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Abstract

Human behavior can change the spread of infectious disease. There is limited understanding of 1

how the time in the future over which individuals make a behavioral decision, their planning 2

horizon, affects epidemic dynamics. We developed an agent-based model (along with an ODE 3

analog) to explore the decision-making of self-interested individuals on adopting prophylactic 4

behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence 5

with individuals’ payoffs and planning horizon. Our results show that for short and long 6

planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, 7

individuals adopt prophylactic behavior when considering intermediate planning horizons. Such 8

adoption, however, is not always monotonically associated with the prevalence of the disease, 9

depending on the perceived protection efficacy and the disease parameters. Adoption of 10

prophylactic behavior reduces the peak size while prolonging the epidemic and potentially 11

generates secondary waves of infection. These effects can be made stronger by increasing the 12

behavioral decision frequency or distorting an individual’s perceived risk of infection. 13
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Introduction 14

Human behavior plays a significant role in the dynamics of infectious disease [7, 11]. However, 15

the inclusion of behavior in epidemiological modeling introduces numerous complications and 16

involves fields of research outside the biological sciences, including psychology, philosophy, 17

sociology, and economics. Areas of research that incorporates human behavior into 18

epidemiological models are loosely referred to as social epidemiology, behavioral epidemiology, 19

or economic epidemiology [14, 17]. We use the term ‘behavioral epidemiology’ to broadly refer 20

to all epidemiological approaches that incorporate human behavior. While the incorporation of 21

behavior faces many challenges [9], one of the goals of behavioral epidemiology is to 22

understand how social and behavioral factors affect the dynamics of infectious disease 23

epidemics. This goal is usually accomplished by coupling models of social behavior and 24

decision making with biological models of contagion [16, 11]. 25

Many social and behavioral aspects can be incorporated into a model of infectious disease. 26

One example is the effect of either awareness or fear spreading through a population [10, 5]. In 27

these types of models, the spread of beliefs or information is treated as a contagion much like an 28

infectious disease, though the network for the spread of information may differ from the 29

biological network [2]. Other models focus on how individuals adapt their behavior by 30

weighting the risk of infection with the cost of social distancing [6, 19] or other disincentives [1]. 31

Still others model public health interventions (e.g. isolation, vaccination, surveillance, etc.) and 32

individual responses to them [3]. Many of these models sit at the population level, incorporating 33

the effects of social factors and abstracting away details about the individuals themselves. 34

The SPIR model (Susceptible, Prophylactic, Infectious, Recovered) is an epidemiological 35

agent-based model that couples individual behavioral decisions with an extension of the SIR 36

model [13]. In this model agents that are vulnerable to infection may be in one of two states 37

which are determined by their behavior. Agents in the susceptible state engage in the status quo 38

behavior while agents in the prophylactic state employ preventative behaviors that reduce their 39

chance of infection. We use a rational choice model to represent individual behavioral decisions, 40

where individuals select the largest utility between engaging in prophylactic behavior (e.g. 41

hand-washing or wearing a face mask) or non-prophylactic behavior (akin to the status quo). We 42

also allow for the fact that individuals may not perceive the risk of getting infected accurately, 43

but rather receive some distorted information, for example, through the media. 44
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We are interested in understanding how an individual’s planning horizon—the time in the 45

future over which individuals calculate their utilities to make a behavioral decision—affects 46

behavioral change and how that in turn influences the dynamics of an epidemic. 47

We introduce the model through the lens of individuals rather than at the population level, 48

because we find that the individualistic perspective gives a more natural interpretation of the 49

behavioral decision analysis we discuss. Under the assumption that the population is large, well 50

mixed, and homogeneous, we can also express the model as a system of ordinary differential 51

equations (ODEs). We work with both versions of the model, using the ODE version for 52

calculations, and the individual-based or agent-based model (ABM) version for thinking about 53

the psychological features of decision making that may affect the spread of infectious diseases. 54

One of our key findings is that individuals choose to engage in prophylactic behavior only 55

when the planning horizon is “just right.” If the planning horizon is set too far into the future, it 56

is in an individual’s best interest to become infected (i.e. get it over with); if the horizon is too 57

short, individuals dismiss the future risk of infection (i.e. live for the moment). What counts as 58

