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Abstract 15 

Background: Genome-wide association studies (GWAS) identify genetic variants 16 

predictive of common diseases but this does not directly inform on molecular 17 

mechanisms. The recently developed deep learning-based method DeepSEA uses 18 

DNA sequences to predict regulatory effects for up to 1000 functional units, namely 19 

regulatory elements and chromatin features in specific cell-types from the ENCODE 20 

project.  21 

Results: We here describe “DeepWAS”, a conceptually new GWAS approach that 22 

integrates these predictions to identify SNP sets per functional units prior to association 23 

analysis based on multiple regression. To test the power of this approach, we use 24 
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genotype data from a major depressive disorder (MDD) case/control sample (total 25 

N=1,537). DeepWAS identified 177 regulatory SNPs moderating 122 functional units. 26 

MDD regulatory SNPs were located mostly in promoters, intronic and distal intergenic 27 

regions and validated with public data.  Blood regulatory SNPs were experimentally 28 

annotated with methylation quantitative trait loci (QTLs), expression quantitative trait 29 

methylation loci and expression QTLs and replicated in an independent cohort. Joint 30 

integrative analysis of regulatory SNPs and the independently identified annotations 31 

were connected through transcription factors MEF2A, MEF2C and ATF2, regulating a 32 

network of transcripts previously linked to other psychiatric disorders. In the latest 33 

GWAS for MDD, the MEF2C gene itself is within the top genome-wide significant locus.  34 

Conclusions: DeepWAS is a novel concept with the power to directly identify individual 35 

regulatory SNPs from genotypes. In a proof of concept study, MEF2C was identified as 36 

a master-regulator in major depression, a finding complementary to recent depression 37 

GWAS data, underlining the power of DeepWAS. 38 

 39 

Keywords: GWAS concept, functional data, chromatin features, cell-type specificity, 40 

ENCODE, deep learning, multiple regression, major depressive disorder, MEF2, 41 

MEF2C 42 

 43 

Background 44 

Genome-wide association studies (GWAS) have been highly successful in identifying 45 

genetic variants associated with risk for common diseases[1]. However, going from pure 46 
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association to mechanistic insight has been a much more challenging task. The 47 

identification of the true functional/causal variants within association signals is 48 

hampered by the linkage disequilibrium (LD) block structure of the genome. Due to this 49 

structure, the true functional variants can most often not be discerned within associated 50 

blocks, which can span several gene loci. One approach to better infer functional 51 

variants has been the annotation of association signals by their correlation with more 52 

proximal molecular read-outs such as gene expression or DNA methylation in the form 53 

of expression and methylation quantitative trait locus (eQTL and meQTL) 54 

approaches[2,3]. Very recent approaches such as binding QTL (bQTL) studies for 55 

transcription factor (TF) binding now add additional regulatory information[4]. While 56 

these approaches can indicate regulatory effects of associated SNPs, they can also not 57 

pinpoint single functional variants within an LD block.  58 

 59 

To further close the gap of missing functional annotation, additional post-processing 60 

approaches, so called functional GWAS[5], have been used. The majority of the 61 

previously published functional GWAS studies are based on the overlap of SNPs with 62 

cis-regulatory elements such as promoters and enhancers (see Tak and Farnham[6] for 63 

a comprehensive review). These functional GWAS indicate that for common disease, 64 

the majority of associated SNPs reside in non-coding, regulatory regions[5,7,8]. One 65 

drawback of these methods is that the actual impact of the variant on regulatory 66 

elements is not assessed and thus not taken into account for the annotation, which 67 

does not go beyond positional overlap. For example, two SNPs that localize to the same 68 

chromatin immunoprecipitation with massively parallel sequencing[9] (ChIP-seq) peak 69 
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of a TF might have opposing effects or no effects at all. To try to resolve this, in silico 70 

approaches predicting disruption of transcription factor binding motifs[10,11] have been 71 

used, however, our understanding of actual binding based on known motifs is still 72 

limited. Given the fact that classical GWAS thus test many variants that are highly 73 

unlikely to be functionally relevant, methods integrating functional knowledge of SNP 74 

into GWAS could not only allow prioritize relevant variants but also to increase power 75 

for such association studies that now often need tens of thousands of cases for robust 76 

signals[1]. 77 

 78 

Recent advances in systems genetics, harnessing the predictive power of deep 79 

learning, might have the capacity to enhance the performance of functional SNP 80 

prioritization methods. Zhou J and Troyanskaya OG have developed a deep learning 81 

method called “DeepSEA” uses only DNA sequence information to predict effects on 82 

regulatory chromatin features such as histone marks, TF binding or the presence of 83 

open chromatin[12]. For this experimental, publicly available data from the ENCODE 84 

project[13] and the Roadmap Epigenomics Project[14] for cell type-specific TF binding, 85 

histone modifications and chromatin states was used. This type of functional sequence 86 

annotation is superior to pure overlap methods as it computes allele-specific differences 87 

in the effects on these regulatory elements and thus discerns SNPs with functional 88 

impact, at least in the given cell lines, from those just residing within the annotated 89 

element. Furthermore, it allows incorporating cell-type specific regulatory effects of such 90 

variants, adding another critical layer to understand disease mechanisms that are often 91 

tissue-specific. 92 
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 93 

In this manuscript we present a conceptually new approach fusing classical and 94 

functional GWAS. We obtain regulatory information on SNPs by generating sets of 95 

SNPs in “functional units” using deep learning and then performing functional unit-Wide 96 

Association Studies (deepWAS). First, we extracted DNA sequences centred on a SNP 97 

to predict close to 1000 allele-specific regulatory effects of chromatin features in various 98 

cell types (a pair of one chromatin feature in one cell type is further called “functional 99 

unit”) using DeepSEA[12]. Second, the resulting significant regulatory SNPs were then 100 

used to identify sets of SNPs characterized by their joint moderation of a functional unit. 101 

Finally, we identify regulatory SNPs, short “deepSNPs”, each coupled to a functional 102 

unit by associating each set of predicted regulatory SNPs with a trait or disease. To that 103 

end we use a multiple regression model with SNP selection using L1 (“LASSO”) 104 

penalization[15]. By testing regulatory SNPs within each of the confined functional units, 105 

we controlled not only for correlations induced by LD but also for possible joint, thereby 106 

again correlated, SNP effects on two or more chromatin features or cell types for which 107 

LASSO would select one representative SNP. This optimized variant selection improves 108 

our power to identify SNPs that may play a role in the etiology of the disease.   109 

 110 

For a proof of concept, we used data from a published GWAS for major depressive 111 

disorder (MDD)[16]. Heritability for this disorder has been reported to be up to 40%[17]  112 

and thus comparable with other common diseases, GWAS have, however, only been 113 

successful very recently when including over 110,000 cases and 300,000 controls 114 

identifying 17 independent SNPs associated with MDD at genome-wide significant 115 
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level[18,19]. Nonetheless, the required sample size for each discovered disease locus is 116 

much higher than for other psychiatric disorders such as schizophrenia, in which 128 117 

independent SNPs have been identified with only 35,000 cases[20]. This difference may 118 

be attributed to the possibly higher biological heterogeneity not covered with current 119 

phenotyping methods and the large relevance of the environment as a risk factor for 120 

