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Abstract 
Genome-wide association studies (GWAS) identify genetic variants associated with quantitative traits 

or disease. Thus, GWAS never directly link variants to regulatory mechanisms, which, in turn, are 

typically inferred during post-hoc analyses. In parallel, a recent deep learning-based method allows 

for prediction of regulatory effects per variant on currently up to 1,000 cell type-specific chromatin 

features. We here describe “DeepWAS”, a new approach that directly integrates predictions of these 

regulatory effects of single variants into a multivariate GWAS setting. As a result, single variants 

associated with a trait or disease are, by design, coupled to their impact on a chromatin feature in a 

cell type. Up to 40,000 regulatory single-nucleotide polymorphisms (SNPs) were associated with 

multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 

cases and 2,144 controls), and height (5,974 individuals) to each identify 43-61 regulatory SNPs, 

called deepSNPs, which are shown to reach at least nominal significance in large GWAS. MS- and 

height-specific deepSNPs resided in active chromatin and introns, whereas MDD-specific deepSNPs 

located mostly to intragenic regions and repressive chromatin states. We found deepSNPs to be 

enriched in public or cohort-matched expression and methylation quantitative trait loci and 

demonstrate the potential of the DeepWAS method to directly generate testable functional hypotheses 

based on genotype data alone. DeepWAS is an innovative GWAS approach with the power to identify 

individual SNPs in non-coding regions with gene regulatory capacity with a joint contribution to 

disease risk. DeepWAS is available at https://github.com/cellmapslab/DeepWAS.  

Background 

Genome-wide association studies (GWAS) have been highly successful in identifying genetic variants 

associated with risk for common diseases and traits 1. However, going from pure association to 

mechanistic insight has been a much more challenging task. Identification of the true causal variants 

in the context of a disease or trait from within regions of associated variants is hampered by linkage 

disequilibrium (LD), as nearby variants are likely to co-segregate in a population. The functional 

variants can, in most cases, not be easily discerned within long stretches of such correlated DNA, 

which can span several genes and include hundreds of associated variants.  

 

Additional post-processing approaches, so called functional GWAS, have been introduced to provide 

missing functional annotation to classical GWAS 2. The majority of published functional GWASs are 

based on the positional overlap of single-nucleotide polymorphisms (SNPs) with cis-regulatory 

elements such as promoters and enhancers (see Tak and Farnham 3 for a comprehensive review). 

These functional GWASs indicate that, for common diseases, the majority of associated SNPs reside 

in non-coding, regulatory regions 2,4,5. One drawback of these methods is that the actual impact of 

each variant on regulatory elements is not assessed, as the annotation is based on positional overlap 

only. For example, two SNPs that localize to the same chromatin immunoprecipitation with a 

massively parallel sequencing (ChIP-seq) peak of a transcription factor (TF) 6 might have the same, 

opposing or no functional effects at all. To try to resolve this shortcoming, in silico approaches 
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predicting the degree of disruption of TF binding motifs have been used 7,8. However, our 

understanding of the determinants of TF binding to known sequence motifs is still incomplete, limiting 

the success of such methods. Another post-processing approach to infer functional variants has been 

annotations that correlated SNP genotype with gene expression or DNA methylation data in the form 

of expression and methylation quantitative trait locus (eQTL and meQTL) analyses 9,10. Additional 

methods such as binding QTL (bQTL) studies for TF binding 11 or massively parallel reporter assays 

(MPRAs) now add experimental regulatory information on even a single variant resolution 12-14, yet 

need to be performed in the cell type of interest. While these approaches can indicate regulatory 

effects of associated SNPs, they cannot identify single functional variants within an LD block. 

 

In classical, hypothesis-free GWAS, all variants are treated equally despite it being highly unlikely that 

they are all functionally relevant in every disease-associated tissue of the body. Functional and 

disease relevant variants may show an association strength below the significance threshold, 

increasing the efforts required for identifying such regulatory variants. The integration of functional 

knowledge regarding SNPs into GWAS has the potential to prioritize relevant variants and overcome 

the current hurdle in gaining mechanistic insights into effects of SNPs associated with a specific 

phenotype. 

 

Recent advances in systems genetics that harness the predictive power of deep learning might 

enhance the performance of functional SNP prioritization methods. The deep learning method 

“DeepSEA” uses only DNA sequence information to predict effects on regulatory chromatin features, 

such as histone marks, TF binding, or the presence of open chromatin 15. For this annotation method, 

experimental, publicly available data from the ENCODE project 16 and the Roadmap Epigenomics 

Project 17 for cell type-specific TF binding, histone modifications, and chromatin states were used. 

This type of functional sequence annotation is superior to post-hoc, positional overlap-based 

methods, as it computes allele-specific differences in the effects of variants on regulatory elements 

and thus discerns SNPs with predicted functional impact in a given cell type from those just residing 

within an annotated element by chance. Importantly, the method allows for incorporating cell-type 

specific regulatory effects of variants at baseline as well as under experimentally challenged 

conditions, adding additional critical layers to understanding tissue- and context-specific disease 

mechanisms. This approach was further enhanced to predict tissue-specific gene expression levels 

and to prioritize putative causal variants associated with human traits and diseases 18. Recently, deep 

learning was successfully applied to predict the impact of non-coding mutations in a family with autism 

spectrum disorder 19 and the clinical impact of single human mutations 20. However, in all studies 

published to date, such deep learning-based annotations have only been applied post-hoc to 

association results from classical GWAS. 

  

We present a conceptually new approach fusing classical and functional GWAS. We obtain regulatory 

information on SNPs by generating sets of SNPs mapped to so called “functional units” (FUs) using 

deep learning and then perform multivariate FU-Wide Association Studies (DeepWAS). A FU is 
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defined as the combination of a specific chromatin feature, a cell type, and an experimental condition. 

Regulatory SNPs are then grouped based on their predicted capacity to modulate a FU and are jointly 

subjected to multivariate association with a trait or disease using feature selection with LASSO (L1) 

penalization 21. The rationale of this grouping by FUs stems from the idea that as the majority of our 

chromatin features are TFs (85%, see Supplementary Table 1) and that one TF influences a specific 

cellular function through accumulation of its downstream effects via multiple SNPs on a series of loci 
22. This optimized variant selection improves the power to identify sets of functional SNPs that may 

play a role in the etiology of the disease, and map them directly to a specific context – i.e., cell type, 

transcription factor, stimulation condition. Multiple regression models are relatively new in the field of 

GWAS, but have already shown promising results 23-25. Of note, one of these multi-SNP approaches 

used pre-clustering of LD blocks prior to LASSO modeling 26. 

  

For a proof of concept of this method, we used data from published GWASs of two common diseases, 

multiple sclerosis (MS) 27 and major depressive disorder (MDD) 28, as well as the quantitative trait of 

height 29. The heritability of MS and MDD was estimated to be 64% and 40%, respectively 30,31, 

comparable with other common diseases. The heritable nature of height is estimated to be between 

70-90% 32. GWAS meta-analyses have already identified 180 genetic loci for height 33, 200 for MS 34, 

and 44 independent loci for MDD 35. We compare the results of DeepWAS in smaller samples to the 

results from GWAS meta-analyses of the same phenotypes. This allows to identify disease- or trait-

associated FUs, generating novel supportive evidence for prior knowledge on pathophysiology. We 

also complement deepSNPs with QTL networks and generate novel testable hypotheses of disease 

mechanisms. 
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Results 

Directly integrating regulatory information into genotype-phenotype 
associations (DeepWAS approach) 
In order to integrate regulatory information into the classical GWAS approach, knowledge of 

regulatory information on a single SNP level is required. To retrieve a set of regulatory SNPs with 

effects on cell type-specific chromatin features, we employ DeepSEA variant effect predictions. We 

generated reference and alternative allele sequences of 1,000 bp regions centered around each 

GWAS SNP position (eight million SNPs) and used a pre-trained deep neural network 36 to obtain 

allele-specific probabilities for a genomic feature to manifest in a specific cell type under a given 

experimental condition (a pair of one chromatin feature in one cell type is further called “functional 

unit’’ (FU)). For this study, we used 919 pre-defined FUs (see Supplementary Table 1). For example, 

the FU “p53-baseline-HeLa” was informed by all ChIP-seq peaks of the TF p53 in baseline conditions 

in the HeLa cell line. We then employed the DeepSEA e-value metric that estimates the impact of a 

variant on the functional readout by comparing the allele-specific probabilities per variant to one 

million random SNPs from the 1,000 genomes project 37. Only SNPs with significant e-values (e-

value<5×10-5) were thus selected as likely to be regulatory. This filtering identified 40,000 predicted 

regulatory SNPs, i.e., a SNP with effects in one FU. We next merged all variants that are predicted to 

moderate the same FU into SNP sets. To associate these regulatory SNPs with a disease or trait in a 

multivariate manner, we employ L1-regularized (LASSO) linear regression models including multiple 

SNPs using the stability selection method. From all 919 FU models, we extracted those regulatory 

SNPs that show significant trait association and defined them as deepSNPs (see Methods and 

Figure 1). Moreover, the DeepWAS approach identifies SNP-phenotype associations directly in a cell-

type specific regulatory context.  