“just right” depends on the disease in question, and we explore two hypothetical contrasting 59

diseases, one with long recovery time and acute severity, and another with short recovery time 60

and mild severity. 61

Methods 62

The SPIR Model 63

The SPIR model couples two sub-models: one reproducing the dynamics of the infectious 64

disease, the Disease Dynamics Model, and another that determines how agents make the 65

decision to engage in prophylactic or non-prophylactic behavior, the Behavioral Decision Model. 66

Disease Dynamics Model 67

The disease dynamics model reproduces the dynamics of the infectious disease in a constant 68

population of N agents. Each agent can be in one of four states: Susceptible (S), Prophylactic 69

(P), Infectious (I), or Recovered (R). The difference between agents in states S and P is that the 70

former engage in non-prophylactic behavior and do not implement any measure to prevent 71

infection, while the latter adopt prophylactic behavior which decreases their probability of being 72
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infected (e.g. wearing a mask, washing hands, etc.). Agents in the infectious state I are infected 73

and infective, while those in the recovered state R are immune to and do not transmit disease. 74

The transition between states is captured with the state-transition diagram shown in Fig. 1. For 75

reference, all the parameters and variables in the SPIR model are listed and defined in Table 1. 76

Figure 1. State-transition diagram of individuals in the epidemiological model.
S, P, I, and R represent the four epidemiological states an agent can be in: Susceptible, Prophylactic,
Infectious, and Recovered, respectively. The parameters over the transitions connecting the states represent
the probability per time step that agents in one state move to an adjacent state: i is the proportion of
infectious agents in the population; bS and bP are the respective probabilities that an agent in state S or P,
encountering an infectious agent I, becomes infected; g is the recovery probability; d is the behavioral
decision making probability; and W(i) is an indicator function returning value 1 when the utility of being
prophylactic is greater than the utility of being susceptible and 0 otherwise (see details in Behavioral
Decision Model).

This sub-model assumes that in each time step, three types of events occur: (i) interactions 77

among agents and any infections that may result, (ii) behavioral decisions to engage in 78

prophylactic or non-prophylactic behavior, and (iii) recoveries. Agents interact by pairing 79

themselves with another randomly selected agent in the population. Given four possible states, 80

there are ten possible pairwise interactions. However, only two types of interactions can change 81

the state of an agent: 〈S, I〉 and 〈P, I〉. For the interaction 〈S, I〉, the susceptible agent S is 82

infected by the infectious agent I with probability bS. For the interaction 〈P, I〉, the prophylactic 83

agent P is infected by the infectious agent I with probability bP, where bP ≤ bS. The probability 84

bP is linearly related to probability bS by the coefficient ρ (i.e. bP = ρbS). Thus 1− ρ is the 85

protection acquired by adopting prophylactic behavior. Assuming well-mixed interactions, the 86

proportion of infectious agents i represents the probability that an agent is paired with an 87

infectious agent and the per time step probability of an agent in either state S or P being infected 88

is either ibS or ibP, respectively. In addition to interacting, susceptible and prophylactic agents 89
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Table 1. Parameters and state variables of the SPIR model.

Symbol Definition

N Total number of agents in the population.
S An agent in the susceptible state engaging in non-prophylactic behavior.
P An agent in the susceptible state engaging in prophylactic behavior.
I An agent in the infectious state.
R An agent in the recovered state.
s Proportion of susceptible agents in the population.
p Proportion of prophylactic agents in the population.
i Proportion of infectious agents in the population.
r Proportion of recovered agents in the population.
bS Probability that an agent in the susceptible state becomes infected upon

interacting with an infectious agent.
bP Probability that an agent in the prophylactic state becomes infected upon

interacting with an infectious agent.
ρ Reduction in the transmission probability or rate when adopting prophy-

lactic behavior: bP = ρbS (0 ≤ ρ ≤ 1). Note that we refer to 1 − ρ as
the protection.

g Probability an infectious agent recovers.
d Probability an agent in the susceptible or prophylactic state decides

which behavior to engage in.
κ Distortion of the perceived proportion of infectious agents in the popula-

tion (i.e. distortion factor).
uY Payoff per time step for being in state Y, where Y ∈ {S,P, I,R}.
E
[
TY|DX

]
Number of time steps agents expect to spend in state Y assuming they
decide to adopt state X (i.e. DX), where Y ∈ {S,P, I,R} and X ∈ {S,P}.

