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We treat proteins as amorphous learning matter: A ‘gene’ encodes bonds in an ‘amino acid’ network making
a ‘protein’. The gene is evolved until the network forms a shear band across the protein, which allows for
long-range soft modes required for protein function. The evolution projects the high-dimensional sequence
space onto a low-dimensional space of mechanical modes, in accord with the observed dimensional reduction
between genotype and phenotype of proteins. Spectral analysis shows correspondence between localization
around the shear band of both mechanical modes and sequence ripples.

PACS numbers: 87.14.E-, 87.15.-v, 87.10.-e

DNA genes code for the three-dimensional configurations
of amino acids that make functional proteins. This sequence-
to-function map is hard to decrypt since it links the collec-
tive physical interactions inside the protein to the correspond-
ing evolutionary forces acting on the gene [1–3]. Further-
more, evolution has to select the tiny fraction of functional se-
quences in an enormous, high-dimensional space [4], which
implies that protein is a non-generic, information-rich mat-
ter, outside the scope of standard statistical methods. There-
fore, although the structure and physical forces within a pro-
tein have been extensively studied, the fundamental question
as to how a functional protein originates from a linear DNA
sequence is still open, in particular, how the functionality con-
strains the accessible DNA sequences.

We examine the geometry of the sequence-to-function map,
and devise a simple mechanical model of proteins as amor-
phous learning matter. We base our model on the growing
evidence that large-scale conformational changes – where big
chunks of the protein move with respect to each other – are
central to function [5, 6]. In particular, allosteric proteins can
be viewed as ‘mechanical transducers’ that transmit regula-
tory signals between distant sites [7–9]. Recent measurements
showed viscoelastic flow within enzymes [10] with mechani-
cal stress affecting catalysis [11], while analysis of structural
data demonstrated localization of the strain in 2D bands across
allosteric proteins [12]. All this motivates us to take as a target
function to be evolved in our ‘protein’ such a large-scale dy-
namical mode. Other important functional constraints, such as
specific chemical interactions at binding sites, are disregarded
here because they are confined to a small fraction of the pro-
tein. Therefore we focus on this mechanical function, which
involves many amino acids. We show that its collective nature
leads to long-range correlation patterns in the gene.

In our model, the target mechanical mode is evolved by
mutating the ‘gene’ that determines the connectivity in the
amino acid network. During the simulated ‘evolution’, mu-
tations eventually divide the protein into ‘rigid’ and ‘floppy’
domains, and this division enables large-scale motion in the

protein [13]. The model thus provides a concrete map be-
tween the sequence, configuration, and function of the ‘pro-
tein’. The computational simplicity allows for a massive sur-
vey of the sequence universe, which reveals a strong signature
of the protein’s structure and function within correlation ‘rip-
ples’ that appear in the space of DNA sequences.

Model. Our ‘protein’ is an aggregate of amino acids
(AAs), modeled as beads, with short-range interactions given
as bonds (Fig. 1A). A typical protein is made of several hun-
dred AAs, and we takeN = 540. We layer the AAs on a
cylinder,18 high 30 wide, similar to dimensions of globular
proteins. The cylindrical configuration allows for fast calcu-
lation of the low energy modes, and thereby fast evolution of
the protein. Each AA may connect to the nearest five AAs in
the layer below, so that we get25 = 32 AA species, which
are encoded as 5-letter binarycodons. These codons spec-
ify the bonds in the protein in a 2550-longsequenceof the
gene(5 × 30 × (18 − 1), because the lowest layer is con-
nected only upwards). To become functional, the protein has
to evolve aconfigurationof AAs andbondsthat can transduce
a mechanical signal from a prescribed input at the bottom of
the cylinder to a prescribed output at its top. This signal is a
large-scale, low-energy deformation where one domain moves
rigidly with respect to another in a shear or hinge motion,
which is facilitated by the presence of a fluidized, ‘floppy’
channel separating the rigid domains [15].

The large-scale deformations are governed by the rigid-
ity pattern of the configuration, which is determined by the
connectivity of the AA network via a simple majority rule
(Fig. 1A). The input is the rigidity state of the bottom row
in which AAs can be either rigid or fluidized and potentially
‘shearable’. The rigidity state propagates upwards: Depend-
ing on the number of bonds and the state of other AAs in its
immediate neighborhood, an AA will be rigidly connected,
‘shearable’,i.e., loosely connected, or in a pocket of less con-
nected AAs within a rigid neighborhood [14].

