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Abstract

We introduce the concept of topology weighting, a method for quantifying relationships between

taxa that are not necessarily monophyletic, and visualising how these relationships change across

the genome. A given set of taxa can be related in a limited number of ways, but if each taxon is

represented by multiple sequences, the number of possible topologies becomes very large. Topology

weighting reduces this complexity by quantifying the contribution of each 'taxon topology' to the

full tree. We describe our method for topology weighting by iterative sampling of sub-trees (Twisst),

and test it on both simulated and real genomic data. Overall, we show that this is an informative and

versatile approach, suitable for exploring relationships in almost any genomic dataset.

Scripts to implement the method described are available at g  ithub.com/simonhmartin/twisst.
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Introduction

The  evolutionary  history  of  a  set  of  sequences  is  described  by  their  genealogical  tree.  In

recombining organisms, the genealogy varies across the genome, and this heterogeneity can provide

information about historical processes like selection and gene flow. Many of the commonly-used

approaches in population genomics are aimed at describing this genealogical heterogeneity. While it

may be ideal to know the complete genealogy and how it varies across the genome, it is often

preferable to use statistics that summarise particular features of the underlying tree, such as  FST.

However,  such  statistics  often  fail  to  capture  the  tree-like  process  of  sequence  evolution,  and

qualitative information about the branching order among taxa (i.e. the topology), which is relevant

for many evolutionary questions.

A pattern  of  particular  interest  in  evolutionary  biology  is  when  distinct  taxa  show  discordant

relationships across the genome. This discordance can reflect both incomplete lineage sorting (ILS)

and  introgression.  Some  recent  genomic  studies  have  attempted  to  characterise  the  genomic

landscape  of  species  relationships  by  inferring  phylogenies  in  windows,  revealing  extensive

topological  discordance  across  the  genome  in  groups  such  as  butterflies  (Martin  et  al. 2013),

mosquitos  (Fontaine  et al. 2015), cats  (Li  et al. 2016) and cichlids  (Gante  et al. 2016). A more

sophisticated approach that simultaneously infers genealogies and the likely recombination points at

which the genealogy switches has detected similar discordance in relationships among great apes

(Dutheil  et al. 2009; Scally  et al. 2012). These tree-based approaches are most useful when the

number of sequences - and, hence, possible tree topologies - is small, making it feasible to evaluate

the support for opposing evolutionary hypotheses such as gene flow and ILS. Both the inference

and interpretation of trees becomes challenging when the number of sequences is large, due to the

rapid escalation of topological complexity. For example, for five haplotypes, there are 15 possible

unrooted, bifurcating topologies, whereas for ten haplotypes there are over two million. This poses

a  problem  for  population  genomics,  where  studies  increasingly  compare  multiple  taxa  each

represented by multiple individuals.

One way to deal with the problem of increasing tree complexity is to focus only on the relationships

among broader taxa (hereafter “taxon topologies”), and not among all of the sequences. This is

straightforward  if  each  taxon  is  completely  resolved  into  a  monophyletic  clade,  so  that  the

branching patterns within each taxon can simply be ignored, but it becomes challenging when the
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taxa are not reciprocally monophyletic  (i.e. due to ILS or gene flow). We note that tree inference

using  large  genomic  windows,  entire  chromosomes  or  whole  genomes  often  yields  resolved

monophyletic taxa, but this may be artificial as such methods are usually forced to infer a single

best-supported tree, even though the region may represent multiple distinct ancestries.  Statistics

based on allele frequencies, such as FST, have the advantage of quantifying relatedness rather than

simply qualitatively describing the topology. However, by ignoring topology entirely, they become

difficult to interpret when the number of taxa is greater than two. There is therefore a need for

descriptive methods that incorporate both the qualitative tree-like structure of relationships and the

quantitative variation in taxon relationships across the genome. Examples of such methods include

the so-called ABBA-BABA test (Green et al. 2010; Durand et al. 2011; Martin et al. 2015), and f

statistics  (Reich  et al. 2009, 2012; Patterson  et al. 2012), both of which evaluate the support for

alternative taxon topologies using allele frequencies at single nucleotide polymorphisms (SNPs).

However,  because  individual  SNPs  are  only  informative  about  two  separate  groupings,  these

methods do not scale to more than four taxa.

Here we introduce the concept of topology weighting, which offers a simple and general solution to

the problem of quantifying relationships among taxa that are not necessarily monophyletic. Given a

tree  of  relationships  for  a  set  of  taxa,  each  represented  by  an  arbitrary  number  of  sequences,

topology weighting quantifies the contribution of each individual 'taxon topology' to the full tree.