To test this approach, we applied DeepWAS to a dataset from an adequately-powered GWAS for MS 

(KKNMS GWAS, 15,283 individuals from two independent MS case-control cohorts 27) and found that 

for 637 out of 919 FU models, associated with at least one variant (see Figure 1B). Most models 

identified one deepSNP per FU while 147 models identified two, three or four deepSNPs to jointly 

moderate a FU. In total 53 unique MS-specific deepSNPs, excluding the region encoding the major 

histocompatibility complex (MHC) on chromosome 6, were identified by DeepWAS. These deepSNPs 

moderate 120 chromatin features in 133 cell lines (see Supplementary Table 2). Note that 16 out of 

the 53 deepSNPs were in pairwise LD with each other (r2≥0.5). 111 MS-specific deepSNPs were 

located in the MHC region. In addition to MS, we analyzed underpowered GWAS datasets for MDD 

(3,627 individuals recruited for recurrent MDD 28,38) and height (3,658 individuals of the population-

based KORA cohort 39). Sixty-one MDD-specific deepSNPs in 237 FUs (Supplementary Figure 1A 

and Supplementary Table 3) and 43 height-specific deepSNPs in 381 FUs (Supplementary Figure 

1B and Supplementary Table 4) were identified in these DeepWAS. 
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Characterization of deepSNPs 

We followed these results up by further characterizing the identified deepSNPs from the three 

independent analyses. DeepSNPs for MS and height were more likely to be located in intronic regions 

(32-33% deepSNPs in first or other introns) while deepSNPs for MDD were more likely to cluster in 

distal intergenic regions (>3 kb=53% vs. >3 kb=36-37% for MS and height, respectively). MS- and 

MDD-specific deepSNPs were never found within coding regions (Figure 2A). DeepSNPs were 

always identified in a cell-type specific manner. We thus interrogated the cell type specificity on the 

level of tissue category, in order to reduce complexity (Figure 2B). Note, that tissue categories were 

influenced by the richness of investigated cell types per category. For example, the tissue group blood 

encompasses 79 cell types, while brain contained only 14 tissues. Overall, more tissue groups were 

identified when the number of identified deepSNPs increased. Interestingly, compared to MS and 

MDD, a lower number of identified deepSNPs for height were relevant in brain tissues. At the same 

time, a larger number of deepSNPs were active in pancreatic tissue. Notably, an association of height 

with pancreatic cancer has previously been shown 40. 

   

As DeepWAS includes only a limited number of histone marks, we next overlapped deepSNPs with 

predicted chromatin states from the 15-state ChromHMM model 41 (Figure 2C). For both DeepWAS 

cell types (ENCODE) and 111 epigenomes, we used top-level tissue categories to overlap deepSNPs 

with chromatin state predictions in the respective matched tissue. We observed tissue and context 

(disease or trait) specific roles of chromatin states. Most of the MS-specific deepSNPs mapped to 

active chromatin states (82%, see Figure 2C). For MDD-specific deepSNPs a larger fraction 

overlapped with repressive marks (43%, see Figure 2C). 

 

To investigate the tissue specificity of the genomic loci around deepSNPs and to extend the number 

of disease-relevant tissues, we further tested if our deepSNPs and their proxies (r2≥0.5) were 

enriched in the loci of tissue-specifically expressed genes by leveraging Fantom CAGE data 42. MS-

specific deepSNPs were significantly enriched in the regions active in different immune cell types, 

height-specific deepSNPs in skeletal muscle cells, pericytes, and also pancreatic carcinoma cell line, 

and MDD-specific deepSNPs in neurocytoma as well as in different brain regions and immune cells 

(p-value≤0.05, see Figure 2D). 

DeepWAS identifies GWAS loci  

To evaluate the convergences of DeepWAS and GWAS, we evaluated how many deepSNPs map to 

cohort-specific results from classical GWAS and to results of larger published meta-analysis of GWAS 

(Figure 3A). In the published GWAS of the KKNMS dataset used in the present study, the MHC 

region as well as variants at 15 loci outside of this region were significantly associated with MS on a 

genome-wide level 27. When comparing KKNMS GWAS and DeepWAS results on a single SNP level, 

eleven of the 53 MS-specific deepSNPs or their LD proxies (r2≥0.5) mapped to eight independent loci 

(CLEC16A, MYO15A, PAGR1, CD58, GFI1, EVI5, and intergenic regions on chromosome 1 and 10). 
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The remaining deepSNPs (n=42) showed an association strength with at least nominal significance in 

the original GWAS with p-values all ≤5.13×10-4, but did not reach genome-wide significance. We next 

overlapped the deepSNPs with results from the GWAS by the International Multiple Sclerosis 

Genetics Consortium (IMSGC 43) that included over 47,000 MS cases and 68,000 controls. Here, a 

total of 12 deepSNPs mapped to nine independent genome-wide significant loci. Eight of these 12 

deepSNPs, corresponding to 8 out of 9 loci, were also genome-wide significant in the KKNMS 

GWAS27.  

 

For MDD, 60 out of the 61 MDD-specific deepSNPs or their proxies (r2≥0.5) reached nominal 

significance in a univariate GWAS from the same cohort (MDDC n=3,627 individuals, no genome-

wide significant association). Five MDD-specific deepSNPs overlapped with the top 10,000 SNPs of 

the recently published largest GWAS for MDD by the PGC 35 (included 135,458 MDD cases and 

344,901 controls; PGC GWAS deepSNP max. p-value ≤ 3.1×10-4), which represents a 2.2 fold 

enrichment (permutation p-value=0.071) over randomly sampled regulatory SNP sets (n=31,929 

regulatory SNPs) and their LD proxies. These five deepSNPs map to five independent loci: ZFPM2-

AS1, SBK2, MTFR1, and two intergenic regions on chromosome 7 (nearby genes: WNT2 and ASZ1) 

and a locus on chromosome 8 (nearby genes: LINC00293 and LOC100287846).  

All of the 43 height-specific deepSNPs reached nominal significance in the classical GWAS in the 

same cohort (KORA cohort n=3,658 individuals, no genome-wide significant association) with a max. 

p-value ≤7.7×10-3. Eight of the 43 height-specific deepSNPs mapped to seven independent genome-

wide significant loci (DIS3L2, ZBTB38, LCORL, PDLIM4, ZNF311, HABP4, and PXMP4) of the latest 

GWAS from the GIANT Consortium, which included over 183,727 individuals 33.  

 

In all the three DeepWAS, this approach identified regulatory SNPs that overlapped not only with 

SNPs associated with the same traits in the cohort-matched GWASs, but also with genome-wide 

significant associations from the larger consortia GWASs for these traits. These associations had not 

survived correction for multiple testing in the underpowered cohort-matched GWAS, but were 

detected using DeepWAS. 