MDD. A recent study from our group has reported the importance of genetic variants in 121 

specific enhancer regions conferring risk for major depression, likely by gene x stress 122 

interactions[21]. DeepWAS, with its focus on variants altering functional regulatory 123 

elements, could thus help to promote our understanding of the genetic mechanisms 124 

underlying depression risk.  125 

 126 

Results 127 

DeepWAS approach 128 

To identify SNP sets that potentially affect common regulatory functions in a cell type 129 

specific manner, we need to investigate their genomic location and sequence alterations 130 

within so called “functional units”. We denote a “functional unit” as a gene-regulatory 131 

state of a specific cell type characterized by the mapping of one chromatin feature onto 132 

the genome in the absence or presence of additional stimulating/treatment conditions, 133 

see (Figure 1A). For example, the functional unit “p53-HeLa” was defined by all 134 

genomic regions covered by ChIP-seq peaks of the TF p53 within baseline conditions in 135 

the HeLa cell line. For this manuscript, the 919 DeepSEA features [12] are considered 136 
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as functional units representing data from the ENCODE project [13] covering 137 

combinations of 201 different experimental annotations of epigenetically relevant 138 

information. This includes the mapping of different TFs, various DNase hypersensitive 139 

(DHS) regions and histone marks across 31 cell lines and 17 treatment conditions. 140 

Next, one kilobase DNA sequences were generated for each SNP for both reference 141 

and alternative alleles. We used the pre-trained DeepSEA model[12] to predict the 142 

probabilities of a SNP allele to moderate a functional unit. DeepSEA is a method that 143 

uses deep neural networks and was trained to predict membership of 919 functional 144 

units given a one kilobase genomic sequence. To select SNPs moderating a functional 145 

unit, we used the metric provided by DeepSEA that estimates the impact of a variant on 146 

the functional read out by comparing the probabilities of allele-specific regulation[12]. 147 

Therefore, the authors used one million random SNPs from the 1,000 Genomes project 148 

[22] as a background distribution to calculate e-values for each functional unit by 149 

assessing the proportion of random variants with a bigger effect than that of the 150 

observed variants. SNPs with significant e-values, thus potentially having allele-specific 151 

effects on a functional unit, were defined as a functional-unit specific SNP set. In other 152 

words, only SNPs with a predicted and significant difference in allele-specific regulatory 153 

effect for a given genomic feature in a cell type (functional unit) were retained for the 154 

subsequent association analysis. When overlapping the available genotypes (measured 155 

and imputed) in the case/control samples with the functional-unit specific SNP sets, 919 156 

sets of genotypes filtered by regulatory effect in a functional unit remained for the 157 

analysis (Figure 1B).  158 

 159 
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For the final step in the DeepWAS, we used the functional genotypes of the case/control 160 

sample and possible confounders to associate SNPs set to a disease or trait (Figure 161 

1C). The number of tested SNPs is massively reduced using the above-described 162 

functional annotation based on ENCODE data and this variant filtering now enables us 163 

to employ regularized regression methods with multiple SNPs. Therefore, each set of 164 

regulatory SNPs in one functional unit was subjected to a logistic regression model with 165 

L1 regularization (LASSO). In other words, we fitted 919 functional unit-based models to 166 

again select regulatory SNPs associated to a trait or disease. For models with at least 167 

one non-zero coefficient for a SNP, we further implemented a permutation-based 168 

significance test with controlled false positive rate. From all models that withstood this 169 

permutation-based multiple testing correction, we finally identified the deepSNPs that 170 

are defined as significant non-zero regulatory SNPs associated to the trait or disease 171 

and moderating a functional unit. The advantage of DeepWAS over traditional GWAS 172 

(Figure 1D) is thus twofold, 1) it includes putative regulatory mechanisms in the GWAS 173 

analysis from the start and 2) it controls false discovery error by reducing multiple 174 

testing.  175 

 176 

DeepWAS of major depressive disorder  177 

We used post-quality control genotype data from 1,537 individuals (739 controls and 178 

798 cases) of a cohort recruited for recurrent major depressive disorder (MDD). The 179 

data were imputed to the 1000 Genomes Phase 1 reference panel [22] using SHAPEIT2 180 

[23]  and IMPUTE2 [24]. The resulting data set contained more than 1.7 million variants 181 
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with MAFs of at least 5% and non-missing genotypes. As expected, a classical GWAS 182 

approach failed to identify genome-wide significant associations [16] (Additional file 1: 183 

Figure S1).  184 

 185 

For the DeepWAS approach, a total, 6,685 SNPs and 50,704 SNP-functional unit pairs 186 

were retained after filtered for allele-specific effects in a given functional unit at a 187 

significance level of 5 ⋅ 10!!. These SNPs were then tested for association with 188 

depression within 919 LASSO models for each functional unit (see above) including age 189 

and sex as additional covariates (number of SNP predictors in 919 LASSO models: 190 

min=17, median=51, max=213. See Additional file 1: Figure S2). Of these models, 191 

193 had at least one non-zero coefficient for a SNP (number of SNPs with non-zero 192 

coefficients in 193 models: min=1, median=2 and max=22). Permutation-based 193 

significance test identified 122 out of these 193 models to be below the FDR-adjusted p-194 

value threshold of 0.1 (Additional file 1: Figure S2 and Additional file 2 and 3). In 195 

other words, deepWAS identified 122 functional units associated with MDD containing 196 

in total 177 deepSNPs moderating 74 chromatin features in 31 cell lines. 197 

 198 

We first analysed, whether the MDD deepSNPs were enriched for specific chromatin 199 

features or tissue (Figure 2A). Not surprisingly, cell lines with a large number of 200 

investigated chromatin features such as GM12878, K562 and HepG2 exhibited more 201 

significant models since more chromatin features are covered in the data generated 202 

from these cell lines. Interestingly, TFs such as c-Myc and EBF1 that are more relevant 203 

to cell proliferation did not show significant associations. CTCF on the other hand, an 204 
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transcriptional regulator relevant for chromatin conformations important for the function 205 

of long-range enhancers showed consistent effects across many cell lines. In fact, 206 

genetic variants in long range enhancer have been shown to be highly relevant for 207 

common disorders [14] and also major depression [21]. Furthermore, NF-κB and 208 

glucocorticoid response element related deepSNPs only become apparent in the 209 

stimulation condition, underlining the importance of going beyond pure baseline 210 

characterization. Both systems and transcription factors, NF-κB – a major immune 211 

regulator and the glucocorticoid receptor – central for the stress response, have been 212 

previously implicated in the pathogenesis of MDD [21,25,26] (Figures 2A and 213 

Additional file 1: Figure S2).  214 

 215 

We next investigated the genomic regions in which these deepSNPs reside. Using the 216 

UCSC knownGene annotations [27], we observed that vast majority of deepSNPs are in 217 

promoters, intronic regions and distal intergenic regions that might indicate enhancers 218 

(Figure 2B). We then examined the enrichment of deepSNPs in tissue-specific cis-219 

regulatory elements using genome annotations of the 15-state ChromHMM model[14]. 220 

The promoters are significantly enriched for deepSNPs in 126 out of 127 epigenomes 221 

(99%) spanning all tissue groups, whereas the enhancers are only enriched in 222 

“Astrocytes Primary Cells - E125” (FDR-adjusted p-value: 0.093) and in “A549 EtOH 223 

0.02pct Lung Carcinoma Cell Line - E114” (FDR-adjusted p-value: 0.006) epigenomes 224 

(Additional file 1: Figure S4). 225 

 226 
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To test whether the deepSNPs could be validated for their predicted allele-specific 227 

effects in experimental data, we evaluated the effect of cell line-matched deepSNPs on 228 

TF binding using previously published binding QTLs (bQTL) [4]. The bQTLs were 229 

identified in GM12878 (Lymphoblastic cell line (LCL) from B-Lymphocytes) using a 230 

pooled ChIP-seq approach of 60 Lymphoblastic Yoruban cell lines to identify SNPs 231 

significantly altering binding of TFs by comparing the allele frequencies in sequencing 232 

data before and after the ChIP experiment. Out of 26 deepSNPs in GM12878, we 233 

identified eight SNPs (31 %) that were also experimentally validated bQTLs for JunD, 234 

