tree topology corresponding to subset i.

Topology weighting therefore reduces the complexity of the full tree to a number of values, each

giving the proportionate contribution of a particular taxon topology (Fig. 1A). This method has

conceptual similarities to the quartet sampling approach for comparing topologies (Estabrook et al.

1985), except that here we do not consider all sub-trees, but only those in which each tip represents

a different taxon. Moreover, topology weighting can be applied to any number of taxa. The taxa can

be defined arbitrarily, for example by phenotype or geography, as with the 'operational taxonomic

units' used in biogeography. Because the number of taxon topologies is limited, the weightings can

be normalised to sum to 1, making them easily comparable between different parts of the genome.

We  computed  topology  weightings  using  our  Twisst approach,  implemented  by  Python  scripts

available  for  download  at  (https://github.com/simonhmartin/twisst).  The  Twisst algorithm  first

computes all possible unrooted, bifurcating taxon topologies, and then determines the number of

unique sub-trees that match each topology by iteratively sampling a single individual from each

taxon and 'pruning'  away all  other  branches  and nodes.  Our implementation  makes  use  of  the

Environment for Tree Exploration, ETE v3 (Huerta-Cepas et al. 2016).

The  number  of  unique  sample  combinations  (and  corresponding  sub-trees)  can  be  very  large.

However, the iterative process is sped up considerably by first collapsing monophyletic groups of

samples from the same taxon and weighting these nodes proportionately (Fig. S1). Nevertheless, if

the taxa are highly unsorted and the tree is large, it may not be possible to consider all possible

sample combinations in a reasonable amount of time. In such cases, approximate weightings can be

computed by randomly sampling a subset of sample combinations (Fig. S2). Random sampling for

approximate weighting is performed with replacement, so that the errors fit a binomial distribution,

allowing for the computation of a confidence interval (Fig. S2). Our implementation of Twisst also
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Figure 1. Topology weighting

(A) An example genealogy for four taxa (A, B, C and D), plotted as an unrooted tree on the top right.
Taxa B and C are not monophyletic, due to both deep coalescences causing incomplete lineage sorting
and gene flow. The three possible taxon topologies are shown, along with a single example sub-tree
that matches each topology. The percentage of all sub-trees matching each taxon topology (i.e. the
weightings) are shown by vertical bars.  (B) Topology weightings plotted across a 50 kb region of a
simulated recombining chromosome. Weightings for the three topologies are stacked (they always sum
to 1, as they are proportions). Changes in the weightings along the chromosome indicate regions of
distinct genealogical history separated by recombinations. Below, the same data are plotted with loess
smoothing (span = 2.5 kb).
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allows a threshold-based sampling procedure, in which sampling is repeated until a particular level

of  confidence  is  achieved.  This  allows  further  speed-ups  since  highly  sorted  trees,  in  which

weightings are biased toward one or a few topologies, require less sampling for high confidence

than unsorted or 'star-like' trees where most weightings are intermediate. For all analyses in this

study, dataset sizes allowed for computation of complete weightings.

Analysis of simulated chromosomes

In order to test our method on realistic data for which the complete genealogical history is known,

we simulated  the  evolution  of  recombining chromosomes  using  the  coalescent  simulator  msms

(Ewing and Hermisson 2010).  Simulations  involved four  taxa,  each  represented  by  10 haploid

sequences (40 in total), that split in the order (((A,B),C),D) (Fig. 2A), or five taxa, each represented

by 6 sequences, that split in the order (((A,B),(C,D)),E) (Fig. S7A), with split times of 0.5, 1 and

1.5  (in  units  of  4N generations).  Population  size  was  constant  throughout.  In  all  scenarios,

unidirectional migration from C to B was simulated. The simulation was performed for a 1 Mb

chromosome, with a population recombination rate (4Nr) of 0.01 or 0.001. Genealogies for each

unique ancestry block (separated by recombinations) were recorded. These were used to calculate

the ‘true’ weightings using Twisst.

Three distinct evolutionary scenarios were simulated (Fig. 2A, S7A).  msms command options are

provided in Supplementary Text 1. The first was a 'Neutral' scenario, with no selection and a low

migration rate from B to C of 0.1 (in units  of 4Nm,  where  m is  the fraction of B made up of

migrants from C each generation). The second was an 'Adaptive Introgression' scenario, which is

the same as above except that a beneficial allele at a locus in the centre of the 1 Mb chromosome is

allowed to move from population C into B at time 0.1. This was achieved by initiating selection at

this  time point on a dominant allele that  was fixed in  population C and absent  from the other

populations. A selection coefficient of 0.005 was used for both the homozygote and heterozygote,

with  a  diploid  population  size  of  100,000,  giving  a  selection  strength  (2Ns)  of  1000  for  both

genotypes. The third was a 'Barrier Locus' scenario, where the rate of migration from C to B was 5

(in units of 4Nm, as above), and a dominant allele at the central locus that is fixed in C is selected

against in population B. The same selection coefficient and population size as above were used.