As the sequence and hence the connections mutate, the
model protein adapts to a desired input-output relation spec-
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FIG. 1. (Color online)The mechanical transducer model of pro-
teins. (A) The protein is made ofN = 540 (30x18) amino acids
(AAs), which are layered on a cylinder (right). Each AA may con-
nect to the nearest five AAs in the layer below, and the bonds de-
fine 25 = 32 AA species, which are encoded in the gene as 5-letter
binary codons (left). To become functional, we require the connec-
tivity of the AA network to form a ‘floppy’ fluid channel (or shear
band) between prescribed bottom and top rows. Such configuration
can transduce a mechanical signal of shear or hing motion along the
fluid channel. Each AA can be in three states: rigid (gray) or fluid
(i.e., non-rigid), which are divided between shearable (blue) and non-
shearable (red). The input is given as the rigidity state of the bottom
row. The state in the rest of the protein is determined by propaga-
tion rules: to become rigid (gray), an AA should connect to a least
two rigid AAs in the row below. A non-rigid AA becomes shearable
(blue) if at least one of its three nearest neighbors below is shearable.
Other non-rigid AAs reside in non-shearable pockets within rigid do-
mains (red). The output is the rigidity state of the top layer, which
depends on the existence of a shearable inter-domain band across
the protein [14]. (B) Metropolis evolution: An initial configuration
with a given input (black ellipse) and random sequence is required
to evolve into a straight fluid channel (S) or a tilted one (T). (C) In
each generation, a randomly drawn bit (a letter in the 5-bit codon) is
flipped, and this ‘point mutation’ is changing exactly one bond. A
typical run is a sequence of mostly neutral steps, a fraction of delete-
rious ones, and rare beneficial steps.

ified by the extremities of the separating fluid channel
(Fig. 1B). Our simulations start from a randomized sequence
and at each time step we flip a randomly drawn bit, thus
adding or deleting a bond. In a zero-temperature Metropo-
lis fashion, we keep only mutations which do not increase
the distance from the target function,i.e., the number of er-
rors between the state in the top row and the prescribed out-
come. Note that, following the logics of biological evolution,
the ‘fitness’ of the ‘protein’ is only measured at its functional
surface(e.g., where a substrate binds to an enzyme) but not
in its interior. Typically, after103-105 mutations this input-
output problem is solved (Fig. 1C). Although the functional
sequences are extremely sparse among the22550 possible se-
quences, the small bias for getting closer to the target in con-
figuration space directs the search rather quickly.

Dimension. The simplicity of the model allows to repeat
the search numerous times (106). We have explored many
variants of the model with strong robustness of the outcome,
as we will document elsewhere. A further advantage is that
the models can actually explore large parts of the universe as
seen from the typical inter-sequences distance, which is com-
parable with the universe diameter (Fig. 2B).

The distribution of solutions in sequence space reveals a
strongdimensional reductionwhen mapped to the space of
functional configurations (Fig. 2A): In sequence space, the
observed dimension [16, 17] is practically infinite (∼ 150)
[18]. This shows that the bonds are chosen basically at ran-
dom, although we only consider functional sequences. On the
other hand, very few among the2540 configurations are solu-
tions, owing to the physical constraints of contiguous rigid
and shearable domains. As a result, when mapped to the
configuration space, the solutions exhibit a dramatic dimen-
sional reduction to a dimension of about 8-10 [19]. In our
simple model, the empirical dimensional reduction between
‘genotype’ (sequence) and ‘phenotype’ (configuration, func-
tion) [20, 21] is the outcome of physical constraints on the
mechanical transduction problem. In the nearly random back-
ground of sequence space, these constraints are manifested in
long-range correlations among AAs on the boundary of the
shearable region (Fig. 2C).