Pu.1, NF-κB and POU2f1 (Additional file 4).  235 

 236 

Blood deepSNPs overlap with methylation and expression QTLs 237 

Allele-specific effects on chromatin features likely associate with altered transcriptional 238 

activation and this is reflected in differences in DNA methylation levels and gene 239 

transcription. To test, whether the deepSNPs are indeed preferentially transcriptionally 240 

relevant variants, we used DNA methylation and mRNA expression data from peripheral 241 

blood in the recMDD samples (see Methods) as well as a second independent sample 242 

(MPIP, see Methods). We focused on the detailed analysis of 26 GM12878 deepSNPs 243 

(Figure 3), as GM12878 is among the best-characterized cell lines, derived from blood 244 

cells, B-lymphocytes and amongst the top regulatory cell line identified by the MDD 245 

deepWAS.  246 

 247 
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First, we conducted a methylation quantitative trait locus (meQTL) analysis using whole 248 

blood methylation levels of a subset of the recMDD cohort (n=257 individuals). SNP-249 

CpG associations were carried out in a 3Mb cis-window around the deepSNPs to 250 

assess the effect of nearby CpG sites. From the 26 deepSNPs, we identified 17 251 

significant meQTLs containing seven unique deepSNPs (27 %) and 17 CpGs after 252 

Bonferroni-correction for all tested CpGs per SNP (Table 1). The majority (>71%) of the 253 

meQTL SNPs were associated with more than one DNA methylation site (one to four 254 

CpG sites per SNP, Table 1). Notably, 25 deepSNPs (96 %) were nominally associated 255 

with differential methylation levels (p<0.05). The most significant meQTL is located in an 256 

enhancer region and all four identified CpGs in regions epigenetically associate with 257 

gene silencing (Figure 4A). The genotypes at the intergenic SNP rs9293528 were 258 

significantly associated with the methylation levels of four moderately correlated CpGs 259 

located approximately 30-55 kb away from the SNP: cg1193710, cg14617041, 260 

cg14727987 and cg26653990 (Figures 4B and 4C). Sixteen out of the 17 meQTLs 261 

were validated in the independent cohort (MPIP cohort, n=229 samples, see Methods), 262 

i.e., showed a significant meta-analysis p-value (see Methods) showing equally or more 263 

significant associations than in the discovery cohort alone (Figure 4D and Table 1).   264 

 265 

Interestingly, deepSNPs are also associated with MDD-specific methylation changes. In 266 

total we found five deepSNP-CpG pairs with significant differences in the allele-specific 267 

methylation profiles between MDD cases and controls in recMDD cohort (see Methods). 268 

Two of these MDD specific meQTLs are replicated in the independent MPIP cohort (see 269 

Additional file 1: Table S1 and Additional file 1: Figure S5).  270 
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  271 

Second, we investigated the effects of the identified 17 CpG methylation sites 272 

associated to MDD deepSNPs on matched gene expression levels, if CpG and 273 

transcripts were within 1.5Mb of genomic distance.  This was investigated in the MPIP 274 

cohort, as gene expression data were only available in this sample. Among these, we 275 

identified three expression quantitative methylation loci (eQTM) comprising two CpGs 276 

and three gene expression probes after genome-wide Bonferroni-correction for the 277 

number of tested transcripts per CpG (Additional file 1: Table S2) and 11 eQTMs (8 278 

CpGs and 9 transcripts) at nominal level. These are: cg19235974-CACNA2D4 (Calcium 279 

voltage-gated channel auxiliary subunit alpha2delta 4), cg19235974-CACNA1C (Calcium 280 

voltage-gated channel subunit alpha1 C) and cg21290162-MSRA (Methionine sulfoxide 281 

reductase A). CACNA1C has been associated with schizophrenia, bipolar disorder and 282 

major depression[28], CACNA2D4 with late onset bipolar disorder[29] and MRSA with 283 

both bipolar disorder and schizophrenia [30,31]. 284 

 285 

Finally, we associated the 26 deepSNPs to gene expression directly, by conducting an 286 

expression quantitative trait locus (eQTL) analysis using the MPIP cohort data (n=289 287 

samples). We examined transcripts within a cis-window of 1.5Mb upstream and 288 

downstream of the deepSNPs for an association with whole blood gene expression 289 

profiles. We identified three deepSNPs with significant eQTL: rs12541159-MSRA, 290 

rs1868881-TIMM10 and rs4646797-ALDH3A2 (Additional file 1: Table S3). 291 

Interestingly, at nominal significance level we found 27 eQTLs (12 deepSNPs and 27 292 

transcripts). 293 
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 294 

Overall, the investigation of the functional consequences of a hematopoietic tissue-295 

relevant set of deepSNPs in experimental data indicates that these indeed preferentially 296 

tag meQTLs and eQTLs and are thus transcriptionally relevant. 297 

 298 

Predicted regulatory effects of deepSNPs in MDD 299 

Finally, we integrated the analysis results of meQTLs, eQTLs, eQTMs in peripheral 300 

blood with our GM12878 deeSNPs to explore power of the deepWAS approach for 301 

identifying novel, putative disease mechanisms. We combined all pairwise links of 302 

meQTL (SNP-CpG), eQTL (SNP-gene), eQTM (CpG-gene) and deepSNP-chromatin 303 

features and illustrated them in a network (Figure 5A).  304 

 305 

One of six deepSNPs, rs12541159, had a meQTL and eQTL and at the same time 306 

harboured an eQTM, in which the CpG site was affecting the transcriptional levels of the 307 

same gene (Figure 5B). By regulating the methylation and expression profiles of 308 

multiple genes via common TFs, deepSNPs may represent putative master regulators 309 

of in a given disease. The intergenic deepSNP rs12541159 was predicted to affect 310 

binding of the MEF2C TF, correlated with blood methylation levels of two intergenic 311 

CpGs (cg21290162 cg11269159) and one exonic CpG cg27411982 with blood gene 312 

expression of MSRA resigning 517 kb (Figure 5B, box 1 and 5C). The CpGs 313 

themselves showed no correlation to each other (Figure 5D). The transcriptional levels 314 

of MSRA were associated with increased cg21290162 methylation (Figure 5E). This, 315 
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motivated us to infer causality and we investigated whether the CpG site could fully 316 

explain the observed association between the SNP and MSRA expression using causal 317 

inference testing[32]. We found partial mediation of the effect of rs12541159 on MSRA 318 

expression by DNA methylation status of CpG site cg21290162 (Figure 5E, p = 0.043).  319 

 320 

Strikingly, the deepWAS results connected the independently identified six SNPs of the 321 

nine molecular QTLs (see Figure 5A) through a family of TFs, namely MEF2A (myocyte 322 

enhancer factor 2A), MEF2C (myocyte enhancer factor 2C) and ATF2 (activating 323 

transcription factor 2). Predicted regulatory effect to identical SNPs suggest TF co-324 

localization, which has been not been reported so far. We thus utilized ReMap 325 

annotation tool [33] to study co-localization and identified a significantly overlap of TF 326 

ChIP-seq peaks for these three TFs (Additional file 1: Figure S6).  Interestingly, a 327 

SNP in the locus encompassing the MEF2C gene is the top locus of the largest GWAS 328 

for MDD so far, with a p < 10-16[19]. Similarly, we identify a regulatory effect of a second 329 

TF, P300, of which the respective EB300 gene was a GWAS locus in the discovery 330 

cohort[19]. 331 

 332 

Discussion 333 

In classical GWAS all SNPs are tested independently and in a fully genome-wide 334 

manner, thereby implicitly assuming that any SNP can moderate the function of any cell 335 

state at any time. It is now clear that disease associations especially to common 336 

disorders are driven by SNPs altering the function of regulatory elements. Hence it is 337 
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likely not necessary to test all SNPs in GWAS but instead useful to focus on functional 338 

annotation to help prioritize putative risk variants[14].  339 

 340 

In this manuscript, we address this idea by directly integrating the functional data into 341 

the GWAS approach itself. To that end, we employed the powerful DeepSEA method 342 