We simulated sequences from the simulated genealogies using seq-gen (Rambaut and Grass 1997).

Command options are provided in Supplementary Text 1. The branch scaling factor for mutation
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was 0.01. Since branches in the simulated genealogies are in units of 4N generations, taking N to be

100,000 gives μ (the per generation mutation rate) of 2.5 x 10-8.

Inferring trees in sliding windows

We tested different methods for inferring trees in windows across the chromosome. The simplest

approach used non-overlapping windows of a fixed number of SNPs. A range of window sizes were

tested. Trees were then inferred for each window using PhyML version 3.0 (Guindon et al. 2010),

implementing  either  the  BIONJ  neighbour-joining  algorithm  (Gascuel  1997) or  maximum

likelihood optimization of the topology and branch lengths. To investigate the consistency of the

tree inference and compute confidence thresholds for the weightings, we performed bootstraping by

randomly re-sampling the SNPs in each window with replacement and repeating the tree inference.

We also tested an approach to infer likely window breakpoints from the data. Taking the topology

weightings computed from 10 SNP windows, we used the R package  GenWin (Beissinger  et al.

2015) to fit a beta-spline to the data and find likely inflection points, which we then used as window

breakpoints and inferred a new set of trees for these. In addition, we tested the program Saguaro,

which infers both the breakpoints and the distance matrix describing each region. Distance matrices

were converted to trees using BIONJ, as above.

Power Analyses

An important aspect of our approach is its dependence upon reliable trees, which may be inferred

from relatively  short  sequence  windows.  To  investigate  the  power  we  have  to  infer  topology

weightings from short sequences, we simulated datasets under a range of sampling strategies and

demographic  scenarios,  and  then  compared  the  true  weightings  to  those  computed  using  trees

inferred from the simulated sequences.

Eight sampling strategies were compared, including four, five, six or ten sequences from either four

or five populations (Fig. S3). For each sampling strategy, two different demographic scenarios were

simulated. In the four-population scenarios, the populations split in the order ((1,2),(3,4)), with the

basal  split  time  (t1)  at  either  0.5  or  1  x 4N  generations  in  the  past,  and  the  splits  between

populations 1 and 2 and 3 and 4 both occurring at 0.1 x 4N generations in the past (t2) (Fig. S3). In

the five-population cases, the populations split in the order (((1,2),(3,4)),5). As above, the basal split

time (t1) occurs at either 0.5 or 1 x 4N generations in the past. The next split, between populations 1

and 2 and populations 3 and 4, occurs at 0.2 x 4N generations in the past (t1b), and the final two
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splits between populations 1 and 2, and 3 and 4 both occur at 0.1 x 4N generations in the past (t2)

(Fig. S3).

In each run, we used msms (Ewing and Hermisson 2010) to simulate 500 genealogies for the given

sampling  design  and  demographic  scenario.  For  each  genealogy,  we  computed  the  topology

weightings using Twisst, and then generated a simulated set of sequences using seq-gen (Rambaut

and Grass 1997). The sequences were then truncated at different lengths to compare tree inference

using 10, 25, 50, 100, 200 or 400 SNPs. Trees were inferred in Phyml (Guindon et al. 2010), using

either  BIONJ,  or  with  maximum  likelihood  optimisation  of  the  topology  and  branch  lengths.

Weightings were then computed from the inferred tree, and compared to the set of true weightings

using a scaled euclidean distance:

d=
√∑i=1

n

(
(w i− x̂i)

2

mi
2 )

√(n−1)

Where  n is the number of weighting values (i.e. the number of taxon topologies),  wi is the true

weighting for topology i and xxi is the inferred weighting for topology i. mi is the absolute value of

the maximum possible distance from wi. This value therefore gives a distance between the true and

inferred sets  of weightings on a scale of 0 to 1,  with 0 indicating identical  values (i.e.  perfect

inference) and 1 indicating a maximum possible discrepancy between the true and inferred values. 

Not  all  SNPs  are  phylogenetically  informative,  and  even  those  that  are  (those  that  are  not

singletons), are not necessarily informative about the relationships among the broader taxa, which is

of primary interest for topology weighting. We therefore also tested the power of inference using a

subclass of ‘Taxon Informative Sites’ (TISs), which we define as having at least two alleles present

in at least two taxa. As above, simulated sequences were truncated to contain the number of TISs.