Spectral analysis(using singular value decomposition) of
the solution set in both sequence and configuration spaces
provides further information on the sequence-to-function map
(Fig. 3). In the configuration spectrum, there are about 8-10
eigenvalues which stand out from the continuous spectrum,
corresponding to the dimension 8 shown in Fig. 2A. Although
the dimension of the sequence space is high (∼ 150), there
are again only 8-9 eigenvalues outside the continuous random
spectrum [23]. These isolated eigenvectors (EVs) distill beau-
tifully the non-random components within the mostly-random
functional sequences. The EVs of both sequence and configu-
ration are localized around the interface between the shearable
and rigid domains. The similarity in number and in spatial lo-
calization of the eigenvectors reveals the tight correspondence
between the configuration and sequence spaces. This dual-
ity is the outcome of the sequence-to-function map defined
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FIG. 2. (Color online)Dimensional reduction of the sequence-to-
function map: (A) 106 independent functional configurations were
found for the input-output problem T. An estimate for the dimension
of the solutions is the correlation length, the slope of the cumulative
fraction of solution pairs as a function of distance. In configuration
space (red), the distance is the number of AAs (out of 540) with a dif-
ferent rigidity state. The estimated dimension from1012/2 distances
is about 9 (black line). In sequence space (blue), the (Hamming)
distance is the number of positions which differ between two of the
2550-long sequences. The sequence space is a 2550-dimensional hy-
percube with32510 sequences. Most distances are close to the typical
distance between two random sequences (2550/2 = 1275), indicating
a high-dimensional solution space. An estimate for the dimension is
∼ 150 (black line). (B) A measure for the expansion in the func-
tional sequence universe is the backward/forward ratio, the fraction
of point mutations that make two sequences closer vs. the ones that
increase the distance [4]. The distancesd (normalized by the uni-
verse diameter = 2550 ) show that most sequences reach the edge
of the universe, where no further expansion is possible. The black
curve, d/(1 − d), is from purely random mutations. (C) The se-
quence correlation matrix across the106 examples shows long-range
correlations among the bits (codons) at the rigid/fluid boundary, and
short-range correlations in the rigid domains (graphs for problem S
in [14]).

FIG. 3. (Color online)Correspondence of modes in sequence and
configuration spaces. We produced the spectra by singular value
decomposition of the106 solutions of problem S (T in [14]) . (A)
Top: the spectrum in configuration space exhibits about 8-10 eigen-
values outside the continuum (large1st eigenvalue not shown). Bot-
tom: the corresponding eigenvectors describe the basic modes of the
fluid channel, such as side-to-side shift (2nd) or expansion (3rd). (B)
Top: The spectrum of the solutions in sequence space is similar to
that of random sequences (black line), except for about 8-9 high
eigenvalues that are outside the continuous spectrum. Bottom: the
first 8 eigenvectors exhibit patterns of correlation ‘ripples’ around
the fluid channel region. Seeing these ripples through the random
evolutionary noise required at least105 independent solutions [22].

by our simple model: The geometric constraints of forming a
shearable band within a rigid shell, required for inducing long-
range modes, are mirrored in long-range correlations among
the codons (bits) in sequence space. The corresponding se-
quence eigenvectors may be viewed as weak ripples of infor-
mation over a sea of random sequences, as only about 8 out of
2550 modes are non-random (0.3%). These information rip-
ples also reflect the self-reference of proteins and DNA via the
feedback loops of the cell circuitry [24].

Stability under mutations. First, we determine how many
mutations lead to a destruction of the solution (Fig. 4A).
About 10% of all solutions are destroyed by just one random
mutation. The exponentially decaying probability of surviv-
ing m mutations signals that these mutations act quite inde-
pendently. Fig. 4B which shows the location of these destruc-
tive mutations around the shearable channel. We have also
studied the loci where twointeractingmutations will destroy
a solution (i.e.none of the two is by itself destructive). In most
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FIG. 4. (Color online)Stability to mutations. Mutations at sensitive
positions of the sequence move the output away from the prescribed
solution. (A) Fraction of runs (among106) destroyed by them-th
mutation. A single mutation destroyed about 9% of solutions. The
proportion decays exponentially likeexp(−0.09m). (B) The density
map of such mutations for problem S and T (Fig. 1B) shows accu-
mulation around the fluid channel and at the top layer (dark regions).
(C) The double mutations are evenly distributed in the rigid regions.

FIG. 5. (Color online) (A)Mechanical shear modes.Displacement
and strain fields for the tilted solution T for two low eigenvalues.
The vectors show the direction of the displacement and the color
code denotes the stress (i.e., the local change in the vector field as a
function of position, maximal stress is red). (B)Thermal Stability.
Extreme configurations, with low (50%, left) and high (95%, right)
bond density, solve problem T.

cases, the two mutations are close to each other, acting on the
same site. The channel is less vulnerable to such mutations,
but the twin mutations are evenly distributed over the whole
rigid network (Fig. 4C).

Mechanical shear modes. The evolved rigidity pattern
supports low-energy modes with strain localized in the floppy,
fluid channel. Since the rigidity is calculated by a simpli-
fied ad-hoc model, we tested whether the evolved AA net-

work indeed induces such modes (Fig. 5A). A solution of the
DNA/protein problem is given by a set of bonds, which de-
fines a graph on the 540 AA nodes. This graph is embedded
in 2D with AAs connected by harmonic springs (all with the
same spring constant). The shear motion of such a network
is characterized by the modes of its elastic tensorM. This
tensor is the2Nx2N curvature matrix in the harmonic expan-
sion of the elastic energyE ' 1

2δrTM δr, whereδr is the
2N -vector of the 2D displacements of theN AAs. M has
the structure of the network Laplacian multiplied by the2x2
tensors of directional derivatives (for details, [14] and [25, pp.
618–9]).