UX Utility for adopting state X, where X ∈ {S,P}.
H Time into the future at which agents calculate their current utilities (i.e.

planning horizon).
W (i) Indicator function returning value 1 when the utility of adopting prophy-

lactic behavior is greater than the utility of adopting non-prophylactic
behavior and 0 otherwise.

have probability d per time step of making a behavioral decision to engage in prophylactic or 90

non-prophylactic behavior. The agents’ behavioral decision is reflected in the indicator function 91

W(i) (see details in Behavior Decision Model), and they engage in the prophylactic behavior 92

when W(i) = 1 (i.e. adopt state P) and the non-prophylactic behavior when W(i) = 0 (i.e. 93

adopt state S). Infectious agents have probability g per time step of recovering. We implemented 94

an agent-based version of the disease dynamics model using the Gillespie algorithm [12] (see 95

Supplemental Information). 96

If we assume that the population is well-mixed, the dynamics can be generated using a 97
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system of ODEs: 98

ds

dt
= − βsi− δsW(i) + δp (1−W(i)) (1a)

dp

dt
= − ρβpi+ δsW(i)− δp (1−W(i)) (1b)

di

dt
= βsi+ ρβpi− γi (1c)

dr

dt
= γi (1d)

where s, p, i, and r are the proportion of susceptible, prophylactic, infectious, and recovered 99

agents in the population. The parameters β, γ, and δ are transmission, recovery, and decision 100

rates, whose equivalent probabilities are, respectively, transmission (bS), recovery (g), and 101

decision (d) (Table 2). The parameter ρ refers to the reduction in transmission rate when 102

adopting prophylactic behavior. We convert between rates and probabilities using equations 103

x = − ln (1− y) and y = 1− e−x, where x and y are rate and probability values 104

respectively [8]. One unit of continuous time in ODE corresponds to N time steps in ABM. 105

Table 2. Disease parameters in rates and probabilities.

Rate Probability Description Probability to
parameter parameter rate conversion

β bS Transmission β = − ln (1− bS)

γ g Recovery γ = − ln (1− g)
δ d Decision δ = − ln (1− d)

Behavioral Decision Model 106

Recall that agents have per step probability d of making a behavioral decision; here we specify 107

how those decisions are made. The behavioral decision model, in principle, can be any model 108

that enables agents to decide whether or not to engage in prophylactic behavior. Our decision 109

model is a rational choice model that assumes agents are self-interested and rational; thus they 110

adopt the behavior with the largest utility over the planning horizon, H. Note that the planning 111

horizon is a construct used to calculate utilities and it does not affect the time until an agent has 112

an opportunity to make another decision within the disease dynamics model. 113

The planning horizon is the time in the future over which agents calculate their utilities. In 114

order for the agent to make these calculations, we make the following assumptions about agents 115
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tasked with making a decision. (i) Agents have identical and complete knowledge of the relevant 116

disease parameters, bS, bP, and g. (ii) Agents’ prophylactic behavior has the same protection 117

efficacy, ρ. (iii) Agents believe the current prevalence of the disease is i (in the case of no 118

distortion—see below). (iv) Agents assume that i will remain at its current value during the next 119

H time steps. (v) Agents compute expected waiting times based on a censored geometric 120

distribution. Specifically, they believe that they will spend the amount of time TX in state 121

X ∈ {S,P}, where the time TX has a geometric distribution with parameter ibX, censored at the 122

planning horizon H. When their time in X is over, agents know they will move to state I where 123

the amount of time they expect to spend in state I has a geometric distribution with parameter g 124

censored at the time remaining, H− TX. When their time in state I is over, they know they will 125

move to state R where they will remain until time H. (vi) Agents know the per time step payoff 126

for each state uY, where Y ∈ {S,P, I,R}, and all agents are assumed to have the same set of 127

payoff values. (vii) Agents calculate the utility from now until time H under the two possible 128

behavioral decisions (DS or DP). 129

Perfect knowledge of i. To calculate the utilities when they have perfect knowledge of i, agents 130

use the length of time they expect to spend in each state. We begin by deriving the expected time 131

in state X, where X ∈ {S,P}, and then use this result to derive the expected time in I and, finally, 132

R. The expected time in state I is conditioned on TX because agents are rational and they 133

average the time they expect to spend on state I over all possible hypothetical combinations 134

involving X and I up to H. To simplify notation, it is helpful to first define the force of infection 135

for state X, fX: fS = ibS and fP = iρbS. For the agent considering hypothetical futures, the 136

planning horizon serves to censor all waiting times greater than H, giving them value H. This 137

leads to the following probability mass function for the time spent in state X should they decide 138

on behavior X (denoted TX|DX ), 139

Pr
(
TX|DX = t

)
=


fX (1− fX)

t
, 0 ≤ t < H

(1− fX)
H
, t = H

0, otherwise.