Analysis of real genomic data

We tested Twisst on two published genomic datasets from Neurospora spp. (ascomycete fungi) and

Heliconius spp.  (butterflies),  selected  to  represent  different  sampling  strategies  (4  and  5  taxa,

respectively),  as  well  as  different  levels  of  evolutionary  complexity.  The  Neurospora dataset

(Corcoran  et  al. 2016) consisted  of  22  aligned  haploid  genome  sequences  from  Neurospora

tetrasperma samples (10 of mating type  A, and 12 of mating type  a), along with single genomes

representing two related species:  Neurospora crassa, and  Neurospora hispaniola.  Whole genome
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alignments  were  obtained  from  datadryad.org/resource/doi:10.5061/dryad.162mh.  We  used

Lineage-10 (UK) samples of  N. tetrasperma, as these had been shown to carry a strong signal of

introgression  from  N.  hispaniola (Corcoran  et  al. 2016). Trees  were  constructed  for  sliding

windows of 50 SNPs using BIONJ as described above, with the requirement that each sample had

to be genotyped at 40 or more of the 50 SNPs per window. Topology weightings were computed

using Twisst, with four defined taxa:  N. tetrasperma mat a (12 sequences),  N. tetrasperma mat A

(10), N. crassa (1) and N. hispaniola (1).

The Heliconius dataset consisted of 18 resequenced genomes (or 36 haploid genomes) from Martin

et al.  (Martin et al. 2013). These samples comprised five populations: two geographically isolated

races of Heliconius melpomene, from Panama (H. m. rosina, n=4) and Peru (H. m. amaryllis, n=4),

and  their  respective  sympatric  relatives  Heliconius cydno chioneus from  Panama  (n=4)  and

Heliconius timareta thelxinoe from Peru (n=4), with which they are known to hybridize; along with

two additional samples of the more distant 'silvanifrom' clade to serve as outgroups. We limited our

analysis to two chromosomes: 18, which carries the gene optix, known to be associated with red

wing  pattern  variation;  and  21,  the  Z  sex  chromosome,  which  has  been  shown to  experience

reduced gene flow between these species, probably due to genetic incompatibilities  (Martin  et al.

2013).  Fastq  reads  were  downloaded  from  the  European  Nucleotide  Archive,  study  accession

ERP002440. Reads were mapped to the Heliconius melpomene reference genome v2 (Davey et al.

2016) using BWA-mem (Li and Durbin 2009; Li 2013) with default parameters. Genotyping was

performed  using  the  Genome  Analysis  Toolkit  (DePristo  et  al. 2011) v3  HaplotypeCaller  and

GenotypeGVCFs, with default parameters except that heterozygosity was set to 0.02. Phasing and

imputation was performed using Beagle v4  (Browning and Browning 2007). Topology weighting

was performed using Twisst using the five taxa described above.

Results

Analysis of simulated chromosomes

Topology weighting  provides  an informative  summary of  the  genealogical  data,  and highlights

differences between the simulated scenarios (Fig. 2). As described above, there are three possible

unrooted  topologies  for  the  four  taxa.  In  the  'Neutral'  scenario,  the  most  prevalent  topology,

(((A,B),C),D), which reflects the population split times, has an average weighting of 71% across the

chromosome. The other two topologies are both fairly rare, but one (((B,C),A),D) is more common
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on average (17%) than the other (((A,C),B),D) (12%). This is because the former can result from

both gene flow and incomplete lineage sorting (ILS), whereas the latter can only result from ILS, as

there  was  no  simulated  migration  between  A and  C  or  between  B  and  D.  In  the  'Adaptive

Introgression' scenario, the weightings are very similar to the Neutral scenario on average, but in the

centre of the chromosome there is a strong excess of the topology (((B,C),A),D), created by the

spread of a beneficial allele from population C into B. Finally, in the 'Barrier Locus' scenario, high

migration from C to B causes a swamping by the topology (((B,C),A),D), which has an average

Figure 2. Tests on simulated chromosomes

(A) In  all  three  demographic  scenarios,  populations  split  in  the  order  (((A,B),C),D),  at  the  split  times
indicated (in units of 4N generations), with migration from C to B. In the 'Neutral' scenario, there is no
selection and moderate migration. The 'Adaptive Introgression' scenario is similar, except a beneficial allele
at a locus in the centre of the chromosome is allowed to move from population C into B at time 0.1. In the
'Barrier Locus' scenario, the rate of migration is high, but an allele at the central locus that is fixed in C is
selected against in population B. (B) Mean weightings for the three possible taxon topologies across the 1
Mb simulated chromosome. Note that we illustrate the topologies for the four taxa as rooted, with D as the
outgroup for simplicity, but the rooting is not considered when computing the weightings. (C) Weightings for
all  three topologies plotted (stacked) across the chromosome, with loess smoothing (span = 20 kb).  (D)
Weightings for topology (((A,B),C),D) inferred from simulated sequence data using non-overlapping 50 SNP
windows and neighbour joining. Solid blue lines indicate the true values, and dashed black lines indicate the
inferred values. Grey shading indicates the lower (5%) and upper (95%) quantiles based on 100 bootstrap
replicates. Values are smoothed as above.
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weighting of 65%. However,  there is a broad peak at  the centre of the chromosome where the

population  branching  topology  (((A,B),C),D)  had  not  been  eroded,  due  to  selection  limiting

introgression.