The first three zero EVs ofM correspond to 2D translation
and rotation symmetries of the whole protein. Another type of
trivial zero EVs are associated with any patch of AAs which
is totally disconnected from the rest of the network. Since
the density of bonds is about1

2 and otherwise quite random,
and there are2 × 5 bonds at each interior AA, we expect a
fraction of about2−10 ∼ 10−3 of isolated AAs, and even
fewer patches of greater size. Further zero modes come from
AAs which are connected only by one bond, and can therefore
oscillate freely sideways. The probability of finding such a
node is about

(
10
1

)
/210 ∼ 10−2. Thus, Fig. 5A shows the EVs

only for the first non-trivial eigenvalues.

Conclusion. The rigidity/shearability pattern determines
the dynamical modes of the protein (Fig. 5A). The evolu-
tion of a solution with a shearable channel surrounded by
rigid domains is manifested by spatially-extended low energy
modes. These modes exhibit shear and hinge motions where
the strain is localized in the shearable channel and where the
surrounding domains translate or rotate as rigid bodies. The
least random, strongly correlated sites are in the rigid shell
that envelops the shearable channel. Our model predicts that
these sites are also the most vulnerable to mutations (Fig. 4B),
which distort the low-frequency modes and thus hamper the
biological function. The large solution set allows the protein
to simultaneously adapt to other tasks. For example, evolv-
ing a specific binding site, or tuning the stability to adapt
to extreme temperatures by varying the bond density [26]
(Fig. 5B). These effects can be examined by combining muta-
tion surveys, biochemical assays of the function, and physical
measurements of the low-frequency spectrum, especially in
allosteric proteins. The model is easily extended to versions
with actual springs and connections depending on pairwise
interactions of neighboring sites. The concrete genotype-to-
phenotype map in our simple model demonstrates that most
of the gene records random evolution, while only a small non-
random fraction is constrained by the biophysical function.
This drastic dimensional reduction is the origin of the flexibil-
ity and evolvability in the functional solution set.
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1. THE MODEL

We model the protein as an aggregate of amino acids (AAs) with short range interactions. In our

coarse grained model, beads represent the AAs and bonds their interactions with neighboring AAs

(Fig. 1A). We consider a simplified cylindrical geometry, where the AAs are layered on the surface

of a cylinder at randomized positions, to represent the non-crystalline packing of this amorphous

matter. Throughout this study, we examine a geometry with heighth(= 18), i.e., the number

of layers in thez direction, and widthw(= 30), i.e., the circumference of the cylinder. When

the cylinder is shown as a flat 2D surface (such as in Fig. 1B), there are still periodic boundary

conditions in the horizontalw direction. The row and column coordinates of an AA are(r, c), with

r for the row(1, . . . , h) andc for the column(1, . . . ,w). The cylindrical periodicity is accounted

for by taking the horizontal coordinatec modulow = 30, c→ mod w(c − 1) + 1.

Each AA in rowr can connect to any of its five nearest neighbors in the next row below,r − 1.

This defines25 = 32 species of amino acids that differ by their ‘chemistry’,i.e., by the pattern of

their bonds. Therefore, in the gene, each AA at(r, c) is encoded as a5-letter binarycodon,`rck,

where thek-th letter denotes the existence (= 1) or absence (= 0) of the k-th bond. The gene is

the sequence ofNAA = w ⋅ h = 540 codons which represent the AAs of the protein. It is a genetic

sequenceof 2700 = w ⋅ h ⋅ 5 digits 0 or 1. Each of these numbers determines whether or not a

bondconnects two positions of the grid. Since the bonds from the bottom row do not affect the
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configuration of the protein and the resulting dynamical modes, the relevant length of the gene is

somewhat smaller,NS = 2550 = w ⋅ (h − 1) ⋅ 5.

Each AA position will have two binary properties, which define its state:

• Therigidity σ: This property can berigid (σ = 1) or fluid (σ = 0).

• The shearabilitys: This property can beshearable(s = 1) or non-shearable(s = 0). As

shown below, a non-shearable AA can be either rigid or fluid within a rigid domain of

the protein. Non-shearable domains tend to move as a rigid body (i.e., via translation or

rotation), whereas shearable regions are easy to deform.