 
Deriving hypotheses on disease-associated mechanisms in MS from 
DeepWAS result 
We next wanted to illustrate how DeepWAS can accelerate the discovery of disease 

mechanisms. Within the DeepWAS results for MS, we identified, for example, the intergenic 

region IL20RA-IL22RA2 on chromosome 6 that includes deepSNP rs62420820 (Figure 3B), 

which was genome-wide significant in the IMSGC GWAS (p-value=9.26×10-36, Figure 3D) 

and nominally significant in the KKNMS GWAS conducted on the MS cohort used for the 

DeepWAS analysis (p-value=1.23×10-5, Figure 3D). In comparison to the published GWAS-

based results, DeepWAS adds the novel and testable hypothesis that the TFs MafF and 

MafK contribute to MS susceptibility. The IMSGC GWAS and deepSNP rs62420820 shows 
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allele-specific TF binding differences for MafF and MafK in the leukemia cell line K562 

(Figure 3C). Of note, additional deepSNPs were identified within the FUs MafK:K562 

(Figure 3B/E: deepSNP rs12768537 on chromosome 10 and Figure 3B/F: deepSNP 

rs137969 on chromosome 22) and MafF:K562 (deepSNP rs12768537), supporting a role of 

these TFs in the etiology of MS.  
 

We also identified deepSNPs that were detected at a genome-wide significance level by both the 

cohort-matched KKNMS GWAS and IMSGC GWAS. This includes deepSNP rs1985372 on 

chromosome 16, located in the CLEC16A locus, previously suggested as a candidate gene for MS 

(the deepSNP rs1985372 was significant in the KKNMS GWAS on the same cohort and is in complete 

LD with the SNP rs2286974 (r2=0.99), which was significant in the IMSGC GWAS 27,43). DeepWAS 

now adds the regulatory information that these SNPs alter TF binding of GABP, GATA-1, GATA-2, 

p300, STAT1, STAT2, STAT5A, and TBLR1, all expressed in K562 cells, and that these TFs play a 

MS-specific role in regulation of CLEC16A. 

 
Regulatory effect of MS-specific deepSNP loci 
Allele-specific effects on chromatin features and TF binding are likely to be reflected by changes in 

DNA methylation and gene expression. To test whether the MS-specific deepSNPs or their proxies 

(r2≥0.5) associate with differences in gene expression and DNA methylation, we used publicly 

available cis-meQTL, cis-eQTL, and eQTM data from multiple resources: 1) The Biobank-Based 

Integrative Omics Study (BIOS) analyzing whole blood (>2000 samples) 44,45, the CommonMind 

Consortium (CMC 46) dorsolateral prefrontal cortex data (DLPFC) (n=603 samples), and GTEx data 47. 

In the largest resource, BIOS, we observed that 36 of the 53 non-MHC, MS-specific deepSNPs were 

significant meQTLs (68%) and 20 significant eQTLs (38%), which represent a 1.7 and 1.9 fold 

enrichment over randomly sampled regulatory SNPs and their assigned LD proxies, respectively 

(permutation p-values≤0.011, see Figure 4A and Supplementary Table 5). We next restricted 

DeepWAS hits to deepSNPs moderating immune cell lines (n=13 deepSNPs, 46 chromatin features, 

4 cell lines and 50 FUs, Supplementary Table 2), given the relevance of this tissue in MS 48. Of this 

subset of 13 immune MS-specific deepSNPs, 62% (n=8 deepSNPs) overlapped with meQTL variants 

(meSNP) and 38% (n=5 deepSNPs) with eQTL variants (eSNP) in BIOS. In their recent study, the 

IMSGC identified significant eQTL effects in naive CD4+ T cells and monocytes for only 18% of their 

significant GWAS loci 49.  When overlapping our immune MS-specific deepSNPs with the same QTL 

datasets, we found 43% (n=23 SNPs) of these deepSNPs to be part of eQTLs in CD4+ T cells and 

38% (n=20 deepSNPs) in monocytes. In addition to publicly available data, we also conducted an 

eQTL analysis using blood gene expression levels from a subset of 319 MS patients of the MS cohort. 

In total, 47% (n=25 deepSNPs) of our MS-specific deepSNPs showed a significant eQTL effect in this 

data (Figure 4A and Supplementary Table 6), of which 14 deepSNPs had previously been identified 

as part of eQTLs in blood. In the GTEx database, we found 42% of these deepSNPs to have a 

significant effect in blood eQTLs (Supplementary Table 8).  
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Taken together, QTL data from various resources support that the DeepWAS of MS identified SNPs in 

transcriptionally relevant regions and emphasize their putative regulatory role in immune function. 
 
Regulatory effect of MDD and height deepSNP loci 
The 61 MDD- and 43 height-specific deepSNPs were also transcriptionally active in the respective 

relevant tissues (see Figure 4A and Supplementary Tables 9-16) and tagged more BIOS eQTLs 

and meQTLs than expected by randomly sampling of regulatory SNPs and assigning their LD proxies 

(MDD: fold enrichment for eQTLs=1.7 and meQTLs=1.5, permutation p-value=0.009 and 0.015, 

respectively; height: fold enrichment for eQTL=1.5 and meQTLs=1.5, permutation p-value=0.068 and 

0.013, respectively, see Methods). Interestingly, in the much larger PGC GWAS only 20% of their 44 

genome-wide significant hits overlapped with BIOS meQTLs 35, while the overlap was 54% for MDD-

specific deepSNPs (Figure 4A). For a subset of both the MDDC and the KORA cohort, methylation 

levels and/or expression levels were measured. We therefore calculated meQTL and eQTL effects 

and found 16% of MDD-specific deepSNPs with significant meQTL effects, 65% of the height-specific 

deepSNPs with meQTL and 33% with eQTL effects (see Figure 4A and Supplementary Tables 

10,14-15).  

 

All data from DeepWAS results with additional QTL information is stored in a searchable graph 

database and accessible at https://github.com/cellmapslab/DeepWAS. 

Disease mechanisms on the level of functional units 
While DeepWAS can be used to predict the phenotype from the genotype, it is also interesting to 

annotate the relationship of FUs to disease or trait. For example, MS is an immune-mediated disorder 

affecting the central nervous system (CNS). Naturally, the CNS is difficult to directly examine as a 

study tissue. DeepWAS might here be used to identify a good proxy study tissue. To interrogate this 

hypothesis, we counted the number of MS-specific deepSNPs of each MS associated FU tissue group 

that overlapped with eSNPs of a GTEx tissue group (Figure 5B and Supplementary Figure 2). The 

MS heatmap in Figure 4B support the hypothesis that a proxy tissue can be identified and suggests 

that blood deepSNPs are surrogates for brain tissues and other tissues, especially for the thyroid.  

 

Moreover, DeepWAS results can be used to identify single SNPs as key regulators, i.e., those SNPs 

with effects on multiple chromatin features. DeepWAS identified, for example, the intergenic deepSNP 

rs175714 on chromosome 14 as a key regulator for MS (Figure 5A-B). It affects the binding of 

multiple chromatin features at the same time (n=29) in 116 cell types (Figure 5A-B). One of these 

chromatin features is the TF MAZ. MAZ itself is one of the top-associated loci of the KKNMS GWAS 

(tag SNP rs34286592 on chromosome 16, p-value=4.58×10-10), but no significant transcriptional effect 

was previously identified in a post-hoc analysis of the GWAS 27. Interestingly, the MS-specific 

deepSNP rs175714, together with the MS-specific deepSNP rs11000015 on chromosome 10, had a 

significant effect on the binding of MAZ and they were jointly associated with MS disease status. The 
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deepSNP rs11000015 is correlated with expression levels of the Prosaposin (PSAP) gene in multiple 

tissues, whole blood gene expression levels of PSAP are shown in Figure 5C. 

 
Another example is the TF MEF2C in the analysis of MDD, where DeepWAS identified the intergenic 

SNP rs7839671 on chromosome 8 as one of the key regulators for MDD (see Supplementary Figure 
3). MEF2C is an important risk gene for MDD and the MEF2C gene itself is one of top-associated loci 

of the PGC GWAS for MDD 35 (MEF2C, chr5: 87.443-88.244 Mb, p= 7.9×10-11, Supplementary 

Figure 3). SNP rs7839671 and its proxies are associated with differences in mRNA expression of 

SPIDR and MCM4 and show meQTLs with an intergenic region (for more details, see 

Supplementary Figure 3).  