In the corresponding simulations with five taxa, there are fifteen possible taxon topologies (Fig.

S7). There is greater topological variation overall, as there are more ways that incomplete sorting

can  occur.  Nonetheless,  topology  weights  clearly  detect  the  differences  among  the  scenarios,

highlighting the most abundant topologies as well as the location of the selected locus (Fig. S7).

Inferring weightings from simulated sequence data

Above, we computed the weightings directly from the simulated genealogies, but we are also able

to show that topology weightings can be reliably estimated when the genealogies are inferred from

simulated sequence data (Fig. 2D, S7D). Because neither the genealogies, nor the recombination

breakpoints  at  which genealogies switch are known,  we tested several  approaches  for  inferring

genealogies  for  narrow intervals  across  the  chromosome.  First,  we performed extensive  power

analyses,  covering  a  range  of  demographic  scenarios  and  sampling  designs,  to  explore  the

relationship between the number of SNPs used for tree inference and the accuracy of topology

weighting. Across the range of scenarios investigated, we find a consistent lower bound of 50 SNPs

to achieve >90% accuracy (Fig. S4, S5, S6). Focussing specifically on 'taxon informative sites' (see

above) makes no discernible difference, probably because most SNPs in our simulations are taxon

informative. These tests also indicate that neighbour-joining trees provide more accurate weightings

than maximum likelihood trees, in addition to much faster computation (Fig. S4, S5, S6).

We then analysed trees inferred for non-overlapping windows across our simulated recombining

chromosomes. A fixed window size of 50 SNPs gives results that most closely approximate the true

weightings (Fig. 2D, S7D). In agreement with our power analyses, with fewer than 50 SNPs, the

estimates are less accurate, and tend to underestimate the weighting of the most prevalent topology

(Fig. S8, S9). Weightings tending toward intermediate values are expected as the underlying trees

become less well resolved. Interestingly, windows of 100 SNPs or above also result in reduced

accuracy,  but  with  a  tendency  to  overestimate  support  for  the  most  prevalent  topology  and

underestimate support for others (Fig. S8, S9). This can be explained by the fact that large windows

are forced to average over regions of distinct ancestry, therefore favouring the most widespread

signal.  To  confirm  this  hypothesis,  we  repeated  our  neutral  simulation  using  a  ten-fold  lower
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population  recombination  rate.  In  this  new dataset,  100 SNP windows give  the  most  accurate

weightings, and even 200 SNP windows have high accuracy, while 50 SNP windows perform only

marginally less well (Fig. S10, S11).

We  tested  whether  bootstrapping  over  the  SNPs  in  each  window  can  be  used  to  validate  the

accuracy of the observed weightings. Bootstrap weights tend to be similar, but marginally more

conservative, underestimating the weight of the most prevalent topology (Fig. 2D). This is because

the bootstrap trees tend to be slightly less well resolved, leading to more intermediate weightings.

Bootstrapping is therefore a useful means to test the strength of support for an observed peak in the

weighting of a particular topology. However, being inherently conservative, bootstrapping would

not be able to determine whether an observed intermediate weighting was accurate or simply the

result of a poorly resolved tree.

Because real recombination breakpoints are not evenly spaced, we also tested two approaches in

which the window boundaries are inferred from the data itself. In our first approach, we used the R

package  GenWin  (Beissinger  et al. 2015) to  fit a smooth spline to the weightings from 10-SNP

windows and identify likely window boundaries as inflection points, and then inferred trees for the

the newly-defined window regions. The resulting topology weightings match the true weightings

fairly well, but not as well as for the fixed 50 SNP windows (Fig. S12, S13). As above, this appears

to be due to poor tree inference in the smallest windows. The second approach used the method

Saguaro (Zamani et al. 2013), which combines a Hidden Markov Model and a Self Organising Map

to  infer  both  the  trees  and  window  boundaries.  This  approach  poorly  recapitulates  the  true

weightings, greatly overestimating support for the most prevalent topology (Fig.  S12, S13). We

therefore used fixed windows of 50 SNPs for all further analyses.