Only 3 of the 4 possible combinations are allowed :

1. Non-shearable and solid AA (yellow): (σ= 1; s = 0).

2. Non-shearable and fluid AA (red): (σ = 0; s = 0).

3. Shearable and fluid AA (blue): (σ = 0; s = 1).

4. Shearable solid is forbidden.

FIG. S-1. Illustration of the percolation rules for shearability and fluid/solid states. Note that site(r, c)
was turned solid because it is attached to 2 solid sites below it. Also note that the red site above it is fluid,
because it is attached to less than 2 solid sites below it. But it is not shearable because it does not connect
to a shearable site below it. On the other hand, the top right site is shearable and fluid, since it is attached
to only one solid site (namely(r, c)) and no others on the invisible part of the structure (as seen by its blue
connections), and it is also connected to the blue site at(r, c + 2).

Given a fixed sequence, and aninput state in the bottom row of the cylinder,{σ1,c, s1,c} the

state of the cylinder is completely determined as follows: The three states percolate through the

network, from rowr to row r + 1 (see Fig. S-1). This propagation is directed by the presence of

bonds, with a maximum of5 bonds ending in each AA (of rowsr = 2 to h; the state of the first
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row is given as input). These bonds can bepresent(=1) orabsent(=0). according to the codoǹrck,

k = −2, . . . , 2 when they point to the AA with coordinate(r, c) coming from the AA(r − 1, c+ k).

In a first sweep through the rows, we deal with therigidity propertyσ. In row r = 1 each of the

w AAs is in a rigidity state rigid (σ = 1) or fluid (σ = 0). In all other rows,r = 2 to h, the 5 bonds

determine the value of the rigidity of(r, c) through a majority rule:

σr,c = θ (
2

∑
k=−2

`rckσr−1,c+k − σ0) , (1)

whereθ is the step function (θ(x ≥ 0) = 1, θ(x < 0) = 0)). The parameterσ0 = 2 is the minimum

number of rigid AAs from ther − 1 row that are required to rigidly support AA: In 2D each AA

has two coordinates which are constrained if it is connected to two or more static AAs. In this

way, the rigidity property of being pinned in place propagates through the lattice, as a function of

the initial row and the choice of the bonds which are present as encoded in the gene.

We next address theshearabilityproperty. It is determined by the rigidity of AAs as follows:

We assume that all fluid AAs in rowr = 1 are also shearable (blue: (σ = 0; s = 1)). A fluid node

(r, c) in row r will become shearable exactly if at least one of its neighbors(r−1, c) or (r−1, c±1)

is shearable:

sr,c = (1 − σr,c) ⋅ θ (
1

∑
k=−1

sr−1,c+k − s0) , (2)

wheres0 = 1. The first term on the lhs ensures that a solid AA can never become shearable. This

completes the definition of the map from the sequence to the state.

We now define atarget. It is a chain ofw values, fluid and shearable (σ = 0; s = 1) or solid

(σ = 1; s = 0), in the top row, which the protein should yield as anoutput: {σ∗c , s∗c}c=1,...,w. Given (i)

a gene sequence, which determines the connectivity`rck and (ii) the input state,{σ1,c, s1,c}c=1,...,w,

the algorithm described above uniquely defines the output state in the top row,{σh,c, sh,c}c=1,...,w.

At each step of evolution, the output state is compared to the fixed, given target, by measuring the

Hamming distance, the number of positions where the output differs from the target:

F =
w

∑
c=1
[1 − (∣sh,c − s∗c ∣ − 1) ⋅ (∣σh,c − σ∗c ∣ − 1)]. (3)

In the biological convention−F is thefitnessthat should increase towards a maximum value of

−F = 0, when the input-output problem issolved.

Solutions are found bymutations. At each iteration, a randomly drawn digit in the gene is
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flipped, that is the values of 0 and 1 are exchanged. This corresponds to erasing or creating a

randomly chosen link of a randomly chosen AA. After each flip, a sweep is performed, and the

new output at the top row is again compared to the target. A mutation is keptonly if the Hamming

distance is not increased as compared to the value before the mutation(equivalently the fitness is

not allowed to decrease). This procedure is repeated until a solution(F = 0) is found. This will

happen with probability 1, perhaps after very many flips, if the problem has a solution at all.

2. SIMULATIONS

All simulations are done on the30 × 18 = 540 playground, as described above. We have done

simulations for many variants of the model, and many targets, but we present only two specific

problems, for which the most extensive study was done: In the first, the fluid regions of the input

and the target are opposite and of length 6 at the bottom and length 5 at the top. In the second

run, top and bottom are the same, but the top is shifted sideways by 5 units. We will call these two

examplesstraightandtilted, denoted as S and T.