We  describe  our  approach  to  compute  topology  weightings,  which  we  call  Twisst (topology

weighting  by  iterative  sampling  of  sub-trees),  and  explore  the  utility  of  this  approach  using

simulated data as well as two different genomic datasets from butterflies and fungi. Overall, we

show that this concept provides a useful means to explore relationships using genomic data, both to

test hypotheses and generate new ones.

Materials and Methods

Topology weighting by iterative sampling of sub-trees

A given set of taxa can be related in a limited number of ways. For example, for four taxa labelled

A, B, C and D, there are three possible unrooted bifurcating topologies: ((A,B),C,D), ((A,C),B,D)

and ((A,D),B,C) (Fig. 1). Given a tree with any number of tips (or leaves),  each assigned to a

particular taxon, we define the weighting of a particular 'taxon topology',  τ, as the fraction of all
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unique sub-trees – in which each taxon is represented by a single tip – that match the particular

taxon topology:

wτ=
K
N

(1)

Where  N is the number of possible unique sample sets in which each taxon is represented by a

single sample. This corresponds to the product of the number of samples in each taxon.  K is the

number of  these  unique  sample sets  for  which  the corresponding sub-tree topology matches  τ.

Thus:

 N=∏
j=1

n

s j , K=∑
i=1

N

[xi=τ ] (2)

In which n is the number of defined taxa (groups), sj is the number of samples in taxon j, and xi is

the sub-tree topology corresponding to subset i.

Topology weighting therefore reduces the complexity of the full tree to a number of values, each

giving the proportionate contribution of a particular taxon topology. This method has conceptual

similarities to  the quartet  sampling approach for comparing topologies  (Estabrook  et al. 1985),

except that here we do not consider all sub-trees, but only those in which each tip represents a

different taxon. Moreover, topology weighting can be applied to any number of taxa. The taxa can

be defined arbitrarily, for example by phenotype or geography, as with the 'operational taxonomic

units' used in biogeography.

We  computed  topology  weightings  using  our  Twisst approach,  implemented  by  Python  scripts

available  for  download  at  (https://github.com/simonhmartin/twisst).  The  Twisst algorithm  first

computes all possible unrooted, bifurcating taxon topologies, and then determines the number of

unique sub-trees that match each topology by iteratively sampling a single individual from each

taxon and 'pruning'  away all  other  branches  and nodes.  Our implementation  makes  use  of  the

Environment for Tree Exploration (ETE 3) (Huerta-Cepas et al. 2016).

The  number  of  unique  sample  combinations  (and  corresponding  sub-trees)  can  be  very  large.

However, the iterative process is sped up considerably by first collapsing monophyletic groups of

samples from the same taxon and weighting these nodes proportionately (Fig. S1). Nevertheless, if

the taxa are highly unsorted and the tree is large, it may not be possible to consider all possible
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Figure 1. Topology weighting

(A) An example genealogy for four taxa (A, B, C and D), plotted as an unrooted tree on the top right.
Taxa B and C are not  monophyletic,  due to  incomplete lineage sorting and gene flow. The three
possible taxon topologies are shown, along with a single example sub-tree that matches each topology.
The percentage of all  sub-trees  matching each taxon topology (i.e.  the  weightings) are shown by
vertical  bars.  (B) Topology weightings plotted across  a  50 kb region of a simulated recombining
chromosome. Weightings  for  the three topologies  are  stacked (they always sum to 1,  as  they are
proportions).  Changes  in  the  weightings  along  the  chromosome  indicate  regions  of  distinct
genealogical  history  separated  by  recombinations.  Below,  the  same  data  are  plotted  with  loess
smoothing (span = 2.5 kb).
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sample combinations in a reasonable amount of time. In such cases, approximate weightings can be

computed by randomly sampling a subset of sample combinations (Fig. S2). Random sampling for

approximate weighting is performed with replacement, so that the errors fit a binomial distribution,

allowing for the computation of a confidence interval (Fig. S2). Our implementation of Twisst also

allows a threshold-based sampling procedure, in which sampling is repeated until a particular level

of  confidence  is  achieved.  This  allows  further  speed-ups  since  highly  sorted  trees,  in  which

weightings are biased toward one or a few topologies, require less sampling for high confidence

than unsorted or 'star-like' trees where most weightings are intermediate. For all analyses in this

study, complete weightings were computed because the datasets were small enough.