[12] that uses raw DNA sequence data to predict regulatory effects of 919 chromatin 343 

features (from the ENCODE project) in various cell types, termed “functional unit” here. 344 

These predictions enable determining allele specific effects of single SNPs by 345 

comparing predictions of reference and alternative allele sequences (Figure 1). As 346 

deep learning refers to the idea of learning multiple levels of representations and 347 

relevant features from the raw input, it eliminates the need for manual feature 348 

extraction, such as extracting k-mer frequencies for DNA sequence analysis [34]. To our 349 

best knowledge, our study is the first to use deep learning-based predictors to identify 350 

regulatory SNPs in GWAS. All identified deepSNPs were predicted to have a specific 351 

regulatory effect of a chromatin feature in a defined cell type (functional unit), thereby 352 

allowing having directly testable hypotheses of regulatory mechanisms in a trait or 353 

disease. 354 

 355 

Our deepWAS approach is superior to simply overlapping peaks or tracks of chromatin 356 

features to GWAS signals, even though it is computationally more expensive due to the 357 

deep learning-based predictions, cross-validated LASSO models and permutation-358 

based model selection. In contrast to annotation-based methods, data-driven methods, 359 

such as DeepSEA, have a high predictive power on a single base resolution (by 360 
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comparing predictions of reference and alternative allele sequences) and not only for 361 

larger stretches of sequence underlying one or several chromatin features. It thus 362 

enables us to systematically assess the effects of sub-threshold SNPs that are missed 363 

in classical approaches. DeepWAS does not identify genomic loci containing many 364 

possible regulatory SNPs, but identifies single deepSNPs with predicted allele-specific 365 

regulatory effect in a function unit, a cell-type and chromatin feature.  366 

 367 

The second major methodological advantage of deepWAS is the implementation of 368 

multiple (multi-SNP) regression models with L1 regularization (called LASSO 369 

regression) selecting only a few SNPs, so-called deepSNPs. The deepSNPs of one 370 

functional unit are only selected when they jointly associate with the disease or trait. 371 

Multiple regression models are relatively new in the field of GWAS, nonetheless already 372 

show promising result [35,36]. A related multi-SNP approach used pre-clustering of LD 373 

blocks prior to LASSO modelling [37]. Models with millions of SNPs are less powerful to 374 

associate SNPs, most probably due to the high correlation structure induced by LD. The 375 

power of a pre-selection of regulatory SNP sets is underlined by the fact that when all 376 

predicted regulatory SNPs (neglecting the information on functional units) were used as 377 

input to a single LASSO regression model only one SNP (rs8180478 in osteoblast-378 

H2A.Z functional unit) showed significant association with MDD. This is in contrast to 379 

the 177 deepSNPs identified using the pre-selection models.  380 

 381 

Currently deepWAS has two main limitations. First, the proposed study was designed 382 

for best-guess genotype data (i.e. 0-1-2 encoding). Since LASSO models require full 383 
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genotype information for all samples, the numbers of SNPs entering the analysis had to 384 

be reduced due to quality control procedures. To address this issue, we are planning to 385 

extend the method for dosage data (i.e. probabilistic representation of genotypes) to 386 

increase the range of predicted regulatory effects. This will also necessitate as re-387 

evaluation of the LASSO model as many more SNPs in high LD will enter the analysis. 388 

The second limitation is the current comprehensiveness of regulatory element 389 

catalogues like ENCODE and Roadmap. ENCODE lacks for example a number of 390 

relevant disease-specific stimulation conditions as well as disease-related tissues, in 391 

our case brain tissues, which are important for psychiatric disease. Our previous and 392 

related studies indicated the importance to test SNPs in stimulated conditions, like 393 

TNFalpha and glucocorticoids receptor agonist dexamethasone conditions activating 394 

NF-κB and GR, respectively [21]. Data from cell lines or bulk tissues will miss variants 395 

with effects only in rare cell types or cell type specific effects in native tissue. It is 396 

therefore important to be able to retrain the DeepSEA neural network with additional 397 

publicly available chromatin features and as well as newly generated experimental data. 398 

This will be possible using the deepWAS code publicly available at DOI: 399 

10.5281/zenodo.59282. Additional data, from efforts such as the PsychENCODE will 400 

make deepWAS even more powerful in the future. 401 

 402 

The power of DeepWAS could be demonstrated in our small GWAS sample for 403 

MDD[16]. Only using a subset of SNPs in functionally confined, regulatory units, we 404 

identify risk variants for MDD even though the classical GWAS in this small sample was 405 

negative (Additional file 1: Figure S1). The results in this small MDD sample illustrate 406 
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the power of deepWAS. 1) DeepSNPs were identified in cell types and enhancers 407 

previously shown to be relevant for depression. Furthermore, using the stimulation 408 

conditions, the importance of both immune system regulator NF-κB and the 409 

glucocorticoid receptor system for depression was also observed in this study. Both 410 

systems have been implicated by a large number of previous publications [21,25,26].  2) 411 

deepSNPs for MDD were highly likely to be functional in experimental data and impact 412 

both DNA methylation and gene expression (Figure 4 and Table 1, Additional file 1: 413 

Table S2 and Table S3) as shown by their effects  meQTL, eQTL and eQTM analyses. 414 

Interestingly, for some of these, differential genotypic effects by major depression status 415 

were observed (Additional file 1: Figure S5 and Table S1).  3) The integrated analysis 416 

of eQTL, meQTL and eQTM results with the GM12878 deepSNPs, identified the MEF2 417 

TF family, including MEF2C, as important risk factors in MDD (Figure 5). The MEF2 TF 418 

family was already identified to play a major role in neuronal plasticity, which is an 419 

important component in disease development of stress-related disorders, like MDD and 420 

other psychiatric disorders. Chen and colleagues[38]  identified the TF MEF2 as a 421 

master regulator of developmental metaplasticity, which is important to guide 422 

developmental structural and functional neuronal plasticity. Additional evidence was 423 

found by Barbosa et al [39]. Relating MEF2 to activity-dependent dendritic spine growth 424 

and suggesting that this TF may suppress memory formation [39,40]. Most relevant for 425 

this study, SNPs in the locus encoding MEF2C are the top signal in the latest meta-426 

analysis for major depression with over 130,000 MDD cases and 310,000 controls [19] 427 

and minimum p-value of 9.99*10-16. Our study now identified SNPs altering the binding 428 

of this TF to target transcript as relevant for MDD. This implies that not only SNPs in the 429 
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MEF2C locus itself, as seen in the meta-analysis for MDD [19] but also SNPs altering 430 

it’s binding in target transcripts, as observed in our deepWAS, are associated with major 431 

depression. This shows that our approach focused on regulatory SNPs was able to 432 

generate complementary functional data to the largest classical GWAS for MDD to date 433 

suggesting that not only transcriptional regulation of MEF2C itself but also of its 434 

downstream targets is relevant for MDD. 435 

 436 

Our results supports the transcription factor MEF2C as a master regulators in MDD. In 437 

fact we observed that transcripts affected by differential MEF regulation included a 438 

network of genes previously implicated in psychiatric disorders. This includes 439 

CACNA1C, a gene encoding a voltage gated calcium channel that has reported 440 

genome-wide significant associations for schizophrenia as well as associations for 441 

bipolar disorder and major depression in previous studies[28] as well as another 442 

voltage-gated calcium channel, CACNA2D4 that has been linked to late onset bipolar 443 

disorder [29]. MRSA has been associated with both bipolar disorder and schizophrenia 444 