For each of these, we study 200 independentbranches, starting from a random sequence with

about90% of the bonds present at the start. Given any fixed sequence, we sweep according to the

rules of Eq.(1)-(2) through the net, and measure the Hamming distanceF (Eq.(3)) between the last

row and the desired target. When this Hamming distance is 0, we consider the problem as solved.

If not, we flip randomly a bond (exchanging 0 with 1) and recalculate the Hamming distance. We

view this flip as amutationof the sequence, equivalent to mutating one nucleic base in a gene. If

the Hamming distance decreases or remains unchanged, we keep the flip, otherwise we backtrack

and flip another randomly chosen bond. This is repeated until a solution is found [1].

Once a solution is found, we destroy it by further mutations and then look for a new solution, as

before, starting from the destroyed state. This we call ageneration. For each of the 200 branches,

we followed 5000 generations, leading to a total of106 solutions. The time to recover from a

destroyed state is about 1500 flips per error in that state, which is similar to time it takes to find a

solution starting from a random gene. A destruction takes around 11.2 mutations on average.

We also did another106 simulations starting each time from another random configuration. The

statistics in both cases are very similar, but the destruction-reconstruction simulations obviously

show some correlations between a generation and the next. This effect disappears after about 4

generations.
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3. SHEAR

Consider now either of the two examples, straight or tilted (S and T). A solution of such an

example is given by a set of bonds, and this set of bonds defines a graph on theNAA = h ⋅ w =

540 AAs. This graph is embedded in 2D wherex⃗r,c are the positions of the AAs, which are

connected by straight bonds. To discuss the shear modes of such a network we consider the elastic

tensor, which is the tensor product of the network Laplacian with the 2 by 2 tensor of directional

derivatives, as definede.g., in Chung and Sternberg [2, pp. 618–619].

To be more specific, we describe what this means component-wise. The playgroundΩ ⊂ Z2

has sizeh in thez-direction and sizew in thex direction, with periodic boundary condition in the

x direction. All bonds go from some(r, c) to (r + 1, c), (r + 1, c ± 1), (r + 1, c ± 2), again with

periodic boundary conditions in thec-direction. Each such bond defines a direction vector(dz, dx)

in R2 which we normalize tod2
x + d2

z = 1. Note that this vector depends on both the origin and the

target of the bond.

If we imagine harmonic springs between the nodes connected by bonds (all with the same

spring constant), then we can define the (symmetric) tensor matrix of deformation energies in the

x andy direction by

A′km =M(k,m) ,with k,m ∈ Ω ,

and where each element ofA′km is—whenk andm are connected by a bond—the 2 by 2 matrix

(indexed byi, j ∈ {1, 2})

M(k,m) = (dx(k,m), dz(k,m))T ⊗ (dx(k,m), dz(k,m)) =
⎛
⎜
⎝

d2
x dxdz

dxdz d2
z

⎞
⎟
⎠

.

If k andm are not connected, thenM(k,m) is the 0 matrix. The elements ofM(k,m) are denoted

M(k,m)ij.

Finally we complete the2N × 2N matrixA′ to a ‘Laplacian’A by adding diagonal elements to

it, so that the row (and column) sums are 0. In components, this means that we require, for each

k ∈ Ω and eachi, j ∈ {1, 2}, the sums

∑
`

(Akm)ij

to vanish. Other properties ofA are described in [2].

Since we take periodic boundary conditions in thex direction, there will always be a (simple)
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0 eigenvalue ofA in this direction. Other 0 eigenvalues correspond to translation in thez direction

or rotation in thex−z plane. Another type of (double) 0 eigenvalues are associated with any patch

of nodes which is totally disconnected from the rest of the lattice. Since the density% of bonds is

about1/2 and otherwise quite random, and there are twice 5 bonds at each interior node we expect

(assuming random distribution of bonds) there to be aboutN ⋅ 2−10 ∼ 0.001N isolated nodes,i.e.,

isolated singletons, and even fewer patches of greater size.

Further zero modes come from nodes which can oscillate sideways without first order effects.

This will happen if a node is only connected by one bond. Since% ∼ 1/2, the probability of finding

such a node is about

N
(10

1
)

210
∼ 0.01N .

Thus, we show in Figure 5A (in the main text) the eigenfunctions only for the first eigenvalues after

the trivial ones. Due to the tensorial nature of the problem, the eigenvectors have two components,

which we show as shear-flow.

4. DIMENSION

Dimension of a space measures the number of directions in which one can move from a point.

In the case of our model, since from any sequence in sequence space one can move alongNS =

2550 axes by flipping just one bit, we see that the sequence space has dimension 2550, and the

number of different elements in this space is a hypercube with22550 ∼ 10768 elements.