Analysis of simulated chromosomes

In order to test our method on realistic data for which the complete genealogical history is known,

we simulated  the  evolution  of  recombining chromosomes  using  the  coalescent  simulator  msms

(Ewing and Hermisson 2010). All simulations involved forty haploid individuals from four taxa (10

individuals each). The four taxa split in the order (((A,B),C),D) with split times of 0.5, 1 and 1.5 (in

units of 4N generations), respectively (Fig. 2A). Population size was constant throughout. In all

three scenarios, unidirectional migration from C to B was simulated. The simulation was performed

for a 1 Mb chromosome, with a population recombination rate (4Nr) of 0.01 or 0.001. Genealogies

for each unique ancestry block (separated by recombinations) were recorded.

Three  distinct  evolutionary  scenarios  were  simulated  (Fig.  2A).  msms command  options  are

provided in Supplementary Text 1. The first was a 'Neutral' scenario, with no selection and a low

migration rate from B to C of 0.1 (in units of 4Nm,  where  m in the fraction of B made up of

migrants from C each generation). The second was an 'Adaptive introgression' scenario, which is

the same as above except that a beneficial allele at a locus in the centre of the 1 Mb chromosome is

allowed to move from population C into B at time 0.1. This was achieved by initiating selection at

this  time point on a dominant allele that  was fixed in  population C and absent  from the other

populations. A selection coefficient of 0.005 was used for both the homozygote and heterozygote,

with  a  diploid  population  size  of  100,000,  giving  a  selection  strength  (2Ns)  of  1000  for  both

genotypes. The third was a 'barrier locus' scenario, where the rate of migration from C to B was 5

(in units of 4Nm, as above), and a dominant allele at the central locus that is fixed in C is selected

against in population B. The same selection coefficient and population size as above were used.
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We simulated sequences from the simulated genealogies using seq-gen (Rambaut and Grass 1997).

Command options are provided in Supplementary Text 1. The branch scaling factor for mutation

was 0.01. Since branches in the simulated genealogies are in units of 4N generations, taking N to be

100,000 gives μ (the per generation mutation rate) of 2.5 x 10-8.

Inferring trees in sliding windows

We tested different methods for inferring trees in windows across the chromosome. The simplest

approach used non-overlapping windows of a fixed number of SNPs. A range of window sizes were

tested. Trees were then inferred for each window using PhyML version 3.0 (Guindon et al. 2010),

implementing  either  the  BIONJ  neighbour-joinging  algorithm  (Gascuel  1997) or  maximum

likelihood optimization of the topology and branch lengths. We also tested an approach to infer

likely window breakpoints from the data. Taking the topology weightings computed from 10 SNP

windows, we used the R package GenWin (Beissinger et al. 2015) to fit a beta-spline to the data and

find likely inflection points, which we then used as window breakpoints and inferred a new set of

trees for these. In addition, we tested the program Saguaro, which infers both the breakpoints and

the distance matrix describing each region. Distance matrices were converted to trees using BIONJ,

as above.

Power Analyses

An important aspect of our approach is its dependence upon reliable trees inferred from relatively

short sequence windows. To investigate the power we have to infer topology weightings from short

sequences, we simulated datasets under a range of sampling strategies and demographic scenarios,

and then compared the true weightings to those computed using trees inferred from the simulated

sequences.

Eight sampling strategies were compared, including four, five, six or ten sequences from either four

or five populations (Fig. S3). For each sampling strategy, two different demographic scenarios were

simulated. In the four-population scenarios, the populations split in the order ((1,2),(3,4)), with the

basal  split  time  (t1)  at  either  0.5  or  1  x 4N  generations  in  the  past,  and  the  splits  between

populations 1 and 2 and 3 and 4 both occurring at 0.1 x 4N generations in the past (t2) (Fig. S3). In

the five-population cases, the populations split in the order (((1,2),(3,4)),5). As above, the basal split

time (t1) occurs at either 0.5 or 1 x 4N generations in the past. The next split, between populations 1

and 2 and populations 3 and 4, occurs at 0.2 x 4N generations in the past (t1b), and the final two
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splits between populations 1 and 2, and 3 and 4 both occur at 0.1 x 4N generations in the past (t2)

(Fig. S3).

In each run, we used msms (Ewing and Hermisson 2010) to simulate 500 genealogies for the given

sampling  design  and  demographic  scenario.  For  each  genealogy,  we  computed  the  topology

weightings using Twisst, and then generated a simulated set of sequences using seq-gen (Rambaut

and Grass 1997). The sequences was then truncated at different lengths to compare tree infrence

using 10, 25, 50, 100, 200 or 400 SNPs. Trees were inferred in Phyml (Guindon et al. 2010), using

either  BIONJ,  or  with  maximum  likelihood  optimisation  of  the  topology  and  branch  lengths.