Branch lengths differ among topology types

Topology weighting is primarily a descriptive method, but the weightings do carry information that

can  aid  inferences  about  population  history.  The  simulated  ‘Barrier  Locus’ scenario  (Fig.  2)

provides an interesting test  case.  Due to the overwhelming signal of introgression,  it  would be

difficult  to  know  which  topology  corresponds  to  the  true  population  branching  order  (i.e.  the

‘species tree’) if this was not known. The topology (((B,C),A),D) is prevalent across much of the

chromosome, but (((A,B),C),D) is prevalent in around the chromosome centre. It has been proposed

that  the  original  population  branching  order  can  be  identified  by  considering  branch  lengths
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(Fontaine et al. 2015; Gante et al. 2016). Taxa that cluster together due to recent introgression tend

to be separated by short branches, whereas those that cluster according to the population branching

order should have deeper splits. Indeed, in trees inferred from 50 SNP windows, pairwise branch

distances between the taxa suggest that sub-trees matching (((B,C),A),D) tend to result from recent

introgression between B and C (Fig.  S14),  thus implying that  (((A,B),C),D) is  the more likely

population branching order. 

Analysis of real genomic data

The Neurospora dataset consists of four taxa (three possible topologies), and is the simpler of the

two real datasets analysed (Fig. 3A,B). It was selected to test how well Twisst is able to detect the

signal  of  a  previously  described  adaptive  introgression  event  from  N.  hispaniola into  N.

tetrasperma individuals of the A mating type (Corcoran et al. 2016). This introgression covers the

entire (~7 Mb) non-recombining region of linkage group I (LGI). Indeed, we find a dramatic shift in

the pattern of topology weightings in the central part of LGI (Fig 3C). The ‘species-tree’ topology

(topo1), which groups the two N. tetrasperma mating types as closest relatives, is prevalent across

most of the genome, but has very little weighting in the central part of LGI. Instead, it is replaced by

topo3, which groups mating type  A individuals of  N. tetrasperma with N. hispaniola. Elsewhere,

topo3  has  limited  weighting,  nearly  identical  to  that  of  topo2,  consistent  with  a  low level  of

incomplete lineage sorting throughout the genome. However, a region of LGIV also shows a weak

shift  in support towards topo3,  potentially  reflecting a separate  introgression signal involving a

small number of sequences.

The  Heliconius dataset represents a more complex, five-taxon test case. The five taxa include an

outgroup and two pairs of sympatric, non-sister taxa, between which gene flow is known to occur

(Fig. 4A). Of the 15 possible topologies (Fig. 4B), the two most common across these chromosomes

are topo3 and topo6. topo3 is consistent with the accepted species branching order, in which the

allopatric  H.  cydno  chioneus and  H.  timareta  thelxinoe are  sister  taxa;  whereas  topo6 groups

populations by geography, consistent with inter-specific gene flow in both Panama and Peru. The

former is by far the most prevalent throughout the Z chromosome (Fig. 4C). By contrast, the species

topology has variable weighting across chromosome 18, and is in places outweighed by topologies

consistent with gene flow (topo4, topo5, topo6, topo11, topo14). In particular, there is a strong peak

in the region of optix for topo11, which groups the taxa by wing pattern, and is consistent with the
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previously described adaptive introgression of the red-band allele between H. m. amaryllis and H. t.

thelxinoe in Peru (Pardo-Diaz et al. 2012; The Heliconius Genome Consortium 2012). Zooming in

on this peak shows a clear block of ~150 kb over which the introgression topology is weighted

highly (Fig. S16). This block includes the regulatory region downstream of optix that is known to

controls wing pattern variation in these species (Baxter et al. 2010; Wallbank et al. 2016). Another

four topologies that partially match the species branching order (topo1, topo2, topo10, topo15),

have moderate weightings throughout, whereas topologies consistent with neither the species tree

nor gene flow (topo7, topo8, topo9, topo12, topo13) have low weightings, especially across the Z

chromosome, implying less incomplete lineage sorting than on chromosome 18.

Figure 3. Neurospora analysis

(A) The putative species tree. Note that mating type  a and  A individuals of  N. tetrasperma are shown as
separate branches, while in reality, apart from the non-recombining region of LGI, these samples represent a
single recombining population. The putative introgression from  N. hispaniola into  N. tetrasperma mat A
individuals (Corcoran et al. 2016) is indicated. (B) The three possible taxon topologies for these four taxa.
(C) Topology weightings for 50 SNP windows plotted across all seven linkage groups, with loess smoothing
(span = 500 kb). The upper and lower plots show the same data, plotted as stacked or as separate lines,
respectively.
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Discussion

Most  statistics  used  in  population  genetics  describe  aspects  of  the  underlying  genealogy.  For

example, FST can be expressed as the relative rate of coalescence within sub-populations compared

to the total population (Slatkin and Voelm 1991). Similarly, the D statistic of the ABBA BABA test

compares the relative rate of coalescence between two pairs of non-sister populations (Green et al.