QTL network analyses 
In-depth investigation of the wealth of additional regulatory capacities of deepSNPs were carried out 

by generating QTL-networks that combine all pairwise links of meQTL (SNP-CpG), eQTL (SNP-gene), 

eQTM (CpG-gene), and deepSNP-FU information. QTL network analyses helped us to identify the 

SNPs that showed joint effects on epigenetic and transcriptomic levels, i.e., deepSNP = eSNP = 

meSNP where the deepSNP harbors an eQTM. The resulting networks are called three-way QTL 

interaction networks. Three MS-specific deepSNPs on chromosome 17, rs2273030, rs4925172 (both 

in complete LD with each other r2=1), and rs7207666 (r2=0.7) are located in the SHMT1 locus, a 

candidate gene for MS 27,49 (Supplementary Figure 4A). The genetic variants and SHMT1 are 

connected via eQTL, meQTL, and eQTM relations (Supplementary Figure 4B). In comparison to the 

previously published findings on the locus, DeepWAS informs that the TF Yin Yang 1 (YY1), 

expressed in multiple cell lines, may lead to a downregulation of SHMT1 gene expression and 

hypermethylation of cg25492364 and cg26763362, thus connecting the disease associated SNPs with 

specific regulatory functions.  

 

Moreover, a three-way QTL interaction network analysis identified the height-specific deepSNP 

rs7146599 on chromosome 14 to affect a cascade of eight chromatin features in eleven cell lines (see 

Supplementary Figure 5A-B). The network also included rs2871960 on chromosome 3, linked to the 

ZBTB38 locus and correlated with multiple CpG sites. ZBTB38 has been previously shown to play an 

important regulatory role in height 50.  

 

Thee-way QTL interaction network analysis identified the MDD-specific deepSNP rs163105 on 

chromosome 5 to alter the expression of SKIV2L2 (also known as MTR4). This gene has already 

been shown to be differentially expressed between depressed women and controls 51 (see 

Supplementary Figure 6). Furthermore, SKIV2L2 has been implicated in the stress response and 

neurodegeneration through the nuclear exosome-targeting (NEXT) complex 52.  

 

In summary, DeepWAS allows the direct identification of putative master regulators, TFs and 

chromatin features for a subsequent in-depth analysis of genetic association signals.
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Discussion 

In classical GWASs, all SNPs are tested independently from each other on a genome-wide scale, 

thereby implicitly assuming that any SNP can moderate the function of any cell state at any time. It is 

now clear that disease associations, especially regarding common disorders, are driven by SNPs 

altering the function of regulatory elements. Hence, it is likely that testing all SNPs in GWAS is not 

necessary but rather we should use functional annotation to help prioritize putative risk variants 17. So 

far, several post-hoc functional annotations of GWAS results have been reported 53-55. In this 

manuscript, we present DeepWAS, a novel analysis tool for genetic associations that fuses GWAS 

and functional annotation into one single step (Figure 1). We employ the powerful deep learning 

based method DeepSEA to predict regulatory effects of chromatin features in various cell types on a 

single SNP level 36. In addition, we implement multi-SNP regression models with L1 regularization to 

identify so-called deepSNPs. The SNPs of one FU are only selected when they are jointly associated 

with the disease or trait. To the best of our knowledge, this study is the first to combine deep learning-

based predictors with multivariate models. By applying DeepWAS to three datasets, we show that this 

method allows direct fine-mapping of GWAS associations at a single base resolution as well as direct 

functional annotation of the association signal to both chromatin features and cell types, generating 

novel mechanistic hypotheses. We also demonstrate that DeepWAS, by pre-selecting functionally 

relevant SNPs and integrating multivariate statistics, might increase power to detect true positive 

signals. 

 

We applied DeepWAS on a well-powered GWAS dataset for MS (n=15,283 individuals), but also to 

underpowered GWAS data for MDD (n=3,627 individuals) and height (n=3,658 individuals). In all 

three phenotypes, many SNPs in many genes contribute to genetic variation in the population and the 

effect size of each SNP was found to be small 56. Therefore, large sample sizes are needed to 

discover additional risk variants. We identified 35 putative new candidate MS risk SNPs outside of the 

MHC region that did not reach genome-wide significance in GWAS (in total: 53 non-MHC, MS-specific 

deepSNPs). For MDD, DeepWAS prioritized 56 new putative risk variants (in total: 61 MDD-specific 

deepSNPs) and for height 35 new risk variants (in total: 43 height-specific deepSNPs), even though 

the classical GWAS approach for MDD and height did not yield genome-wide significant results. 

Importantly, when comparing our deepSNPs identified in these smaller cohort-matched GWASs to 

large consortia GWASs of the same phenotype, DeepWAS was able to detect SNPs that reached 

genome-wide significance in these large consortia GWASs but not in GWAS of the same sample 

(Figure 3). Importantly, all deepSNPs were associated at least with nominal significance in cohort-

matched GWAS, with a subset of deepSNPs reaching genome-wide significance. Interestingly, when 

comparing our deepSNPs to the larger consortia GWASs, DeepWAS detected SNPs that reached 

genome-wide significance in these GWASs but not in the smaller-scale GWAS on the individual 

cohorts (Figure 3). For example, 23% of the 53 MS-specific deepSNPs were previously identified in 

the ISMGC MS GWAS including more than 135,000 individuals (>47,000 MS cases). One-third of 
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these deepSNPs were not detected in the univariate KKNMS GWAS using the same cohorts as in 

DeepWAS (n>15,000 individuals). The increased power of DeepWAS is underlined by the observation 

that when, for example, all regulatory MS SNPs (n=36,409 SNPs), without grouping to FUs, were 

used as input to a single LASSO regression model with stability selection, only 19 SNPs showed a 

significant association with MS, of which four mapped outside the MHC region. This is in contrast to 

the 164 MS-specific deepSNPs identified using DeepWAS, of which 53 were outside of the MHC 

region. Notably, these 36,409 SNPs reside in only 25,000 independent loci, which is also reflected by 

the fact that 16 out of 53 MS deepSNPs are not independent from each other. The regulatory 

genotypes have, thus, little correlation and are therefore suitable to be subjected to a L1 penalization. 

In summary, DeepWAS can increase the power to detect associations of a phenotype with regulatory 

variants, with genome-wide significant consortia GWAS variants detected using DeepWAS in smaller 

samples in which they only showed sub-threshold signals using classical GWAS. As outlined below, 

functional analyses of identified deepSNPs suggest that the additional signals discovered using 

DeepWAS but not using classical GWAS reside within known, disease-relevant functional pathways 

and thus likely constitute true-positive associations. 

 

Particularly for non-coding regulatory SNPs, DeepWAS has an advantage over GWAS followed by 

post-hoc annotation and allows to identify transcriptionally relevant regions in the disease context 

(Figures 2-5). In fact, in all three DeepWAS, deepSNPs were identified in cell types and enhancers 

previously shown to be relevant for the tested phenotype. For example, 47% of the MS-specific 

deepSNPs (n=35) affect the binding of chromatin features in hematopoetic tissue, and another 30% 

affect chromatin features in brain tissue or spinal cord (n=16; Figure 2B). These findings revealed 

that the genetic disease risk is driven by altered binding of chromatin features mainly in these two 

tissues.  

DeepWAS results also pointed towards convergent regulatory mechanisms of specific TFs in both MS 

and MDD. For both disorders, DeepWAS identified a set of SNPs modulating binding of a TF that was 

found to be associated with the disorders in GWAS. This suggests that SNPs associated with the 

gene encoding the TF and SNPs altering its binding to target transcripts jointly affect the phenotype. 

The gene MAZ on chromosome 16, for example, has been previously identified as a genome-wide 

significant GWAS locus for MS 27. DeepWAS identified several deepSNPs that include the TF MAZ in 

a FU (Figure 5). DeepSNP rs11000015 on chromosome 10 and deepSNP rs175714 on chromosome 

14 alter MAZ binding. Supporting evidence for the importance of deepSNP rs11000015 as a risk 

factor for MS was provided by it being a multi-tissue GTEx eQTL involving PSAP. PSAP codes for 

prosaposin, a precursor of several small nonenzymatic glycoproteins termed sphingolipid activator 

proteins that assist in the lysosomal hydrolysis of sphingolipids 57. Sphingolipids are the main 

components of nervous tissue, and have been previously linked to MS 58. As a second example, we 

identified MDD-specific deepSNPs altering the binding of TF MEF2C (Supplementary Figure 3). 