Weightings were then computed from the inferred tree, and compared to the set of true weightings

using a scaled euclidean distance:

d=
√∑i=1

n

(
(w i− x̂i)

2

mi
2 )

√(n−1)

Where  n is the number of weighting values (i.e. the number of taxon topologies),  wi is the true

weighting for topology i and xxi is the inferred weighting for topology i. mi is the absolute value of

the maximum possible distance from wi. This value therefore gives a distance between the true and

inferred sets  of weightings on a scale of 0 to 1,  with 0 indicating identical  values (i.e.  perfect

inference) and 1 indicating a maximum possible discrepancy between the true and inferred values. 

Not  all  SNPs  are  phylogenetically  informative,  and  even  those  that  are  (those  that  are  not

singletons), are not necessarily informative about the relationships among the broader taxa, which is

of primary interest for topology weighting. We therefore also tested the power of inference using a

subclass of 'Taxon Informative Sites” (TISs), which we define as having at least two alleles present

in at least two taxa. As above, simulated sequences were truncated to contain the number of TISs.

Analysis of real genomic data

We tested Twisst on two published genomic datasets from Neurospora spp. (ascomycete fungi) and

Heliconius spp.  (butterflies),  selected  to  represent  different  sampling  strategies  (4  and  5  taxa,

respectively),  as  well  as  different  levels  of  evolutionary  complexity.  The  Neurospora dataset

(Corcoran  et  al. 2016) consisted  of  22  aligned  haploid  genome  sequences  from  Neurospora

tetrasperma samples (10 of mating type  A, and 12 of mating type  a), along with single genomes

representing two related species:  Neurospora crassa, and  Neurospora hispaniola.  Whole genome
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alignments  were  obtained  from  datadryad.org/resource/doi:10.5061/dryad.162mh.  We  used

Lineage-10 (UK) samples of  N. tetrasperma, as these had been shown to carry a strong signal of

introgression  from  N.  hispaniola (Corcoran  et  al. 2016). Trees  were  constructed  for  sliding

windows of 50 SNPs using BIONJ as described above, with the requirement that each sample had

to be genotyped at 40 or more of the 50 SNPs per window. Topology weightings were computed

using Twisst, with four defined taxa:  N. tetrasperma mat a (12 sequences),  N. tetrasperma mat A

(10), N. crassa (1) and N. hispaniola (1).

The Heliconius dataset consisted of 18 resequenced genomes (or 36 haploid genomes) from Martin

et al.  (Martin et al. 2013). These samples comprised five populations: two geographically isolated

races of Heliconius melpomene, from Panama (H. m. rosina) and Peru (H. m. amaryllis), and their

respective  sympatric  relatives  Heliconius cydno chioneus (Panama)  and  Heliconius timareta

thelxinoe (Peru), with which they are known to hybridize; along with two additional samples of the

more distant 'silvanifrom' clade to serve as outgroups. We limited our analysis to two chromosomes:

18, which carries the gene optix, known to be associated with red wing pattern variation; and 21, the

Z sex chromosome, which has been shown to experience reduced gene flow between these species,

probably due to genetic incompatibilities (Martin et al. 2013). Fastq reads were downloaded from

the  European  Nucleotide  Archive,  study  accession  ERP002440.  Reads  were  mapped  to  the

Heliconius melpomene reference genome v2 (Davey et al. 2016) using BWA-mem (Li and Durbin

2009; Li 2013) with default parameters. Genotyping was performed using the Genome Analysis

Toolkit  (DePristo  et al. 2011) v3 HaplotypeCaller and GenotypeGVCFs, with default parameters

except that heterozygosity was set to 0.02. Phasing and imputation was performed using Beagle v4

(Browning and Browning 2007). Topology weighting was performed using Twisst, with five taxa:

H. melpomene rosina from Panama (4 diploid samples), H. melpomene amaryllis from Peru (4), H.

cydno  chioneus from Panama (4)  and  H. timareta  thelxinoe from Peru  (4),  and two  outgroup

samples from the 'silvaniform' clade,  H. pardalinus sergestus and  H. pardalinus ssp.  Nov. from

Peru.