[30,31] . 445 

 446 

Conclusions 447 

Our data indicate that deepWAS, a method combining classical GWAs with deep 448 

learning based functional SNP annotation is a powerful tool to uncover disease 449 

mechanisms for common disorders, including relevant cell types. It also allows to 450 

directly identify functional SNPs by having a single base resolution and not being limited 451 
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by the LD structure of the locus. With ever increasing amounts of available functional 452 

data the deepWAS approach will become even more valuable and allow to integrate 453 

both publicly as well as unpublished data generated by individuals labs. DeepWAS is a 454 

versatile tool, publicly available and together with available code from DeepSEA 455 

applicable to any GWAS data. 456 

 457 

Figures 458 

 459 

 460 
Figure 1: DeepWAS approach. (A) The first step of the workflow corresponds to a 461 

regulatory variant filtering procedure where only the SNPs with significant regulatory 462 

effect are retained in the analysis. Prediction of significant regulatory variants is 463 

performed using a pretrained deep neural network, namely DeepSEA, and e-values are 464 

calculated by comparing the regulatory effects of observed SNPs to randomly selected 465 
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SNPs. (B) We define the functional genotype as the intersection of all SNPs assessed 466 

(genotyped and imputed) in a sample and the preselected SNPs from DeepSEA. (C) 467 

The association between disease and retained regulatory variants are interrogated via 468 

regularized logistic regression. A regression model is fitted for each functional unit that 469 

is define by tested TF/histone mark/DNase effects, the cell line and the specific 470 

treatment e.g. NF-κB -GM12878-TNFa) where only the SNPs with a regulatory effect in 471 

the specific cell type context are included as covariates. (D) The classical GWAS design 472 

focuses on allele frequency differences and does not include information on the 473 

regulatory impact of the tested variants.  474 

 475 
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  476 
 477 

Figure 2: Significance of DeepWAS models and overlap of deepSNPs with 478 

functional annotations (A) Results of the significance test is given in heatmap. Every 479 

functional unit is represented by the p-value, which shows the FDR-adjusted 480 

significance of the corresponding LASSO model. Missing values, represented in white, 481 
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show functional units for which no data were available. The models of the functional 482 

units with LASSO coefficients with p > 0.1 and those without any non-zero coefficients 483 

are shown in grey and those with p < 0.1 in shades from yellow to red, with red 484 

representing the most significant models. (B) Overlap of deepSNPs with genomic 485 

elements is performed using UCSC knownGene annotations. Vast majority of 486 

deepSNPs overlap with non-coding genomic regions. 487 

 488 

Figure 3: Transcription factors harbouring deepSNPs in GM12878 cell line. In data 489 

from GM12878 26 deepSNPs are predicted to affect the binding to 12 TFs. Group of 490 

SNPs that are overlapping exclusively with a group of TFs are highlighted  491 
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 492 

Figure 4: meQTL results for the GM12878 deepSNP rs9293528. (A) Overview of the 493 

rs9293528 meQTL locus on chromosome 5. Top panel, ideogram for chromosome 5. A 494 

red box indicates the region shown enlarged in the bottom panels. Bottom panels: 495 

Location of CpGs (n=4) that are significantly associated with rs9293528 genotypes, 496 

SNP position, genes nearby (based on USCS knownGene annotation) and annotation 497 

of chromatin states (based on GM12878 15-state core ChromHMM model). (B) Matrix 498 

of Pearson’s correlation coefficients between the DNAm levels (beta values) of 499 

cg1193710, cg14617041, cg14727987 and cg26653990. (C) meQTLs between 500 
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rs9293528 and cg1193710, cg14617041, cg14727987 and cg26653990 within the 501 

recMDD cohort. (D) Replication of those meQTLs in the MPIP cohort. Y-axis in C and D 502 

displays the DNAm level of a particular CpG site and the x-axis indicates rs9293528 503 

genotype. 504 

 505 
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Figure 5: Joint analysis of all significant meQTL, eQTL, eQTM and deepWAS 507 

results: (A) Schematic illustration of our joint analysis. Grey box highlighting the MDD 508 

disease effect. (B) Network visualization of the joint analysis. Edges represent the 509 

association relation of deepSNPs, CpGs, TFs and transcripts. The grey circle highlights 510 

the deepSNP rs12541159, which coincides all types of QTLs. (C) Regional plot for the 511 

deepSNP rs12541159 locus: with top panel illustrating the ideogram for chromosome 8. 512 

Bottom panels the location of CpGs (n=3) that are significantly associated with 513 

rs12541159 genotypes, SNP position, gene expression probe position sig. association 514 

with rs12541159, genes nearby (based on USCS knownGene annotation) and 515 

annotation of chromatin states (based on GM12878 ChromHMM). (D) Matrix of 516 

Pearson’s correlation coefficients between the DNAm levels (beta values) of 517 

cg27411982, cg11269159 and cg21290162. (E) Relationship between cg21290162 518 

methylation, MSRA expression, and deepSNP rs12541159 genotype in MPIP samples, 519 

including mediation effect rs12541159 → cg21290162 → MSRA expression. 520 

 521 

Tables 522 

CpG SNP Chr SNP 

Position 
SNP 

Location 
Genes near SNP CpG 

Position 
CpG 

Location 
Genes near CpG P-value Validation 

in MPIP 

cg02138778 rs112478139 20 25110965 intergenic VSX1,LOC284798 25172805 intergenic LOC284798,ENTPD6 6.72e-06 yes 

cg20318748 rs112478139 20 25110965 intergenic VSX1,LOC284798 25605228 upstream NANP 0.00306 yes 

cg03677069 rs1240390 10 88725984 intergenic SNCG,ADIRF 88718366 UTR5 SNCG 0.0148 yes 

cg09552892 rs1240390 10 88725984 intergenic SNCG,ADIRF 88718324 UTR5 SNCG 0.0229 yes 
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cg10376827 rs1240390 10 88725984 intergenic SNCG,ADIRF 88730374 exonic ADIRF 0.0142 yes 

cg21012874 rs1240390 10 88725984 intergenic SNCG,ADIRF 88718443 UTR5 SNCG 0.000177 yes 

cg11269159 rs12541159 8 9769098 intergenic MIR124-1,MSRA 9788795 intergenic MIR124-1,MSRA 0.00265 yes 

cg21290162 rs12541159 8 9769098 intergenic MIR124-1,MSRA 9741960 intergenic TNKS,LINC00599 0.000191 yes 

cg27411982 rs12541159 8 9769098 intergenic MIR124-1,MSRA 10470102 exonic RP1L1 0.0105 no 

cg14602222 rs12816718 12 969800 intronic WNK1 1025664 exonic RAD52 0.00226 yes 

cg19235974 rs12816718 12 969800 intronic WNK1 1063197 intergenic RAD52,ERC1 0.0386 yes 

cg10979063 rs2150175 6 97269213 intronic GPR63 97285872 upstream GPR63 0.000352 yes 

cg09316306 rs5743565 4 38805983 UTR5 TLR1 38807387 upstream TLR1 4.9e-05 yes 

cg11937107 rs9293528 5 72456267 intergenic TMEM171,TMEM174 72511061 intergenic TMEM174,FOXD1 9.81e-10 yes 

cg14617041 rs9293528 5 72456267 intergenic TMEM171,TMEM174 72415688 upstream TMEM171 0.00791 yes 

cg14727987 rs9293528 5 72456267 intergenic TMEM171,TMEM174 72485684 intergenic TMEM174,FOXD1 6.44e-07 yes 

cg26653990 rs9293528 5 72456267 intergenic TMEM171,TMEM174 72510846 intergenic TMEM174,FOXD1 0.0104 yes 

 523 

Table 1: Significant GM12878 deepSNPs representing a meQTL (GSK cohort). P-values were 524 

corrected according to Bonferroni. 525 

Additional files 526 

Additional file 1: Supplementary Figures S1-S6 and Tables S1-S3 (PDF) 527 

Additional file 2: List of MDD deepWAS results. Table lists deepWAS results for MDD. 528 