SNPs in the locus encoding MEF2C are the top signal in the latest meta-analysis for major depression 
35. The MEF2 TF family has been reported to play a major role in synaptic plasticity, which is thought 
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to be disturbed in MDD, especially in the context of stress. Chen and colleagues 59 identified the TF 

MEF2 as a master regulator of developmental metaplasticity, which is important for guiding 

developmental structural and functional neuronal plasticity. Additional evidence was found by Barbosa 

et al. 60, relating MEF2 to activity-dependent dendritic spine growth and suggesting that this TF may 

suppress memory formation. 

To support the validity of the predicted regulatory effects of our DeepWAS associations, we provided 

multiple lines of evidence that deepSNPs and their surrounding loci are indeed functionally active in 

their respective tissue. We chose to prioritize DeepWAS results based on additional regulatory impact 

of DNA methylation and gene expression as shown by their meQTL and eQTL effects. DeepSEA 

together with eQTL data, has been previously applied to prioritize disease-associated variants 61. We 

observed that 68% of MS-specific deepSNPs are meQTLs and 38% eQTLs in the largest QTL 

resource, BIOS. When using only random sets of regulatory SNPs with no disease association, no 

such overlap was found. For all investigated phenotypes, we observed a significant overlap between 

deepSNPs and meQTL SNPs (Figure 4, fold enrichment ≥1.5 and permutation p-value over 1,000 

random sets ≤ 0.015. For MDD- and MS-specific deepSNPs we found a significant overlap with eQTL 

SNPs (Figure 4, fold enrichment ≥1.5 and permutation p-value over 1,000 random sets ≤ 0.011). 

Moreover, as MS is a disorder developing in the peripheral immune system, we investigated if our 

deepSNPs alter the expression of CD4+ T cells or influence the expression in monocytes, and found 

twice as many eQTL effects for deepSNPs as described in the published IMSGC GWAS for MS (43% 

in CD4+ T cells and 38% in monocytes found using DeepWAS vs. 18% in both cell types in the 

IMSGC GWAS). Using expression profiles from GTEx, we found more MS-specific deepSNPs for 

blood eQTL SNPs than in brain-related eQTL SNPs (42% vs.11%). This supports the theory that MS 

is most likely initially triggered by perturbation of immune responses, but that also the functional 

responses of brain cells are altered and may have a role in targeting an autoimmune process to the 

CNS. 

 

Finally, we explored whether generating QTL interaction networks of our deepSNPs and extracting 

the SNPs with an impact on methylation and expression, which also coincidently an eQTM, can help 

identify likely functional risk mechanisms. We identified deepSNPs in the SHMT1 gene, a published 

MS GWAS locus [27,28], where DeepWAS QLT network analysis pinpoints the TF Ying Yang 1 

(YY1), expressed in multiple cell lines including immune related cells, as a potential novel risk factor 

(Supplementary Figure 4). YY1 is a ubiquitously expressed TF shown to be essential for B cell 

development 62 and serves as master regulator of T cell exhaustion 63. Such dysregulation of immune 

related cells has been shown to promote MS progression 64,65. Additional SNP-protein association 

studies (pQTLs) 66 that show how the deepSNP rs2273030 alter YY1 protein abundances could be 

extended to develop clinical applications in the context of MS. 

 

DeepWAS is mostly limited by the comprehensiveness of regulatory element catalogues like 

ENCODE and Roadmap. ENCODE lacks, for example, information for a number of relevant disease-
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specific stimulation conditions as well as disease-related tissues. We have previously reported on the 

importance of testing SNPs in stimulated conditions, and shown that glucocorticoid response 

moderating SNPs only become apparent in the stimulation condition and are not overlapping with 

baseline eQTLs 67. Of note, the glucocorticoid receptor itself is central for the stress response and has 

been previously implicated in the pathogenesis of MDD 67,68. In addition, data from cell lines or bulk 

tissues will miss variants with effects only specific cell types as well as cell type specific effects 

dependent on the systemic, developmental and/or tissue context. It is therefore important to be able to 

retrain the DeepSEA neural network with additional publicly available chromatin features and as well 

as newly generated experimental data. This will be possible using the DeepWAS pipeline publicly 

available at https://github.com/cellmapslab/DeepWAS.  

 

In summary, our results indicate that DeepWAS, a method combining deep learning based functional 

SNP annotation and considering a possible multivariate effect of SNPs to moderate a trait or disease, 

is a powerful tool to uncover disease mechanisms for common disorders and traits. It also allows 

direct identification of regulatory SNPs by having a single base resolution and not being limited by the 

LD structure of the locus, since our regulatory SNPs are mostly independent and we jointly analyze 

regulatory SNPs only if they are predicted to modulate the same FU (see Methods). With ever 

increasing amounts of available functional data, the DeepWAS approach will become even more 

valuable and allow integration of both publicly as well as unpublished data generated by individual 

labs. DeepWAS is a versatile, publicly available tool that can be applied to any GWAS dataset in 

conjunction with the code available for DeepSEA. While we tested DeepWAS in small and medium 

size samples, and observed a potential increase in power in detecting phenotype-relevant functional 

SNPs, applying this method to very large datasets will be even more informative.
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Figures  

 
Figure 1: Workflow of DeepWAS. A) A deep-learning based framework predicts combined binding 

probabilities for chromatin features, cell lines, and treatments, called functional units (FU) for 1,000 bp 

centered around a SNP. FUs are selected for a potential functional role of a variant using a cutoff for 

functional scores. This process is repeated for all genotyped variants. The genotype-phenotype 

association is analyzed for each FU using LASSO regression with stability selection. Unlike GWAS, 

DeepWAS implicates a regulatory mechanism underlying the phenotype of interest with information 
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on relevant cell lines and TFs. B) DeepWAS was applied to 36,409 regulatory SNPs that were 

retained after filtering for allele-specific effects in any given FU. These SNPs were tested for an 

association with multiple sclerosis (MS). The heatmap shows the number of selected chromatin 

features vs. cell lines. Chromatin features are limited to be present in at least two distinct cell lines. 

Missing values, represented in white, show FUs for which no data were available. 

 
Figure 2: Functional characterization of DeepWAS hits. A) Annotation of the genomic regions in 

which deepSNPs are located: 63-87% of the genomic positions of deepSNPs overlapped with non-

coding DNA elements. Seventeen of 53 MS-specific (32%), 14 of 43 height-specific (33%) and 8 of 61 

MDD-specific (13%) deepSNPs mapped to introns (first and other introns). Over a half of the MDD-

specific deepSNPs (53%) resided in distal intergenic regions (>3 kb). None of the MS- and MDD- 

specific deepSNPs were located in exons. B) Bar plots for each phenotype showing the number of 

unique deepSNPs annotated to a top-level tissue category (ENCODE). C) Overlap of MS-, MDD-, and 

height-specific deepSNPs with ChromHMM states from Roadmap epigenomes based on top-level 

tissue group matching. Most of our MS- and height-specific deepSNPs mapped to predicted active 

chromatin states (82-86%), whereas nearly half of MDD-specific deepSNPs mapped to inactive 

chromatin states (43%). D) Tissue enrichment with FANTOM gene expression data. The top 15 

significantly enriched tissues are shown (all p-values≤0.05).  
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Figure 3: Comparison of DeepWAS vs. GWAS results. A) Bar plot of the overlap of cohort-

matched GWAS and consortia GWAS SNPs with deepSNPs. g.-w. s=genome-wide significant. B) 

Network of MS-specific deepSNPs generated by using a graph database and showing the deepSNP 
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rs62420820 in the K562 cell line, a genome-wide significant signal in the IMSGC MS GWAS, but sub-

threshold in the cohort-specific KKNMS GWAS. Edges represent the association relation of 

deepSNPs, chromatin features with or without treatment, cell lines, and top-level tissue group. C) Bar 

plots showing the predicted DeepSEA probabilities for deepSNP sequences carrying the alternative 

and reference allele group by their FU. D-F) Locus-specific Manhattan plots of the MS-specific 

deepSNPs rs62420820, rs12768537, and rs137969, based on classical GWAS. Plots were produced 

using LocusZoom with EUR samples of the 1,000 genomes November 2014 reference panel on the 

hg19 build 69. Dots represent KKNMS GWAS p-values and the diamond shows the IMSGC GWAS 

signal p-value. Color of the dots indicates LD with the lead variant = deepSNP (magenta), grey dots 

have LD r2 missing.  