Results

Analysis of simulated chromosomes

Topology weighting  provides  an informative  summary of  the  genealogical  data,  and highlights

differences  between the three simulated scenarios  (Fig.  2).  As described above,  there are  three
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possible unrooted topologies for the four taxa. Note that we illustrate these as rooted with D as the

outgroup for simplicity, but the rooting is not considered when computing the weightings. In the

'Neutral' scenario, the most prevalent topology (((A,B),C),D), which reflects the population split

times, has an average weighting of 71% across the chromosome. The other two topologies are both

fairly rare, but one (((B,C),A),D) is more common on average (17%) than the other (((A,C),B),D)

(12%). This is because the former can result from both gene flow and incomplete lineage sorting

(ILS), whereas the latter can only result from ILS, as there was no simulated migration between A

and C or between B and D. In the 'Adaptive introgression' scenario, the weightings are very similar

to the Neutral scenario on average, but in the centre of the chromosome there is a strong excess of

Figure 2. Tests on simulated chromosomes

(A) In  all  three  demographic  scenarios,  populations  split  in  the  order  (((A,B),C),D),  at  the  split  times
indicated (in units of 4N generations), with migration from C to B. In the 'Neutral' scenario, there is no
selection and moderate migration. The 'Adaptive introgression' scenario is similar, except a beneficial allele
at a locus in the centre of the chromosome is allowed to move from population C into B at time 0.1. In the
'Barrier locus' scenario, the rate of migration is high, but an allele at the central locus that is fixed in C is
selected against in population B.  (B) Mean weightings for the three possible topologies across the 1 Mb
simulated chromosome  (C) Weightings for all  three topologies plotted (stacked) across the chromosome,
with loess smoothing (span = 20 kb).  (D)  Weightings for topology (((A,B),C),D) inferred from simulated
sequence data using non-overlapping 50 SNP windows and neighbour joining. Solid blue lines indicate the
true values, and dashed black lines indicate the inferred values. Values are smoothed as above.
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the topology (((B,C),A),D), created by the spread of a beneficial allele from population C into B.

Finally,  in  the 'Barrier  locus'  scenario,  high migration from C to B causes  a  swamping by the

topology (((B,C),A),D), which has an average weighting of 65%. However, there is a broad peak at

the centre of the chromosome where the split-time topology (((A,B),C),D) had not been eroded, due

to selection limiting introgression.

Inferring weightings from simulated sequence data

Above, we computed the weightings directly from the simulated genealogies, but we are also able

to show that topology weightings can be reliably estimated when the genealogies are inferred from

simulated  sequence  data  (Fig.  2D).  Because  neither  the  genealogies,  nor  the  recombination

breakpoints  at  which genealogies switch are known,  we tested several  approaches  for  inferring

genealogies  for  narrow intervals  across  the  chromosome.  First,  we performed extensive  power

analyses,  covering  a  range  of  demographic  scenarios  and  sampling  designs,  to  explore  the

relationship between the number of SNPs used for tree inference and the accuracy of topology

weighting. Across the range of scenarios investigated, we find a consistent lower bound of 50 SNPs

to achieve >90% accuracy (Fig.  S4,  S5, S6). Focussing specifically on 'taxon informative sites'

makes  no  discernible  difference,  probably  because  most  SNPs  in  our  simulations  are  taxon

informative. These tests also indicate that neighbour-joining trees provide more accurate weightings

than maximum likelihood trees, in addition to much faster computation (Fig. S4, S5, S6).

We then analysed trees inferred for non-overlapping windows across our simulated recombining

chromosomes. A fixed window size of 50 SNPs gives results that most closely approximate the true

weightings (Fig. 2D). In agreement with our power analyses, the estimates are less accurate when

windows with fewer than 50 SNPs are used (Fig. S7, S8). Interestingly, windows of 100 SNPs or

above  also  result  in  reduced  precision,  with  a  tendency  to  overestimate  support  for  the  most

common topology and underestimate support for others (Fig. S7, S8). This can be explained by the

fact that large windows are forced to average over regions of distinct ancestry, therefore losing

resolution. To confirm this hypothesis, we repeated our neutral simulation using a ten-fold lower

population recombination rate. In this new dataset, 100 SNP windows are the most accurate, and

even 200 SNP windows have high accuracy, while 50 SNP windows perform only marginally less

well (Fig. S9, S10).
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Because real recombination breakpoints are not evenly spaced, we also tested two approaches in

which the window boundaries are inferred from the data itself. In our first approach, we used the R

package  GenWin  (Beissinger  et al. 2015) to  fit a smooth spline to the weightings from 10-SNP

windows and identify likely window boundaries as inflection points, and then inferred trees for the

the newly-defined window regions. The resulting topology weightings match the true weightings

fairly well, but not as well as for the fixed 50 SNP windows (Fig. S11, S12). As above, this appears

to be due to poor tree inference in the smallest windows. The second approach used the method

Saguaro (Zamani et al. 2013), which combines a Hidden Markov Model and a Self Organising Map

to  infer  both  the  trees  and  window  boundaries.  This  approach  poorly  recapitulates  the  true

weightings,  greatly overestimating support for the most abundant topology (Fig.  S11, S12).  We

therefore used fixed windows of 50 SNPs for all further analyses.