Triplet of the first three columns together form a functional unit. (XLS) 529 

• Cell Line: Name of cell line of the functional unit 530 

• Chromatin Feature: Name of chromatin feature of the functional unit 531 

• Treatment: Name of Treatment of the cell line of the functional unit 532 

• SNP: The deepSNPs jointly associated to MDD using deepWAS 533 

 534 
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Additional file 3: Significance of LASSO models with number of predictors in each 535 

model (XLS)  536 

• Cell line: Name of cell line of the functional unit 537 

• Chromatin feature: Name of chromatin feature of the functional unit 538 

• Treatment: Name of Treatment of the cell line of the functional unit 539 

• pval.adj: FDR-adjusted p-values which represent the significance of a regression 540 

model 541 

• pval: p-values which represent the significance of a regression model 542 

• devratio: Deviance ratio used as a test statistic for quantify the significance of 543 

regression model 544 

• n.snps: Number of SNPs that are used as predictors in regression models 545 

• n.nonzero.snps: Number of predictors selected by LASSO approach (i.e. 546 

covariates with non-zero coefficients) 547 

Additional file 4:  Overlap of bQTLs and MDD deepSNPs. Overlap of MDD deepSNPs 548 

in cell line GM12878 with public bQTL study in same cells. (XLS) 549 

• Chr: Chromosome number 550 

• Pos.h19: Genomic position of SNP in hg19 assembly 551 

• Rsid: SNP identifier 552 

• bQTL.ref: Reference allele base extracted from bQTL study 553 

• bQTL.alt: Alternative allele base extracted from bQTL study 554 

• bQTL.pval: p-value extracted from bQTL study 555 

• Higher Binding Allele: Base of higher binding allele extracted from bQTL study 556 

• bQTL.TF: Transcription factor extracted from bQTL study 557 

• deepwas_TF: Transcription factor identified using MDD deepWAS and rsid 558 

 559 

 560 
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Methods 561 

Clinical Samples 562 

recMDD 563 

The sample consists of 1,537 Caucasian individuals (with 84%, n=1294 of German 564 

origin) recruited at the Max-Planck Institute of Psychiatry (MPIP) in Munich, Germany 565 

and two satellite hospitals in the Munich metropolitan area (BKH Augsburg and Klinikum 566 

Ingolstadt): 739 controls (500 females, 239 males) and 798 cases diagnosed with 567 

recurrent major depression (526 females, 272 males). Please see Muglia et al.[16] for 568 

more detail in sample recruitment and characterization. All subjects are independent 569 

from the MPIP collection below.  570 

MPIP 571 

The group of subjects consists of 289 Caucasian individuals of the Max-Planck Institute 572 

of Psychiatry (MPIP), 93 women and 196 men. Recruitment strategies and further 573 

characterization of the MPIP cohort have been described previously[21]. One hundred 574 

sixty of them were healthy (115 men, 45 women), 129 (81 men, 48 women) had a 575 

depressive disorder treated at the MPIP’s hospital in Munich.  576 

Genotype data and Imputation (GSK & MPIP) 577 

Human DNA of the GSK and MPIP cohort samples was isolated from EDTA blood 578 

samples using the Gentra Puregene Blood Kit (Qiagen) with standardized protocols. 579 

Genome-wide SNP genotyping was performed using Illumina HumanHap550 Quad 580 
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(GSK), Illumina Human610-Quad (MPIP) and OmniExpress (MPIP) genotyping 581 

BeadChips according to the manufacturer's standard protocols. Quality control  (QC) of 582 

genotyped data was conducted in PLINK 1.90b3s [20] separately for each cohort and 583 

genotyping BeadChip. QC steps on samples included removal of individuals with 584 

genotyping rate < 2 %, cryptic relatives (PI-HAT > 0.05), and genetic outliers (distance 585 

in first two MDS components from mean > 2 SD). QC steps on variants included 586 

removal of variants with call rate < 2 %, MAF < 5% and HWE test p-value ≤ 10-6. 587 

Furthermore, variants on non-autosomal chromosomes were excluded, resulting in 588 

GSK: 481,178, MPIP: 481,762 (Human610-Quad) and 544,908 (OmniExpress) SNPs. 589 

These sets of SNPs comprised the input for imputation, which was performed 590 

separately for each cohort and genotyping BeadChip using IMPUTE v2[24] with the 591 

following parameters: 1000G phase I reference panel (released in June 2014, ALL 592 

samples), SHAPEIT [23] phasing. QC of imputed probabilities was conducted in 593 

QCTOOL 1.4 (http://www.well.ox.ac.uk/~gav/qctool/). Imputed SNPs were excluded if 594 

the HWE test p-value ≤ 10-6 and the info metric < 0.8. Called genotypes (“best guess 595 

genotypes'” with a probability of 70%) were used for further analysis. SNP sets of the 596 

MPIP cohort were merged together. GSK and merged MPIP SNPs were further 597 

processed in PLINK and variants were excluded if their MAF < 5% and best guess 598 

genotypes are not called (call rate = 100%). This yielded a total of 1.78 Mio GSK SNPs 599 

and 3 Mio MPIP SNPs. To annotate SNPs for the closest genes, we used Annovar 600 

version Februar 2016 [41] with the UCSC knownGene annotations. SNP coordinates are 601 

given according to hg19. 602 
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Prediction of regulatory effects 603 

In this study, we employed DeepSEA[12] to determine the SNPs that might play an 604 

important role in MDD by acting through the alteration of regulatory elements. 605 

Pretrained DeepSEA network (v0.94) was downloaded from 606 

http://deepsea.princeton.edu/help/ and the predictions of 1.7M SNPs were generated 607 

using NVIDIA GeForce GTX TITAN X GPU (Maxwell) in 10 hours. Next step, filtering of 608 

regulatory SNPs, was performed using generated so-called “e-value” files that represent 609 

the significance of the regulatory effect of SNPs. We applied an e-value cutoff of 610 

5 ⋅ 10!! where we only take the SNPs that are associated to at least one functional unit 611 

into consideration e.g. (rs1035271, GM12878, MEF2C). Set of SNPs that have an 612 

impact on functional unit 𝑘 is depicted here as set 𝑆!. 613 

 614 

We then employed a simple probabilistic genotype encoding where allele-specific 615 

regulatory probability of the reference or alternative alleles is used if genotype is 616 

reference or alternative homozygous, respectively. If the genotype of the individual is 617 

heterozygous then the mean of two allele probabilities are used. Here, we refer to the 618 

genotype matrix (1,537 x 1.7M) as 𝐺 where the rows are individuals and columns are 619 

SNPs. Genotypes in the 𝐺 matrix is encoded such that 𝐺!" ∈  {0, 1, 2} where we simply 620 

count an arbitrarily chosen allele. We then define 𝐷 as a tensor representing the allele-621 

specific probabilities for each SNP, functional unit and allele. For example 𝐷!"
(!"#) refers 622 

to the probability of reference allele of 𝑆𝑁𝑃! in the context of functional unit 𝑘. Therefore, 623 

the SNP encoding scheme can be described in terms of 𝐺 and 𝐷 matrices: 624 

 625 
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𝑋!"# =

𝐷!"
(!"#)  𝑖𝑓 𝐺!" = 0 

𝐷!"
(!"#)𝑖𝑓 𝐺!" = 2

!!"
(!"#) ! !!"

(!"#)

!
 𝑖𝑓 𝐺!" = 1

   𝐺!" ∈ {0, 1, 2} 626 

 627 

or equivalently  628 

 629 

𝑋!"# = 𝐺!"
!!"
(!"#)! !!"

(!"#)

!
+ 𝐷!"