 
Figure 4: Context-related regulatory capacity of deepSNPs. A) Heatmap showing the percentage 

of overlap of MS-, MDD-, and height-specific deepSNPs or their proxies (r2≥0.5) with cis-meQTL and 

cis-eQTL data from multiple resources, see also Supplementary Tables 5-16. B). Heatmap depicting 

GTEx tissue groups and DeepWAS top-level tissue category overlap among the MS-specific 

deepSNP FUs. 
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Figure 5. QTL network. A) Network showing one of the putative key regulators for MS, deepSNP 

rs175714 on chromosome 14. DeepSNP rs175714 is associated with differential TF binding of the TF 

MAZ, one of the top-associated loci in the KKNMS GWAS, where no significant transcriptional effect 

could be identified in the post-hoc analysis. Edges represent the associations between deepSNPs 

and chromatin features with or without treatment, cell lines, top-level tissue group, CpGs, and genes 

through dummy nodes identified either using DeepWAS or QTLs. Dummy nodes are used for 

preserving all entities of deepSNP and QTL associations. Edges highlighted in red show the 

DeepWAS results for MAZ, in yellow show the eQTL connections illustrated in B, and shades refer to 
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downstream QTL results shown in B. B) Box plot of GTEx whole blood eQTL data showing the 

relationship between PSAP gene expression and deepSNP rs11000015 genotype. C-D) Chromatin 

feature probabilities for the significant FU of the deepSNP sequences carrying the reference 

(black) and alternative (gray) allele. 

Supplementary Figures 

Supplementary Figure 1: The heatmaps showing the number of selected chromatin features vs. cell 

line for A) MDD and B) height. Chromatin features are limited to be at least present in two distinct cell 

lines.  

 

Supplementary Figure 2: Heatmaps depicting GTEx tissue groups and DeepWAS top-level tissue 

category overlap with the A) MDD- and B) height- specific deepSNPs. 

 
Supplementary Figure 3: A) Graph-based QTL Network visualization of the DeepWAS results 

involving the TF MEF2C, which itself is one of the top associated PGC GWAS loci. Two deepSNPs 

are jointly associated with MDD and belong the same FU: MEF2C:GM12878. Edges represent the 

association relation of deepSNPs, chromatin features with or without treatment, cell lines, top-level 

tissue group, CpGs, and genes. Edges of the FU MEF2C:GM12878 are colored in red. Circular 

shades mark the corresponding genes or CpGs with are plotted in B and C. B) Box plot of GTEx 

frontal cortex eQTL data showing relationship between SPIDR gene expression and deepSNP 

rs7839671. C) Boxplot of recMDD meQTL data illustrating relationship between cg01650371 

methylation and rs10099827 genotype in recMDD samples. Variant rs10099827 is a proxy of 

deepSNP rs7839671 (r2=0.8). DeepSNP rs7839671 exhibits a meQTL effect on the same CpG and 

was excluded from the original meQTL analysis, as it is 571 kb away from the CpG site (meQTL 

distance cutoff≤250 kb). 

 

Supplementary Figure 4: A) Locus-specific Manhattan plot of the deepSNP rs2273030 that is a sub-

threshold GWAS SNP for MS. The plot is produced using LocusZoom with EUR samples of the 1,000 

genomes November 2014 reference panel on the hg19 build 69. Dots represent GWAS p-values and 

the color of dots indicates LD with the lead variant, grey dots have LD r2 missing. B) MS-specific 

three-way QTL interaction network generated by using a graph database and highlighting only the 

deepSNPs with eQTL and meQTL effects that also harbor an eQTM. Edges represent the association 

relation of deepSNPs, chromatin features with or without treatment, cell lines, top-level tissue group, 

CpGs, and genes.   

 
Supplementary Figure 5: A) Height-specific three-way QTL interaction network highlighting 

deepSNP rs7146599 on chromosome 14 as one of the moderators of height in eleven cell lines. It 

affects a cascade of chromatin features (n=8) and shows meQTL and eQTL effects that, at the same 

time, harbor an eQTM. The CpG site and the deepSNP thus affect the transcriptional level of the 
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same genes. In addition, the network includes rs2871960 on chromosome 3, linked to the ZBTB38 

locus and correlated with multiple CpG sites. Edges represent the association relation of deepSNPs, 

chromatin features with or without treatment, cell lines, top-level tissue group, CpGs, and genes. 

B) Heatmap illustrating the deepSNPs affecting the binding of more than four chromatin features. 

 

Supplementary Figure 6: MDD-specific three-way QTL interaction network generated by using a 

graph database and highlighting only the deepSNPs with eQTL and meQTL effects that also harbor 

an eQTM. It shows that the MDD-specific deepSNPs rs163105 on chromosome 5 changes the 

expression of SKIV2L2 (also known as MTR4). Edges represent the association relation of 

deepSNPs, chromatin features with or without treatment, cell lines, top-level tissue group, CpGs, and 

genes. 

 

Supplementary Figure 7: Lasso Stability selection results for FU: MEF2C-GM12878: the y-axis 

indicates number of boosting iterations, the x-axis indicates the stability selection probability, and the 

horizontal line correspond the 0.7 probability threshold. 

Supplementary Tables 

Supplementary Table 1: List of all functional units 

Supplementary Table 2: List of MS-specific deepSNPs  

Supplementary Table 3: List of MDD-specific deepSNPs 

Supplementary Table 4: List of height-specific deepSNPs 

Supplementary Table 5: MS-specific deepSNP and BIOS QTL overlap 

Supplementary Table 6: MS-specific deepSNP and MS-patient eQTL overlap 

Supplementary Table 7: MS-specific deepSNP and CMC eQTL overlap 

Supplementary Table 8: MS-specific deepSNP and GTEx eQTL overlap 

Supplementary Table 9: MDD-specific deepSNP and BIOS QTL overlap 

Supplementary Table 10: MDD-specific deepSNP and MDD-patient meQTL overlap 

Supplementary Table 11: MDD-specific deepSNP and CMC eQTL overlap 

Supplementary Table 12: MDD-specific deepSNP and GTEx eQTL overlap 

Supplementary Table 13: Height-specific deepSNP and BIOS QTL overlap 

Supplementary Table 14: Height-specific deepSNP and KORA meQTL overlap 

Supplementary Table 15: Height-specific deepSNP and KORA meQTL overlap 

Supplementary Table 16: Height-specific deepSNP and GTEx eQTL overlap  
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Methods 

Clinical Samples 

Major depressive disorder cohorts (MDDC) 

Two MDD cohorts, recMDD and BoMa, were analyzed. The recMDD cohort consists of 1,774 

Caucasian individuals recruited at the Max-Planck Institute of Psychiatry (MPIP) in Munich, Germany 

and two satellite hospitals in the Munich metropolitan area (BKH Augsburg and Klinikum Ingolstadt): 

756 controls (581 women, 275 men) and 879 cases diagnosed with recurrent major depression (585 

women, 294 men). Please see Muglia et al. 28 for more details on sample recruitment and 

characterization. The BoMa cohort consists of 1,889 Caucasian individuals: 1,292 controls (656 men, 

636 women), 597 (212 men, 385 women) of which had a depressive disorder. Recruitment strategies 

and further characterization have been described previously 70. 