The set of solutions which we find, has however much smaller dimension, as we show in Fig. 2A

for the straight (S) example and in Fig. S-2 for the tilted (T) one. In the case of experimental

data, as ours, the dimension is most conveniently determined by the box-counting (Grassberger-

Procaccia [3]) algorithm. This is obtained by just counting the numberN(%) of pairs at distances

≤ %, and then finding the slope in a log-log plot. This is indicated by the black lines in Figure 2A

and Fig. S-2 we see that, clearly, the dimension in the space of configurations is about 8-9, while,

in the space of sequences, the dimension is basically ‘infinite’, namely just limited by the maximal

slope one can obtain [4].
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FIG. S-2. The dimensions measured for the tilted case (T).

FIG. S-3. A projection of Fig. 2C perpendicular to thej = j′ axis.

5. CORRELATION MATRIX

In Fig. 2C, we study the correlations among the106 solutions in sequence space. Given the

matrix Wij, of all sequences, withi = 1, . . . ,N = 106, j = 1, . . . , 2550 (of binary digits), we

compute the means⟨W⋅ j⟩ = ∑
N
i=1 Wij/N and the standard deviations stdj = (∑i ∣Wij − ⟨W⋅ j⟩∣2)

1/2.
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Then, in the usual way, we formMij =Wij − ⟨W⋅ j⟩ and

Cj,j′ =
(M∗M)j,j′

stdjstdj′
.

Figure 2C then showslog(∣Cj,j′ ∣), with the autocorrelationCjj omitted.

Note that both, the means and the variances depend very weakly onj. Fig. 2C reveals and

reinforces several observations also made in other calculations of this paper. First, looking onto the

axisj = j′ in the figure one sees a periodicity of the patterns corresponding to the 17 gaps between

the 18 rows of the configuration space. This reflects the necessity to maintain aconnectedliquid

channel. Also, as seen in Fig. 2C as well as in Fig. S-3, the correlations grow somewhat towards

the ends, especially toward the upper (j = 2550) end. This is because of the mechanical constraint

which forces the channel to become more precise towards the ends, in analogy with Fig. 4B.

The periodic patterns all over the square reflect not only the natural periodicity of 150 (= 5 ⋅w)

elements in the sequence, but also show that the boundaries of the channel form a special shell

(with twopeaks per row).

6. SPECTRUM

We compute spectra for both the sequences and the configurations, for the106 solutions. Let us

detail this for the case of sequences: We have106 binary vectors withNS = 2550 components each,

and we want to know the ‘typical’ spectrum of such vectors. This is conveniently found with the

Singular Value Decomposition (SVD), in which one forms a matrixM of sizem×n = 106 ×2550.

This matrix can be written asU ⋅D ⋅ V ∗, whereU is m ×m, V is n × n andD is anm × n matrix

which is diagonal in the sense that only the elementsDii with i = 1, . . . , n are nonzero. (We assume

here that we are in the casem > n.) TheDii are in general> 0 and in this case the singular value

decomposition is unique. We call the set of theDii the spectrum of the sequences, and the vectors

in V the eigenvectors of the SVD. It is the first few of those which are shown in Fig. 3B.

Mutatis mutandis, we perform the same SVD for the case of the configurations, using thes-

values (that is, of the shearability) of vectors of the configurations. (This is reasonable, because,

in general, there are very few non-shearable and fluid AAs.)

Apart from the numerical findings, which are shown in Figure 3 for the straight (S) example

and in Fig. S-4 for the tilted (T) one, some comments are in order.
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FIG. S-4. The spectra and eigenfunctions for the tilted example (T). (A) The configurations spectrum and
eigenfunctions. (B) The sequence spectrum and eigenfunctions.

Configuration space(The eight figures on the bottom left): The first mode is proportional

to the average configuration. The next modes reflect the basic deviations of the solution around

this average. For example, the second modes is left-to-right shift, the third mode is expansion-

contraction etc. Since, the shearable/non-shearable interface can move at most one AA sideways

between consecutive rows, the modes are constrained to diamond-shaped areas in the center of the

protein. This is the joint effect of the ‘influence zones’ of the input and output rows.
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Sequence space(The eight figures on the bottom right): The first eigenvector is the average

bond occupancy in the106 solutions. The higher eigenvalues reflect the structure in the many-body

correlations among the bonds. The typical pattern is that of ‘diffraction’ or ‘oscillations’ around

the fluid channel. This pattern mirrors the biophysical constraint of constructing a rigid shell

around the shearable region. Higher modes exhibit more stripes, until they become noisy, after