(!"#)    630 

 631 

Here the subscripts 𝑖, 𝑗 and 𝑘 represent individual, SNP, and functional unit indices, 632 

respectively. Resulting encoded matrix is 1,537 x 6,143,515 where we store all SNP-633 

functional unit pairs (919 x 6,685) for all individuals using “bigmemory” R package[32] in 634 

order to limit the memory consumption. During model fitting, however, only the list of 635 

SNPs in sets 𝑆! are used. 636 

DeepWAS 637 

Penalized regression models 638 

Compared to the classical GWAS approaches where the trait of interest is regressed 639 

separately on each SNP, regularized regression approaches provide an alternative way 640 

to handle high dimensional data and to identify SNPs associated with the trait of interest 641 

using variable selection. Here we utilize L1-regularized logistic regression (LASSO) for 642 

variable selection. 919 different LASSO models are fitted for each functional unit in 643 
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order to estimate the statistical association between the disease status (y=0 for controls, 644 

and 1 for cases) and SNPs in the context of a specific cell line: 645 

 646 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑦! = 1 = 𝛽!! + 𝛽!"𝑋!"#
!∈!!

+ 𝛽!"#,!𝑠𝑒𝑥! + 𝛽!"#,!𝑎𝑔𝑒! 

 647 

where 𝑘 is used as a model index. Note also that the regression coefficients are model 648 

specific and therefore indexed with 𝑘. In each LASSO model, only the SNPs that are 649 

significantly affecting the binding of a specific TF in a specific cell line are included as 650 

covariates. This is represented in the equation by the summation over the elements of 651 

𝑆!.  652 

 653 

Note that the simple probabilistic encoding does not affect the variable selection, 654 

because the effect goes away during the standardization of the design matrix except for 655 

possible sign flips. Yet, it leads to the effect sizes that are scaled based on the allele-656 

specific regulatory probabilities reported by DeepSEA since the effect sizes in logistic 657 

regression are reported in the scale of original covariates. 658 

 659 

The parameters (𝛽) of the logistic regression are optimized with L1 regularization: 660 

𝑚𝑖𝑛!  𝑦!−𝛽!!  – 𝛽!"𝑋!"#
!∈!!

 + 𝛽!"#,!𝑠𝑒𝑥! + 𝛽!"#,!𝑎𝑔𝑒!

!

 
!

!!!

+  𝜆 𝛽 ! 

 661 
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where M is the number of individuals, 𝜆 parameter represents the strength of the 662 

regularization and 𝛽 vector represents model parameters. We fitted L1-regularized 663 

logistic regression model (LASSO) using glmnet R package[42].  Regularization 664 

parameter 𝜆 is determined by 100-fold cross validation after which we used 665 

“lambda.1se” value to determine non-zero parameters.  666 

 667 

Permutation-based significance test 668 

We used a permutation-based approach to select significant LASSO models with non-669 

zero coefficients and to control false discovery rate. We generated 1000 random 670 

permutations of the response variable and fitted LASSO models on each. 𝜆 parameter 671 

in each model is determined by 10-fold cross validation in order to reduce the 672 

computational cost. After fitting LASSO models on the permuted data, deviance ratio is 673 

used as a test statistic. 674 

 675 

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =  1− !
!!"##

  where 𝐷 = 2 (𝐿!  −  𝐿!) and 𝐷!"## = 2 (𝐿!  −  𝐿!)  676 

 677 

Here  𝐿!, 𝐿! and 𝐿! are the log likelihoods of saturated model (model with a free 678 

parameter per individual), proposed model and null model (intercept model), 679 

respectively. Empirical p-values are calculated as the number of permuted models with 680 

a deviance ratio greater than or equal to the proposed model divided by 1000. After 681 

FDR[34] multiple testing correction with threshold of 10%, models with lower adjusted p-682 

values are retained. 683 

 684 
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Functional annotation of deepSNPs 685 

Enrichment of Roadmap cis-regulatory elements 686 

In order to quantify the enrichment of deepSNPs in cis-regulatory elements identified by 687 

Roadmap Epigenomics Project[14], we first downloaded the segmentation files of core 688 

15-state model for 127 epigenomes were downloaded from Roadmap epigenomics web 689 

portal 690 

(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmMode691 

ls/coreMarks/jointModel/final/all.mnemonics.bedFiles.tgz) in BED format. Then we 692 

sampled random genomic ranges with the same size distribution as promoter (State 1) 693 

and enhancer (State 7) regions from the background distribution using GAT[44]. The 694 

background distribution was defined as the intersection of mappable regions of the 695 

genome 696 

(https://www.cgat.org/downloads/public/gat/datasets/hg19/mapability_36.filtered.bed.gz) 697 

and genomic segments that belong to the first 13 chromatin states of ChromHMM 698 

model (State 14: Weak repressed Polycomb and State 15: Quiescent are excluded). In 699 

order to limit the computation time, 1000 samples were drawn and p-values smaller 700 

than 10-3 were extrapolated from normal distribution using “--pvalue-method=norm” 701 

command line option. 702 

bQTL overlap 703 

bQTL results were downloaded from “Supplementary Table 2” of Tehranchi et al.[4] and 704 

intersection with GM12878 deepSNPs is computed in R version 3.3.0. 705 
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Transcription factor co-localization 706 

ReMap project[33] provides a consolidated dataset for ChIP-seq peaks of  several 707 

transcription factors including the ENCODE peaks as well as various public datasets. In 708 

order to quantify TF-TF colocalization patterns, we downloaded non-redundant peaks 709 

for 11 individual TFs in BED format from the web interface (http://tagc.univ-710 

mrs.fr/remap/index.php?page=download) and then ran the annotation interface 711 

(http://tagc.univ-mrs.fr/remap/index.php?page=annotation) for each BED file separately. 712 

Downloaded TSV files with –log10 transformed e-values are combined and plotted with 713 

corrplot R package[43]. Because very high –log10-transformed e-values obscure 714 

visualization, e-values are binarized with a cutoff of 10!!. Out of 12 TFs affected by 26 715 

GM12878 deepSNPs 2 TFs are not shown in Additional file 1: Figure S6 since p300 716 

peaks are not available in ReMap dataset and CTCF did not show any significant 717 

association with other TFs. 718 

DNA methylation (GSK & MPIP) 719 

For a subset of GSK (n=257 with 53% MDD cases) and MPIP cohort (n=229 with 52% 720 

MDD cases) genomic DNA was extracted from whole blood using the Gentra Puregene 721 

Blood Kit (QIAGEN). DNA quality and quantity of both was assessed by NanoDrop 2000 722 

Spectrophotometer (Thermo Scientific) and Quant-iT Picogreen (Invitrogen). Genomic 723 

DNA was bisulfite converted using the Zymo EZ-96 DNA Methylation Kit (Zymo 724 

Research) and DNA methylation levels were assessed for >480,000 CpG sites using 725 

the Illumina HumanMethylation450 BeadChip array. Hybridization and processing was 726 

performed according to manufacturer’s instructions. Quality control of methylation data, 727 
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including intensity read outs, filtering (detection p-value > 0.01 in at least 75% of the 728 

samples), cellular composition estimation according to[44], as well as beta calculation 729 

was done using the minfi Bioconductor R package version 1.18.2. Filtered beta values 730 

were reduced by eliminating any CpG sites on sex chromosomes, as well as probes 731 

found to have SNPs at the CpG site itself or in the single-base extension site with a 732 

MAF ≥ 1% in the 1,000 Genomes Project European population and/or non-specific 733 

binding probes according to[45]. Additionally, we performed a re-alignment of the array 734 

probe sequences using Bismark[45,46]. This yielded a total of around 425,000 GSK and 735 