2010; Durand et al. 2011). Topology weighting can be seen as a generalization of this principle, as it

determines the relative frequency of all possible patterns of coalescence among samples from a set

of defined taxa. Unlike the ABBA BABA test, which is based on binary trees (samples either share

the same allele or not) and therefore only four taxa, topology weighting uses a full genealogy, and

can in principle be applied to any number of taxa, each represented by any number of sequences. In

Figure 4. Heliconius analysis

(A) The putative species tree. Shaded arrows indicate ongoing gene flow between sympatric, non-sister taxa
in Panama and Peru, respectively (Martin  et al. 2013). The solid red arrow indicates the putative adaptive
introgression  of  the  the  red  wing-patterning  allele  near  the  gene  optix (Pardo-Diaz  et  al. 2012;  The
Heliconius Genome Consortium 2012).  (B) The fifteen possible taxon topologies for these five taxa.  (C)
Topology weightings for 50 SNP windows plotted across chromosomes 18 and 21 (Z), with loess smoothing
(span = 500 kb). The upper and lower plots show the same data, plotted as stacked or as separate lines,
respectively. The location of optix on chromosome 18 is indicated by a dashed vertical line.
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practice, however, beyond six taxa, the number of possible taxon topologies becomes very large,

making topology weighting less practical. Nevertheless, even when the number of taxon topologies

is very large, there may be value in comparing the weightings of particular topologies that support

specific  hypotheses  (Van  Belleghem  et  al. 2017).  Unlike  other  methods  for  comparing  tree

topologies (e.g. Robinson and Foulds 1981; Estabrook et al. 1985), topology weighting reduces the

problem to  quantifying  relationships  among but  not  within  defined taxa.  There  is  also no  real

limitation on the number of samples included per taxon. Although computation of exact weightings

may become infeasible for large trees, it remains possible to compute approximate weightings with

small  margins or error fairly rapidly. Our computational approach,  Twisst,  is based on a simple

counting  procedure,  but  we  are  confident  that  more  efficient  analytical  solutions  –  or  at  least

approximations – will be found.

An important consideration when applying this method is its dependence on the trees used. In most

cases, the true genealogy for each distinct ancestry block is not known, and must be inferred from

the sequences. Accurate inference requires multiple informative SNPs. Our tests on simulated data

highlight a central difficulty when analysing recombining chromosomes: a trade-off between signal

and resolution. Using larger numbers of SNPs increases our ability to infer the correct tree, but may

average over genomic regions with different histories. This leads to a systematic overestimation of

the weightings for more abundant topologies, whose signal tends to swamp out that of others. Using

few  SNPs  per  window  allows  for  better  resolution,  but  can  lead  to  inaccuracies  in  tree

reconstruction  from  insufficient  signal  (i.e.  phylogenetic  error),  producing  star-like  trees  and

intermediate weightings for all topologies. Fortunately, this means that errors in tree inference are

unlikely to result in spurious peaks in the weighting of a single topology, but instead may lead to

underestimation of the height of a particular peak. A peak can be validated using bootstrapping, but

an even better test is to demonstrate that it persists with decreasing window sizes. Our simulations,

based  on  realistic  recombination  and  mutation  rates,  indicate  that  a  window size  of  50  SNPs

provides  a  good  compromise  between  signal  and  resolution  across  a  range  of  demographic

scenarios,  although  larger  windows  may  be  acceptable  if  the  population  recombination  rate  is

known to  be  low.  While  in  some cases  with  high  recombination  rates,  there  may  be  too  few

mutations per recombination to accurately infer variation in genealogies across the genome, we

expect that many cases will fall within a feasible range. Importantly, not all recombinations are

relevant for topology weighting: only recombination events between lineages from distinct taxa (i.e.
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'effective recombinations' or 'inter-taxon recombinations') can alter taxon relationships, and hence

alter  the weightings.  The ability to infer  the patterns of topology weighting across the genome

therefore  depends  on  the  relationship  between  the  mutation  rate  and  the  rate  of  inter-taxon

recombination. Where possible, simulations tailored to the taxa being studied can be used to guide

the choice of window size. In the future, improved methods to infer breakpoints from the data may

further resolve this difficulty.

Another challenge is that diploid resequencing data should ideally be phased, so that each tip in the

tree  represents  a  distinct  haplotype.  Phasing  can  be  performed  using  probabilistic  approaches

informed by patterns of linkage disequilibrium  (Browning and Browning 2007; Delaneau  et al.