Analysis of real genomic data

The Neurospora dataset consists of four taxa (three possible topologies), and is the simpler of the

two real datasets analysed (Fig. 3A,B). It was selected to test how well Twisst is able to detect the

signal  of  a  previously  described  adaptive  introgression  event  from  N.  hispaniola into  N.

tetrasperma individuals of the A mating type (Corcoran et al. 2016). This introgression covers the

entire (~7 Mb) non-recombining region of linkage group I (LGI). Indeed, we find a dramatic shift in

the pattern of topology weightings in the central part of LGI (Fig 3C). The “species-tree” topology

(topo1),  which  groups  the  two  N.  tetrasperma  mating  types  as  closest  relatives,  is  strongly

supported across most of the genome, but has almost no support in the central part of LGI. Instead,

it  is  replaced  by  topo3,  which  groups  mating  type  A individuals  of  N.  tetrasperma with N.

hispaniola with. Elsewhere, topo3 has weak support, nearly identical to that of topo2, consistent

with a low level of incomplete lineage sorting throughout the genome. However, a region of LGIV

also shows a weak shift in support towards topo3, potentially reflecting a separate and more subtle

introgression signal.

The  Heliconius dataset represents a more complex, five-taxon test case. The five taxa include an

outgroup and two pairs of sympatric, non-sister taxa, between which gene flow is known to occur

(Fig. 4A). Of the 15 possible topologies (Fig. 4B), the two most common across these chromosomes

are 'topo3' and 'topo6'. topo3 is consistent with the accepted species branching order, in which the

allopatric  H.  cydno  chioneus and  H.  timareta  thelxinoe are  sister  taxa;  whereas  topo6 groups
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populations by geography, consistent with inter-specific gene flow in both Panama and Peru. The

former is by far the most prevalent throughout the Z chromosome (Fig. 4C). By contrast, support

for the species topology is variable across chromosome 18, and is in places outweighed by support

for topologies consistent with gene flow (topo4, topo5, topo6, topo11, topo14). In particular, there is

a strong peak in the region of  optix for topo11, which groups the taxa by wing pattern, and is

consistent with the previously described adaptive introgression of the red-band allele between H. m.

amaryllis and H. t. thelxinoe in Peru (Pardo-Diaz et al. 2012; The Heliconius Genome Consortium

2012). Another four topologies that shared at least one split with the species tree (topo1, topo2,

topo10, topo15), had moderate support throughout, whereas topologies consistent with neither the

species tree nor gene flow (topo7, topo8, topo9, topo12, topo13) were weakly supported throughout,

and particularly weakly across the Z chromosome, implying less incomplete lineage sorting than on

chromosome 18.

Figure 3. Neurospora analysis

(A) The putative species tree. Note that mating type  a and  A individuals of  N. tetrasperma are shown as
separate branches, while in reality, apart from the non-recombining region of LGI, these samples represent a
single recombining population. The putative introgression from  N. hispaniola into  N. tetrasperma mat A
individuals (Corcoran et al. 2016) is indicated. (B) The three possible taxon topologies for these four taxa.
(C) Topology weightings for 50 SNP windows plotted across all seven linkage groups, with loess smoothing
(span = 500 kb). The upper and lower plots show the same data, plotted as stacked or as separate lines,
respectively.
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Discussion

Most  statistics  used  in  population  genetics  describe  aspects  of  the  underlying  genealogy.  For

example,  FST can  be  interpreted  as  a  measure  of  the  relative  rate  of  coalescence  within  sub-

populations compared to the total population (Slatkin and Voelm 1991). Similarly, the D statistic of

the ABBA BABA test compares the relative rate of coalescence between two pairs of non-sister

populations  (Green  et  al. 2010;  Durand  et  al. 2011).  Topology  weighting  can  be  seen  as  a

generalization of this principle, as it determines the relative frequency of all possible patterns of

coalescence among samples from a set of defined taxa. Unlike the ABBA BABA test, which is

based on binary trees (samples either share the same allele or not) and therefore only four taxa,

topology weighting can in principle be used to summarise relationships between any number of

taxa,  each represented by any number of sequences.  In practice,  however,  beyond six taxa,  the

Figure 4. Heliconius analysis

(A) The putative species tree. Shaded arrows indicate ongoing gene flow between sympatric, non-sister taxa
in Panama and Peru, respectively (Martin  et al. 2013). The solid red arrow indicates the putative adaptive
introgression  of  the  the  red  wing-patterning  allele  near  the  gene  optix (Pardo-Diaz  et  al. 2012;  The
Heliconius Genome Consortium 2012).  (B) The fifteen possible taxon topologies for these five taxa.  (C)
Topology weightings for 50 SNP windows plotted across chromosomes 18 and 21 (Z), with loess smoothing
(span = 500 kb). The upper and lower plots show the same data, plotted as stacked or as separate lines,
respectively. The location of optix on chromosome 18 is indicated by a dashed vertical line.
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number of possible taxon topologies becomes very large, making topology weighting less practical.