Multiple sclerosis cohorts (KKNMS) 

Two MS cohorts, referred to as DE1 and DE2, were analyzed. Both data sets included patients 

diagnosed with either MS or the prodromal clinically isolated syndrome. DE1 consists of 3,934 cases 

and DE2 consists of 954 cases; for more details see Andlauer et al. 27. Controls for these cohorts 

were obtained from several cohorts across Germany: KORA39, HNR 71, SHIP 72, DOGS 73, FoCus 74, 

PopGen 75, recMDD 28 , and MARS 76 ; for more details see Andlauer et al. 27. 

Population-based cohort (KORA) 

The study population consisted of participants from the KORA (Kooperative Gesundheitsforschung in 

der Region Augsburg) study 39, which has been collecting clinical and genetic data from the general 

population in the region of Augsburg, Germany for more than 20 years. Here, the independent cohorts 

S3 and S4, including their follow-ups (F3 and F4), were analyzed. 

Genotype data and imputation 

Data generation 

Genotype data was generated for each cohort individually. Details on the methods used can be found 

in the individual papers (recMDD 28, BoMa 70, KKNMS 27, and KORA 39). 

Quality control and imputation 

Quality control (QC) of KKNMS genotype data and imputation have been previously described 27 and 

the same pipeline was applied for KORA and recMDD genotype data. The QC was conducted in 

PLINK 1.90b3s or higher 77 for each cohort separately. QC steps on samples for KKNMS, KORA, and 

recMDD included removal of individuals with missing rate>2%, cryptic relatives (PI-HAT>0.0125), and 
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genetic outliers (distance in first eight MDS components from mean >4 SD). QC steps on variants 

included removal of variants with a call rate<2%, MAF<1%, and HWE test p-value≤10-6. Furthermore, 

variants on non-autosomal chromosomes were excluded. QC steps for BoMa included removal of 

variants with call rate <5% (before sample removal), individuals with missing rate >2%, autosomal 

heterozygosity deviation (|Fhet|< 0.2), variants with call rate <5% (after sample removal), difference in 

variant missingness between cases and controls <2%, variants with MAF<1%, and variants with HWE 

test p-value≤10-6 in controls or p-value≤10-10 in cases. All non-autosomal chromosomes were 

excluded. 

Imputation was also performed separately for each cohort using IMPUTE2 78, following phasing in 

SHAPEIT 79, with the 1,000 genomes phase I reference panel (released in June 2014, ALL samples). 

QC of imputed probabilities was conducted in QCTOOL 1.4 (http://www.well.ox.ac.uk/~gav/qctool/). 

Imputed SNPs were excluded if MAF<1%, HWE test p-values ≤10-6 and the INFO metric <0.8. SNP 

coordinates are given according to hg19. 

Statistical analyses of genotype data (GWAS) 

The GWAS for MDD was separately conducted on the two MDD cohorts, recMDD and BoMa. The 

GWAS for height was carried out using the population-based cohorts of KORA S3 and S4. PLINK 

1.90b3s was used for these GWAS 80.  Multidimensional scaling (MDS) was separately conducted on 

each GWAS cohort. For height the number of consecutive MDS components cumulatively explaining 

at least 80% of the genetic variance were selected as covariates (n=8) and for MDD the number of 

MDS components was selected based on Cattell's scree test (n=3). Sex, age, and MDS components 

were used as covariates in logistic or linear regression. Data sets were combined using a fixed-effects 

meta analysis in METAL 81.  The same covariates were retained for analysis with the DeepWAS 

method. For MS, the published GWAS results were used. 

Prediction of regulatory effects using DeepSEA 

We employed DeepSEA 36 to determine the SNPs that potentially play an important role in human 

traits or diseases by acting through the alteration of regulatory elements. All the 919 DeepSEA 

chromatin features 36 representing regulatory information derived from the profiles of the ENCODE 

project 16 were considered as FUs. These units cover combinations of 201 different experimental 

annotations of epigenetically relevant information. This data includes 690 TF binding profiles for 160 

different TFs, 125 DNase I hypersensitive site (DHS) profiles, and 104 histone mark profiles across 31 

cell lines and 17 treatment conditions. The pretrained DeepSEA network (v0.94) was downloaded 

from http://deepsea.princeton.edu/help/ and the predictions and corresponding significance values of 

the regulatory effects, so-called e-values, of the set of all SNPs from three datasets were generated 

using a NVIDIA GeForce GTX TITAN X GPU (Maxwell). Significance was assessed by the method 

proposed by Zhou & Troyanskaya, which uses one million random SNPs from the 1,000 genomes 

project 37 as a background distribution to calculate e-values for each FU, by assessing the proportion 

of random variants with a bigger effect than that of observed variants. We applied an e-value cutoff of 
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5×10-5, to only take the SNPs associated with at least one FU into consideration (e.g., rs1035271 in 

GM12878:MEF2C). We refer to this set of SNPs as having a predicted regulatory effect. 

DeepWAS 

Penalized regression models 

Compared to the classical GWAS approaches where the trait of interest is regressed separately on 

each SNP, regularized regression approaches provide an alternative way to handle high dimensional 

data and to identify SNPs associated with the trait of interest using variable selection 23. Here we 

utilized L1-regularized logistic and linear regression (LASSO) with stability selection for variable 

selection implemented in the “stabs” R package 82.  We decided to use LASSO regression instead of 

Elastic Net, as our regulatory SNPs were lowly correlated, i.e., of the 36,409 SNPs that were 

predicted to be regulatory for the imputed, high quality MS SNP set, 26,155  (72%) were uncorrelated 

(r2<0.2, window size of 50 SNPs, and a shift parameter of 5), with a mean r2 per FU ranging from 

0.001 to 0.3. Furthermore, the fine-tuning of the Elastic Net meta-parameter L2 (alpha) is more 

difficult and time-consuming (for more details please see 23). Therefore, for each of 919 FUs, we fitted 

LASSO models via stability selection procedure in order to estimate stable statistical associations 

between the disease or trait status (binary for MS and MDD, continuous for height) and SNPs in the 

context of a specific cell line. Linear models fitted to datasets with a continuous response are 

described as follows: 

𝑦! = 𝛽!"#,!,!𝑋!,!

 

!∈!!

+ 𝛽!"#,!𝑠𝑒𝑥! + 𝛽!"#,!𝑎𝑔𝑒!  + 𝛽!"!!"#,!𝑐𝑜ℎ𝑜𝑟𝑡! + (𝛽!"#,!,!𝑚𝑑𝑠!,!)
!

!!!

+ 𝛽!! + 𝜖 

In each LASSO model, only the SNPs that significantly affect the binding of a specific chromatin 

feature in a specific cell line were included. This is represented in the equation by the summation over 

the elements of 𝑆!, which represents the set of SNPs that have an impact on FU 𝑘. Subscript 𝑘 is 

used as a model index, which denotes a different model for each FU. We refer to the genotype matrix 

(e.g., 15,283 x 36,409 for the KKNMS dataset) as 𝑋 where the rows are individuals (subscript 𝑖) and 

columns are SNPs (subscript 𝑗). Genotype in the 𝑋 matrix is encoded using the dosage representation 

of each SNP in an additive model such that the final encoding of a SNP is 𝑋!" = 2×𝑃(𝐴𝐴!") + 𝑃(𝐴𝑎!") 

where 𝑃(𝐴𝐴!") and 𝑃(𝐴𝑎!") are probabilities for being homozygous for the minor allele and 

heterozygous for individual 𝑖 and SNP 𝑗. 𝑋!" is therefore a continuous value between 0 and 2. In 

addition to the SNP predictors, we used sex (binary), age (continuous), cohort dummy index, and 

MDS components (continuous) as covariates. 

The model parameters (𝛽) of the linear regression for continuous phenotype are optimized with L1 

regularization, where the 𝜆 parameter represents the strength of the regularization. We fitted L1-

regularized logistic and linear regression models (LASSO) using glmnet and stabs R packages 83,84. 

The regularization parameter 𝜆 is determined within the stability selection procedure, based on a 

provided probability cutoff and per-family error rate (PFER) values 85. Note that, unlike family-wise 

error rate and false discovery rate, which define a probability and an expected proportion, 
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respectively, PFER defines the expected number of false positives and hence can be above 1.0. In 

total, n=100 subsample replicates were used for each model fit with a subsample size of ⌊n/2⌋. The 

probability cutoff represents how frequently a variable must be selected in LASSO models fitted to 

these replicates in order to be called a deepSNP. For more details of the relationship between the 𝜆 

parameter, probability cutoff, and PFER values please see 86. 