about the tenth eigenvalue. The bond-spectrum, top right in Fig. S-4 has some outliers, which

correspond to the localized modes shown in the 8 panels below. Apart from that, the majority of

the eigenvalues seem to obey the Marčenko-Pastur formula, see [5]. If the matrix ism×n, m > n,

then the support of the spectrum is1
2(
√

m ±
√

n). In our case, since we have a106 × 2550 matrix,

one expects (if they were really random) to find the spectrum at1
2(
√

106 ±
√

2550), which is close

to the experiment, and confirms that most of the bonds are just randomly present or absent. We

attribute the slight enlargement of the spectrum to memory effects between generation in the same

branch. This corresponds to the well-known phylogenetic correlations among descendants in the

same tree.

7. SURVIVAL UNDER MUTATIONS

Here, we ask how robust the solutions are as further mutations take place. First, we determine

how many mutations lead to a destruction of the solution. The statistics of this is shown in Fig.

4 of the main text. We note that about10% of all solutions are destroyed by just one mutation,

while there is an exponential decay of survival ofm mutations. This signals that the mutations act

independently.

One can also askwherethe critical mutations take place. This is illustrated in Fig. 5B, and

was discussed in the main text. We have also studied the places where exactlytwo mutations will

kill a solution (and none of the 2 is a single site‘killer’) and in these cases, one finds that the two

mutations are generally close to each other, acting on the same site. Again, the channel is less

vulnerable to mutations but now the mutations are evenly distributed over the rest of the network.

8. EXPANSION OF THE PROTEIN UNIVERSE

Let us explain in further detail how Figure 2B was obtained. Here, we test our model against

the ideas of [6]. Our results will give some insight about the nature of the graph of solutions.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2016. ; https://doi.org/10.1101/069039doi: bioRxiv preprint 

https://doi.org/10.1101/069039


12

First, we describe the question as it is found in [6]. Take any two solutions and consider their

gene sequencess1 and s2. They will have a Hamming distanced(s1, s2), which we normalize

by dividing by 2550 (the number of elements insi, i = 1, 2), which we call the protein universe

diameter. The question is how much the solution following one generation afters2 differs froms1.

If we call that solutions3, then the observed quantity is defined as follows: Letwi = 1 if s1,i = 1

and−1 if s1,i = 0, for i = 1, . . . 2550. Then for eachi let xi = wi ⋅ (s3,i − s2,i). Note thatxi > 0 if the

change betweens3,i and s3,i is towardss1 and< 0 if it is away froms1. Finally, Naway = ∑i∶wi<0 1

andNtowards= ∑i∶wi>0 1, and we plot in Fig. S-5Ntowards/Naway as a function ofD.

In Fig. S-5 we show the results for data set S, (the set T is shown in Fig. 2B). The black curve is

nothing butD/(1−D), whereD is the normalized Hamming distance,i.e., the proportion of sites

which are different betweens1 ands2. The fit to this curve tells us an important aspect about the set

of possible solutions. Note that the set of all possibles forms a hypercube of dimension2550 with

22550 corners. The set of solutions is a very small subset of this hypercube, where all corners which

are not solutions have been taken away, including the bonds leading to these corners. This leads

to a very complicated sub-graph of the hypercube. While we do not have a good mathematical

description of how it looks, the good fit shows that the comparisons betweens1, s2, ands3 are

as if one performed a random walk on the full cube. (Note that such a result must be intimately

connected to the high dimension of the problem, since for low dimensional hypercubes it does not

hold.) Almost all solutions are at the edge of the universe, where the typical Hamming distances

among the sequences are close to the typical distance between random sequences,

9. FLEXIBILITY OF SOLUTIONS: THERMAL STABILITY

The histogram of the density of links for the106 solutions is shown in Fig. S-6. These distribu-

tions are obtained for simulations in which links are flipped randomly in a symmetric fashion. One

can easily push these densities somewhat up or down, by favoring/restricting the flips of links to-

wards 1. However, much more extreme solutions can be found by deterministic procedures which

turn as many links to 1 resp. 0. In these cases, we have obtained densities of as high as 0.96 and as

low as 0.14, that is, 2452/2550 links, resp. 372/2550 links. Two such extreme cases are illustrated

in Fig. 5C.
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FIG. S-5. A sampling of the106 solutions and the relation of changing a gene toward/away from an original
one which is at a Hamming distanced. The black curve is a parameter independent fit by the function
D/(1 −D) with D = d/dmax.
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FIG. S-6. The distributions of the bond densities for the106 solutions. Note that these densities are just like
random Gaussian variables, except for the outliers.
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