Nevertheless,  even when the  number  of  taxon topologies  is  very large,  there  may be  value  in

comparing the frequencies of particular topologies of interest. There is no real limitation on the

number of samples that can be analysed per taxon. Although computation of exact weightings may

become infeasible for large trees, it remains possible to compute approximate weightings with small

margins or error fairly rapidly. Our computational approach, Twisst, is based on a simple counting

procedure, but we are confident that more efficient analytical solutions – or at least approximations

– will be found.

One important consideration when applying this method is its dependence on the inferred trees. In

most cases, the true genealogy for each distinct ancestry block is not known, and must be inferred

from the sequences. Accurate inference requires multiple informative SNPs. Our tests on simulated

data highlight a central difficulty when analysing recombining chromosomes: a trade-off between

signal and resolution. Using larger numbers of SNPs increases our ability to infer the correct tree,

but  may  average  over  genomic  regions  with  different  histories.  This  leads  to  a  systematic

overestimation of the weightings for more abundant topologies, whose signal tends to swamp out

that of others. Using few SNPs per window allows for better resolution, but can lead to inaccuracies

in tree reconstruction from insufficient signal (i.e. phylogenetic error), producing star-like trees and

intermediate weightings for all topologies.  Our simulations, based on realistic recombination and

mutation rates, indicate that a window size of 50 SNPs provides a good compromise between signal

and resolution across a range of demographic scenarios, although larger windows may be preferable

if  the  population  recombination  rate  is  known  to  be  low.  While  in  some  cases  with  high

recombination rates, there may be too few mutations per recombination to accurately infer variation

in genealogies across the genome, we expect that many cases will  fall  within a feasible range.

Importantly, not all recombinations are relevant for topology weighting: only recombination events

between lineages from distinct taxa (i.e. 'effective recombinations' or 'inter-taxon recombinations')

can  alter  taxon relationships,  and hence  alter  the  topology weightings.  The ability  to  infer  the

patterns of topology weighting across the genome therefore depends on the relationship between the

mutation rate and the rate of inter-taxon recombination. Where possible, simulations tailored to the

taxa being studied can be used to guide the choice of window size. In the future, improved methods

to infer breakpoints from the data may further resolve this difficulty.
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Another challenge is that diploid resequencing data should ideally be phased, so that each tip in the

tree  represents  a  distinct  haplotype.  Phasing  can  be  performed  using  probabilistic  approaches

informed by patterns of linkage disequilibrium  (Browning and Browning 2007; Delaneau  et al.

2013). Although such methods may be error-prone across large genomic distances, they have fairly

high accuracy at short ranges (Bukowicki et al. 2016), making them suited to the narrow windows

used for topology weighting. Moreover, the genomic regions involving inter-taxon recombinations

(i.e. those relevant for topology weighting) are more likely to be phased correctly, because they tend

to involve more divergent sequences.

Topology  weighting  is  principally  a  descriptive  method,  and  can  be  applied  with  no  prior

knowledge of the studied samples, apart from some basis on which to define distinct groups, such as

geography  or  phenotype.  By  capturing  the  tree-like  nature  of  sequence  evolution,  it  provides

information that is not provided by descriptive statistics like  FST,  or clustering methods such as

Structure (Pritchard  et al. 2000). In addition to describing the taxon branching order, tree-based

methods  allow incorporation  of  additional  parameters  like  a  nucleotide  substitution  model  and

different  rates  of  evolution  in  different  parts  of  the  tree.  Unlike  conventional  phylogenomic

methods, topology weighting captures information about fine-scale and quantitative variation across

the genome. This power and resolution is highlighted in the Heliconius example studied here, where

topologies supporting admixture are common across chromosome 18, but there is one narrow peak

consistent  with  the  adaptive  introgression  of  a  wing  patterning  allele  near  the  gene  optix,  as

described previously (Pardo-Diaz et al. 2012; The Heliconius Genome Consortium 2012). We note

that topology weighting simply describes the signal in the data, and does not explicitly test  for

introgression  over  other  causes  of  discordant  phylogenetic  signal.  For  example,  the  elevated

frequency of topologies consistent with introgression across Heliconius chromosome 18 compared

to the Z chromosome is only partially due to an elevated rate of gene flow on autosomes (Martin et

al. 2013),  but  also  reflects  increased  incomplete  lineage  sorting  due  to  their  larger  effective

population size relative to the sex chromosome. Finally, these findings also indicate that topology

weighting provides a means to identify candidate loci underlying trait variation, based on clustering

of taxa by phenotype. In summary, topology weighting is a simple but versatile exploratory tool that

is applicable to a diverse range of questions and datasets.
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Supplementary Figures