2013). Although such methods may be error-prone across large genomic distances, they have fairly

high accuracy at short ranges (Bukowicki et al. 2016), making them suited to the narrow windows

used for topology weighting. Moreover, the genomic regions involving inter-taxon recombinations

(i.e. those relevant for topology weighting) are more likely to be phased correctly, because they tend

to involve more divergent sequences.

Topology  weighting  is  principally  a  descriptive  method,  and  can  be  applied  with  no  prior

knowledge of the studied samples, apart from some basis on which to define distinct groups, such as

geography  or  phenotype.  By  capturing  the  tree-like  nature  of  sequence  evolution,  it  provides

information that is not provided by descriptive statistics like  FST,  or clustering methods such as

Structure (Pritchard  et al. 2000). In addition to describing the taxon branching order, tree-based

methods  allow incorporation  of  additional  parameters  like  a  nucleotide  substitution  model  and

different  rates  of  evolution  in  different  parts  of  the  tree.  Unlike  conventional  phylogenomic

methods, topology weighting captures information about fine-scale and quantitative variation across

the genome. This power and resolution is highlighted in the Heliconius example studied here, where

topologies supporting admixture are common across chromosome 18, but there is one narrow peak

consistent  with  the  adaptive  introgression  of  a  wing  patterning  allele  near  the  gene  optix,  as

described previously (Pardo-Diaz et al. 2012; The Heliconius Genome Consortium 2012). We note

that topology weighting simply describes the signal in the data, and does not explicitly test  for

introgression  over  other  causes  of  discordant  phylogenetic  signal.  For  example,  the  elevated

frequency of topologies consistent with introgression across Heliconius chromosome 18 compared

to the Z chromosome is only partially due to an elevated rate of gene flow on autosomes (Martin et
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al. 2013),  but  also  reflects  increased  incomplete  lineage  sorting  due  to  their  larger  effective

population size relative to the sex chromosome. Weightings may be more difficult to interpret in

cases with a less well understood evolutionary history. Nevertheless, it may be possible for example

to  differentiate  between  topologies  representing  the  ‘species  tree’ and  those  reflecting  recent

introgression by comparing their branch lengths (which can be output by  Twisst)  (Fontaine  et al.

2015; Gante  et al. 2016).  Finally,  we have found that topology weighting provides a means to

identify candidate loci underlying trait variation, based on clustering of taxa by phenotype [see also

Van Belleghem et  al.  (2017),  for  a  more extensive  demonstration  of  this  power].  In  summary,

topology weighting is a simple but versatile exploratory tool that is applicable to a diverse range of

questions and datasets.
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Supplementary Figures

Figure S1. Tree Simplification

The full tree (left) has four defined taxa of ten samples each, indicated by different colours. This 

equates to 10,000 (104) unique sub-trees that include a single individual from each taxon. Twisst 

reduces the number of unique sub-trees to count by collapsing clades and weighting them by the 

number of individuals of each taxon present (and adjusting branch lengths accordingly). In this 

example, after this process, there remain only 6 unique sub-trees to count (3x2x1x1).
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Figure S2. Approximate weighting by random sampling

This example tree has four defined taxa indicated by different symbols. There are three possible 

taxon topologies (top right). The graph shows the estimated weighting for each topology (Y-axis) 

after randomly sampling a number of sub-trees from the full tree (X-axis). The 95% binomial 

confidence interval (calculated using the Wilson method), is shaded. Dashed lines show the true 

exact weightings computed by sampling all 10,000 sub-trees.
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Figure S3. Demographic scenarios for power simulations

Four (left) and five (right) population simulations were performed. Split times are shown, note that 

two different values were tested for split time t1 in both scenarios.
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Figure S4. Power analyses with four equal-sized groups

Each plot in the first four columns shows the error rate, calculated as a scaled euclidean distance 

between the true and inferred weightings (Y-axis), plotted against the number of sites used for tree 

inference (X-axis). The simulated sequences were truncated to create a sequence of the correct 

length for tree inference. Truncation was performed either after X SNPs were observed (columns 1 

and 3) or after X 'taxon-informative sites' (TISs) had been observed (columns 1 and 4). The final 

column gives the number of SNPs required (Y-axis) to observe a certain number of TISs (X-axis). 