MPIP CpG sites for further analysis. The data were then normalized with functional 736 

normalization[47]. Technical batch effects were identified by inspecting the association 737 

of the first principal components of the methylation levels with plate and plate position 738 

for the GSK sample as well as processing (experiment) date for the MPIP sample as 739 

technical batch. The data were then adjusted using ComBat[48]. To annotate CpGs for 740 

the closest genes, we used Annovar version February 2016[41] with the UCSCknown 741 

gene annotation. CpG coordinates are given according to hg19. 742 

Gene expression (MPIP) 743 

Whole blood RNA of the MPIP sample (n=289 individuals) was collected using 744 

PAXgene Blood RNA Tubes (PreAnalytiX) and processed as described previously[21]. 745 

The RNA was then hybridized to Illumina HT-12 v3 and v4 expression Bead Chips 746 

(Illumina, San Diego, CA). Raw probe intensities were exported using Illumina's 747 

GenomeStudio and further statistical processing was carried out using R version 3.3.0.  748 

All 29,075 probes present on both BeadChips (v3 vs. v4), excluding X and Y 749 

chromosomes as well as cross-hybridizing probes identified by using the Re-Annotator 750 
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pipeline [21,49] were first filtered with a detection p-value of 0.05 in at least 50% of the 751 

samples, leaving 11,994 autosomal expression array probes. Subsequently, each probe 752 

was transformed and normalized through variance stabilization and normalization 753 

(VSN)[50]. Technical batch effects were identified by inspecting the association of the 754 

first principal components of the expression levels for all known batch effects and then 755 

adjusted using ComBat with slide, amplification round, array version, and amplification 756 

plate column as fixed effects. The position of the gene expression probe and gene 757 

symbols were annotated using the Re-Annotator pipeline based on hg19. Blood cell 758 

counts were estimated according to CellCODE [51]. 759 

Statistical analysis of gene expression and methylation data 760 

Methylation QTL (meQTL) analysis 761 

For each of the 26 deepSNP CpG sites within a 3Mb window around the SNP position 762 

were selected for the meQTL analysis. Due to low frequency of minor allele 763 

homozygotes for many SNPs, all SNP genotypes were coded and evaluated as a 764 

dominant model. Linear regression was used to measure the relationship between the 765 

DNA methylation (beta values) and the number of minor alleles (coded 0 and 1), 766 

including covariates for age, disease-state, gender and blood cell counts.  So we 767 

defined the model for a single meQTL mapping as follows: 𝐶𝑝𝐺 = 𝛽!  +  𝛽!"#𝑠𝑒𝑥 +768 

 𝛽!"#𝑎𝑔𝑒 +  𝛽!"!!𝐶𝐷8𝑇 +  𝛽!"!!𝐶𝐷4𝑇 +   𝛽!"#$%%𝑁𝐾𝑐𝑒𝑙𝑙 +   𝛽!"#$$𝐵𝑐𝑒𝑙𝑙 +   𝛽!"#"𝑀𝑜𝑛𝑜 +769 

𝛽!"#$𝐺𝑟𝑎𝑛 + 𝛽!"#$#%#$ !"#"$!𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 +   𝛽!"#𝑆𝑁𝑃 +  𝑒,  where e is the general 770 

error term for any residual variation not explained by the rest of the model.  771 

 772 
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In addition a differential meQTL analysis by the disease status was performed. 773 

Therefore an additive model adjusting for age, gender and blood cell counts was 774 

applied in controls and cases separately: 775 

𝐶𝑝𝐺 = 𝛽!  +  𝛽!"#𝑠𝑒𝑥 +  𝛽!"#𝑎𝑔𝑒 +  𝛽!"!!𝐶𝐷8𝑇 +  𝛽!"!!𝐶𝐷4𝑇 +   𝛽!"#$%%𝑁𝐾𝑐𝑒𝑙𝑙 +776 

  𝛽!"#$$𝐵𝑐𝑒𝑙𝑙 +   𝛽!"#"𝑀𝑜𝑛𝑜 +   𝛽!"#𝑆𝑁𝑃 +  𝑒. 777 

P-values were adjusted for the total number of CpG sites that were within the tested 778 

region surrounding the SNP. Case specific meQTLs were defined as meQTLs, which 779 

show a significant P-value in cases but not in controls (nominal p-value> 0.05).  GSK 780 

and MPIP data were analysed independently and a validation of meQTL results was 781 

carried out with a sample size-weighted Z-score meta-analysis [52]. This method 782 

accounts for different sizes and suggests the robustness the meQTLs.  783 

Top hits were plotted with easyGgplot2 (https://github.com/kassambara/easyGgplot2), 784 

corrplot R package [43] and Gviz  1.16.1 bioconductor package [53]. 785 

 786 

Expression QTL (eQTL) analysis  787 

For each of deepSNP all transcripts beginning or ending within 1Mb up- or downstream 788 

of the SNP were determined. Associations between genotype (coded 0, 1 and 2) and 789 

expression levels (normalized and batch corrected log2 gene expression values) were 790 

determined in the MPIP data set by linear regression, using sex, age, disease status 791 

and blood cell estimates as covariates: 792 

𝐺𝐸𝑋 =793 

𝛽!  +  𝛽!"#𝑠𝑒𝑥 +  𝛽!"#𝑎𝑔𝑒 +  𝛽!"#$%&'!!"𝑁𝑒𝑢𝑡𝑟𝑜𝑝ℎ𝑖𝑙 +  𝛽!"#"𝑀𝑜𝑛𝑜 +  𝛽!"#$$𝐵𝑐𝑒𝑙𝑙 +794 
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 𝛽!"#$$𝑇𝑐𝑒𝑙𝑙 +  𝛽!"#$%%𝑁𝐾𝑐𝑒𝑙𝑙 +  𝛽!"#$%#&'""𝑃𝑙𝑎𝑠𝑚𝑎𝑐𝑒𝑙𝑙 +  𝛽!"#$%&'&()"**𝐷𝑒𝑛𝑑𝑟𝑖𝑡𝑖𝑐𝐶𝑒𝑙𝑙 +795 

𝛽!"#$%#  !"#"$!𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 +  𝛽!"#𝑆𝑁𝑃 +  𝑒.  796 

To correct for multiple testing, p-values were corrected for the number of transcripts per 797 

SNP.  798 

Expression quantitative trait methylation (eQTM) analysis  799 

For each of CpG site of the significant DeepQTL SNP- CpG pairs all transcripts 800 

beginning or ending within 1Mb up- or downstream of the CpG were determined. 801 

Associations between CpG and expression levels were determined in the MPIP data set 802 

by linear regression, using sex, age, disease status and blood cell estimates as 803 

covariates: 804 

𝐶𝑝𝐺 =  𝛽!  +  𝛽!"#𝑠𝑒𝑥 +  𝛽!"#𝑎𝑔𝑒 +  𝛽!"!!𝐶𝐷8𝑇 +  𝛽!"!!𝐶𝐷4𝑇 +  𝛽!"#$%%𝑁𝐾𝑐𝑒𝑙𝑙 +805 

 𝛽!"#$$𝐵𝑐𝑒𝑙𝑙 +   𝛽!"#"𝑀𝑜𝑛𝑜 +  𝛽!"#$𝐺𝑟𝑎𝑛 +  𝛽!"#$#%#$ !"#"$!𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 +  𝛽!"#𝐺𝐸𝑋 +806 

 𝑒.  807 

To correct for multiple testing, p-values were first corrected for the number of transcripts 808 

per SNP window.  809 

Joint analysis 810 

For the joint analysis we first measured the overlap of deepSNPs with eQTL, meQTL 811 

data and secondly for all overlapping pairs we calculated the overlap of meQTL CpGs 812 

and eQTM CpGs.  For the deepSNPs, CpG, transcripts triplets we then assessed 813 

possible causal relationships by using a causal inference test [32]. 814 

The network was plotted using the R package igraph [54]. The triplet was plotted using 815 

ggplot2[55], corrplot R package [43] and Gviz  1.16.1 Bioconductor package [53]. 816 
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