Figure S1. Tree Simplification

The full tree (left) has four defined taxa of ten samples each, indicated by different colours. This 

equates to 10,000 (104) unique sub-trees that include a single individual from each taxon. Twisst 

reduces the number of unique sub-trees to count by collapsing monophyletic single-taxon clades 

and weighting them by the number of individuals present. In this example, after this process, there 

remain only 12 unique sub-trees to count (4x3x1x1).
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Figure S2. Approximate weighting by random sampling

This example tree has four defined taxa indicated by different symbols. There are three possible 

taxon topologies (top right). The graph shows the estimated weighting for each topology (Y-axis) 

after randomly sampling a number of sub-trees from the full tree (X-axis). The 95% binomial 

confidence interval (calculated using the Wilson method), is shaded. Dashed lines show the true 

exact weightings computed by sampling all 10,000 sub-trees.
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Figure S3. Demographic scenarios for power simulations

Four (left) and five (right) population simulations were performed. Split times are shown, note that 

two different values were tested for split time t1 in both scenarios.
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Figure S4. Power analyses with four equal-sized groups

Each plot in the first four columns shows the error rate, calculated as a scaled euclidean distance 

between the true and inferred weightings (Y-axis), plotted against the number of sites used for tree 

inference (X-axis). The simulated sequences were truncated to create a sequence of the correct 

length for tree inference. Truncation was performed either after X SNPs were observed (columns 1 

and 3) or after X 'taxon-informative sites' (TISs) had been observed (columns 1 and 4). The final 

column gives the number of SNPs required (Y-axis) to observe a certain number of TISs (X-axis). 

The first two columns show results after tree inference using neighbour joining (NJ) and the next 

two columns show results after tree inference using maximum likelihood (ML). Each row 

represents a distinct sampling strategy (four groups of four samples, four groups of five samples 

etc.). Red and blue lines indicate the two different demographic scenarios tested, with a different 

split time t1 (see Fig. S3).
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Figure S5. Power analyses with four groups of different sizes

As in Fig. S4, except for groups of different sizes.
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Figure S6. Power analyses with five equal-sized groups

As in Fig. S4, except for simulations with five groups.
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Figure S7. Inferred vs true weightings using different window sizes (ρ = 0.01)

The true (solid coloured line) and inferred (dashed black line) weightings, plotted across the 

simulated 1 Mb chromosome, with loess smoothing (span 0.04). The three columns with different 

colours represent the three taxon topologies (see Fig. 2 in the main paper). Rows represent different 

window sizes (fixed number of SNPs) for tree inference (neighbour joining).
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Figure S8. Weighting error rates using different window sizes (ρ = 0.01)

Error rate, calculated as a scaled euclidean distance between the true and observed weightings, 

averaged over the 1 Mb simulated shromosome. Error rates were computed after first smoothing 

both the observed and true weightings using loess (span = 0.04).
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Figure S9. Inferred vs true weightings across simulated chromosomes (ρ = 0.001)

As in figure S7, except here simulations used a population recombination rate (ρ) of 0.001.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2016. ; https://doi.org/10.1101/069112doi: bioRxiv preprint 

https://doi.org/10.1101/069112
http://creativecommons.org/licenses/by-nc/4.0/


30

Figure S10. Weighting error rates using different window sizes (ρ = 0.001)

As in figure S8, except here simulations used a population recombination rate (ρ) of 0.001.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2016. ; https://doi.org/10.1101/069112doi: bioRxiv preprint 

https://doi.org/10.1101/069112
http://creativecommons.org/licenses/by-nc/4.0/


31

Figure S11. Inferred vs true weightings across simulated chromosomes

As in figure S7 and S9, except here comparing different methods for window-based tree inference: 

50 SNP windows (first row), WinGen inference of breakpoints (second row) or Saguaro (row three).
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Figure S12. Weighting error rates using different methods for window-based tree 
inference

As in figure S8 and S10, except here comparing different methods for window-based tree inference.
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