 
DeepWAS application 

DeepWAS was conducted on the KKNMS dataset for MS, on the MDDC dataset for MDD, and on the 

KORA dataset for height. Sex, age, cohort membership, and significant MDS components were used 

as covariates in DeepWAS. A selection probability >0.7 and a PFER of 1.0 were used to identify 

significant trait associations (deepSNPs). 

Functional annotation of deepSNPs 

DeepWAS (Encode) tissue category  

Encode cell type information was download from https://genome.ucsc.edu/encode/cellTypes.html and 

tissue categories were extracted from the column „tissue“. 

Roadmap cis-regulatory elements (ChromHMM) 

Cis-regulatory elements identified by the Roadmap Epigenomics Project 87 were downloaded as 

segmentation files of core 15-state ChromHMM model for 111 epigenomes  from the Roadmap 

epigenomics web portal 

(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/j

ointModel/final/all.mnemonics.bedFiles.tgz) in BED format. ChromHMM used five core marks 

(H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3) from each of the 111 reference 

epigenomes and learned a set 15-chromatin state definitions per genomic segment. We overlapped 

the DeepWAS SNPs with those chromatin states based on the exact genomic position. All roadmap 

epigenomes were grouped into broader tissue groups, which were used for mapping between 

DeepWAS and ChromHMM results. 

Genomic region annotation 

DeepWAS SNPs were overlapped with genomic annotation from UCSC for the hg19 genome build 

using “TxDb.Hsapiens.UCSC.hg19.knownGene” and “ChIPseeker” R packages 88,89. 

Tissue enrichment with SNPsea and FANTOM5 CAGE data 

SNPsea version 1.0.3 90 was downloaded from https://github.com/slowkow/snpsea/. Tissue 

enrichment was performed with the command line interface of SNPsea. All data and annotation files 

were the default ones provided by SNPsea (tissue-specific gene expression from ~400 cell types), 

namely the FANTOM2014.gct.gz gene expression file was used with default NCBIgenes2013.bed.gz, 
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TGP2011.bed.gz, Lango2010.txt.gz values for “gene-intervals”, “snp-intervals”, and “null-snps” 

options, respectively.  

DNA methylation data 

For a subset of the recMDD cohort (n=166 MDD cases), genomic DNA was extracted from whole 

blood using the Gentra Puregene Blood Kit (QIAGEN). DNA quality and quantity of both was 

assessed with the NanoDrop 2000 Spectrophotometer (Thermo Scientific) and Quant-iT Picogreen 

(Invitrogen). Genomic DNA was bisulfite converted using the Zymo EZ-96 DNA Methylation Kit (Zymo 

Research) and DNA methylation levels were assessed for >480,000 CpG sites using the Illumina 

HumanMethylation450 BeadChips. Hybridization and processing were performed according to the 

manufacturer’s instructions. QC of methylation data, including intensity read outs, filtering (detection 

p-value > 0.01 in at least 75% of the samples), cellular composition estimation according to 91, as well 

as beta calculation were done using the minfi Bioconductor R package v1.18.2 92. Filtered beta values 

were reduced by eliminating any CpG sites on sex chromosomes, as well as probes found to have 

SNPs at the CpG site itself or in the single-base extension site with a MAF ≥1% in the 1,000 genomes 

project EUR population and/or non-specific binding probes according to 93. Additionally, we performed 

a re-alignment of the array probe sequences using Bismark 94. This yielded a total of around 425,000 

CpG sites for further analysis. The data were then normalized using functional normalization 95. 

Technical batch effects were identified by inspecting the association of the first principal components 

of the methylation levels with plate and plate position as technical batches. The data were then 

adjusted using ComBat 96. CpG coordinates are given according to hg19. 

 

DNA methylation data was available for a subset of the KORA study (n= 1,802 F4 individuals). DNA 

methylation was measured with the Illumina HumanMethylation450K BeadChips. Sample preparation 

and measurement have been described previously 97. Intensity values were extracted from the idat 

files using the Bioconductor R package minfi, with subsequent background correction performed with 

lumi 98.  Probes with a detection p-value > 0.01 or summarized by less than 3 functional beads were 

set to missing. A sample-wise call rate of 80% was applied, and color bias adjustment using smooth 

quantile normalization was performed. Finally, beta-mixture quantile normalization was performed on 

the probes (Bioconductor R package watermelon 99) to correct for the Inf I/Inf II distribution shift.  

Gene expression data 

Gene expression analysis of the a subset of the KKNMS cohort (n=319 DE1 MS cases) was 

performed using llumina HT-12 v4 Expression BeadChips and published and described previously in 
27. For a subset of the KORA cohort (n=1,002 F4 individuals) gene expression profiling was performed 

using the Illumina HT-12 v3 Expression BeadChips and described previously in 100. 

Statistical analysis of gene expression and methylation data 
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For the recMDD cohort, linear regression models were fit for each probe to test the relationship 

between the DNA methylation (beta values) and genotype (in dosage format) within 1Mb up- or 

downstream of the SNP using the R package MatrixEQTL 101. Sex, blood cell counts and genotype 

MDS components to correct for possible admixture effects were included as covariates. Significance 

after multiple testing was adjusted using a false discovery rate (FDR) of 5%.  

 

For the KORA cohort, the OmicAbel software 102 was used to test the association between 

methylation beta values and SNP dosage, adjusting for age, sex, and blood cell count. A total of 1,731 

individuals had valid methylation and genetic data. Significance was defined after Bonferroni 

correction at a p-value of 1e-14. To examine the relationship between genetic variation and gene 

expression in KORA (n=711 individuals with valid genetic and expression data), we first derived 

residuals for gene transcript expression using linear regression of log2-transformed gene transcript 

levels against sex, age, RNA integrity number, RNA amplification plate, and sample storage time. 

Expression residuals were then used as outcome variables in a linear regression model with SNP 

dosage as the independent variable. Data analysis was performed using MatrixEQTL and significant 

meQTLs were filtered at an FDR of 5%. 

 

For the analysis of association between genotype and expression levels in the KKNMS cohort, we 

used MatrixEQTL with sex, age, blood cell counts, and genotype MDS components as covariates. 

Significance after multiple testing was adjusted using an FDR of 5%. 

 

Using published QTL data from BIOS whole peripheral blood DNA of 3,841 and mRNA of 2,116 

healthy samples (eQTL, meQTL, eQTM), downloaded from http://genenetwork.nl/biosqtlbrowser, 

CMC eQTLs downloaded from https://www.synapse.org/#!Synapse:syn4622659, and GTEx eQTLs 

downloaded from https://gtexportal.org/home/datasets, we were able to intersect our deepSNPs and 

their LD proxies (r2≥0.5) with transcriptionally relevant data. The eQTLs obtained from GTEx were 

filtered on gene p<0.05 and eQTLs obtained from BIOS and CMC were filtered on FDR <0.05. We 

used permutation tests to determine if deepSNPs or their LD proxies were enriched in BIOS QTLs. 

For each phenotype, we compared the overlap of deepSNPs and BIOS QTL SNPs to the average 

overlap from 1,000 equally sized sets of regulatory SNPs and BIOS QTL SNPs. 

QTL network 

For the visualization of deepSNP-QTL interactions, we set up an Neo4j 103 instance. The Neo4j 

community edition version 3.4.0 was downloaded from https://neo4j.com. All DeepWAS results were 

inserted to the database. The graph structure consisted of genes, transcription factors, CpGs, SNPs, 

cell lines, and tissues that are connected to each other through dummy nodes representing each 

deepSNP. Dummy nodes are especially important in cases where a deepSNP is predicted to be 

active in more than one FU, e.g. TF1:CL1 and TF2:CL2. In this case, connecting these 4 elements 

directly to the deepSNP leads to ambiguity about the FU, which can be misinterpreted as TF1:CL2 or 
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TF2:CL1, since the information of the FU is lost. Using dummy nodes avoids this confusion by 

providing a SNP-FU link.  
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