The first two columns show results after tree inference using neighbour joining (NJ) and the next 

two columns show results after tree inference using maximum likelihood (ML). Each row 

represents a distinct sampling strategy (four groups of four samples, four groups of five samples 

etc.). Red and blue lines indicate the two different demographic scenarios tested, with a different 

split time t1 (see Fig. S3).
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Figure S5. Power analyses with four groups of different sizes

As in Fig. S4, except for groups of different sizes.
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Figure S6. Power analyses with five equal-sized groups

As in Fig. S4, except for simulations with five groups.
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Figure S7. Tests on simulated chromosomes with 5 taxa 

(A) In all three demographic scenarios, populations split in the order ((((A,B),C),D),E), at the split 

times indicated (in units of 4N generations), with migration from C to B. In the 'Neutral' scenario, 

there is no selection and moderate migration. The 'Adaptive Introgression' scenario is similar, 

except a beneficial allele at a locus in the centre of the chromosome is allowed to move from 

population C into B at time 0.1. In the 'Barrier Locus' scenario, the rate of migration is high, but an 

allele at the central locus that is fixed in C is selected against in population B. (B) All fifteen 

possible taxon topologies. Note that we illustrate the topologies for the four taxa as rooted, with E 

as the outgroup for simplicity, but the rooting is not considered when computing the weightings. (C)

Weightings for all topologies plotted (stacked) across the chromosome, with loess smoothing (span 

= 20 kb). (D) Weightings for topology (((A,B),C),D) inferred from simulated sequence data using 

non-overlapping 50 SNP windows and neighbour joining. Solid blue lines indicate the true values, 

and dashed black lines indicate the inferred values. Values are smoothed as above.
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Figure S8. Inferred vs true weightings using different window sizes (ρ = 0.01)

The true (solid coloured line) and inferred (dashed black line) weightings, plotted across the 

simulated 1 Mb chromosome, with loess smoothing (span 0.04). The three columns with different 

colours represent the three taxon topologies (see Fig. 2 in the main paper). Rows represent different 

window sizes (fixed number of SNPs) used for tree inference (neighbour joining).
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Figure S9. Weighting error rates using different window sizes (ρ = 0.01)

Error rate, calculated as a scaled euclidean distance between the true and observed weightings, 

averaged over the 1 Mb simulated shromosome. Error rates were computed after first smoothing 

both the observed and true weightings using loess (span = 0.04).
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Figure S10. Inferred vs true weightings across simulated chromosomes (ρ = 0.001)

As in Fig. S8, except here simulations used a population recombination rate (ρ) of 0.001.
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Figure S11. Weighting error rates using different window sizes (ρ = 0.001)

As in Fig. S9, except here simulations used a population recombination rate (ρ) of 0.001.
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Figure S12. Inferred vs true weightings across simulated chromosomes

As in Fig. S8 and S10, except here comparing different methods for window-based tree inference: 

50 SNP windows (first row), WinGen inference of breakpoints (second row) or Saguaro (row three).
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Figure S13. Weighting error rates using different methods for window-based tree 
inference

As in Fig. S9 and S11, except here comparing different methods for window-based tree inference.
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Figure S14. Average branch length separating each pair of taxa in different sub-trees

Boxplots show the distribution of average pairwise distances (i.e. the branch lengths separating each

pair of taxa) across all trees, separated by the topology matched by each sub-tree (shown above and 

colored). For example, the blue box in the left-hand plot gives the distribution of average pair-wise 

distances between samples from taxon A and B for all sub-trees that matched the topology 

(((A,B),C),D). The corresponding distances are plotted for the other two topologies in different 

colors, and then for the other pairwise comparisons (A-C and B-C) in the middle and right-hand 

plots, respectively. The lower average distance between sequences from B and C (right-hand plot) 

in topologies where they coalesce first (yellow), compared to the distance between B and A (left-

hand plot) in topologies where they coalesce first (blue), suggests that the yellow topology results 

from recent introgression between B and C, whereas the blue topology matches the population 

branching order. 
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Figure S15. Comparison between topology weighting and FST

The simulated ‘Adaptive Introgression’ (top) scenario was used to compare topology weighting to 

FST. Weightings are plotted as in Fig. 2B except with a loess smoothing (span = 10 kb). Pairwise FST

plots for each pair of ingroup taxa are plotted for 5 kb sliding windows, moving in increments of 1 

kb. FST captures the signal of the adaptive introgression between populations B and C in the form of

a peak of divergence between A and B, and marginally reduced divergence between B and C.
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Figure S16. Topology weighting around the Heliconius optix gene

Unsmoothed weightings for three topologies from the Heliconius analysis, topo3 (blue), topo6 

(orange) and topo11 (red) (see Fig. 4 in the main paper for details), are plotted across the region of 

Chromosome 18 around the gene optix (indicated by a dashed black line). A ~150 kb block of high 

weightings for topo11, which supports introgression between H. melpomene amaryllis and H. 

timareta thelxinoe, includes optix and its downstream regulatory region that is known to control red 

wing patterning.
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