(2)
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The expected time spent in state X can be expressed as 140

E
[
TX|DX

]
=

H∑
t=0

tfX (1− fX)
t
+ H (1− fX)

H
, (3)

which simplifies to the desired expectation, 141

E
[
TX|DX

]
=

(
1

fX
− 1

)(
1− (1− fX)

H
)
. (4)

Notice that
(

1
fX
− 1
)

is the expected value of an uncensored geometric with minimum value of 142

zero and that the second parenthetical term rescales the expectation to the interval [1,H]. 143

Next, we derive the expected time spent in I by conditioning on TX|DX . 144

E
[
TI|DX

]
= E

[
E
[
TI|DX |TX|DX

]]
= E

[
1

g
− (1− g)H−TX|DX

g

]
. (5)

After considerable algebra, we get the expectation, 145

E
[
TI|DX

]
=

(
1

g
− 1

)
(

1
g − 1

)(
1− (1− g)H

)
−
(

1
fX
− 1
)(

1− (1− fX)
H
)

(
1
g − 1

)
−
(

1
fX
− 1
)

 (6)

Again, the expectation of the uncensored geometric is
(

1
g − 1

)
. The the second parenthetical 146

term compresses the expected time into the interval between E
[
TX|DX

]
and H. Notice that 147

Eq. (6) is defined only so long as fX 6= g. When fX = g, we instead have 148

E
[
TI|DX

]
=

(
1

g
− 1

)(
1− (1− g)H

)
− H (1− g)H+1

. (7)

Finally, the agent calculates the expected time in state R by subtracting the expectations for 149

X and I from H, 150

E[TR|DX ] = H− E
[
TX|DX

]
− E

[
TI|DX

]
. (8)

Notice that for each of the expected waiting times calculated in Eqs. (4), (6) and (7), as H goes 151

to infinity, the rescaling terms go to one so that the equations yield the familiar expected values 152

for the uncensored geometrics. 153

Having calculated these expected waiting times, the agent then calculates the utility for the 154
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two possible behaviors using, 155

US = uSE
[
TS|DS

]
+ uIE

[
TI|DS

]
+ uRE

[
TR|DS

]
(9)

and 156

UP = uPE
[
TP|DP

]
+ uIE

[
TI|DP

]
+ uRE

[
TR|DP

]
. (10)

Note that when agents calculate expected times for states S and P, they need not consider the 157

possibility of alternating to the other state in the future. This is because they assume a constant i 158

which implies the best strategy now will remain the best strategy at all times during H. Thus, 159

E
[
TS|DP

]
and E

[
TP|DS

]
are both zero. To be clear, this constraint pertains only to calculating 160

utilities; agents are not constrained in how many times they actually switch states during the 161

epidemic. 162

Because decisions simply reflect the largest utility and because all agents are identical, the 163

behavioral decision can be expressed as the indicator function W (i) defined by 164

W (i) =


1 for US < UP

0 otherwise
(11)

Distorting knowledge of i. Recall that assumption (iii) that underlies the behavioral decision 165

model is that agents know the prevalence of the disease accurately. We relax this assumption to 166

investigate how distorting this information effects the SPIR model. To achieve this, we replace i 167

with i1/κ in the calculation of utilities where κ serves as a distortion factor. When κ = 1, i is not 168

distorted; when κ > 1, the agent perceives i to be above its real value and when κ < 1 the 169

opposite is true. To implement this distortion, we simply redefine fX in the expected waiting 170

time equations (i.e. Eqs. (3)– (7)) with fX = i1/κbS when X = S and fX = i1/κρbS when X = P. 171

Results and Analysis 172

The SPIR model is suitable for helping understand the influence of human behavior for diverse 173

infectious disease epidemics. To illustrate specific characteristics of the model, however, we 174

focus here on two contrasting diseases characterized by their severity, recovery time, and harm: 175

Disease 1 is acute, has a long recovery time, and may cause chronic harm, and Disease 2 is mild, 176
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has a short recovery time, and cause no lasting harm. Table 3 shows the biological and 177

behavioral parameter values used to generate the results discussed next, unless stated otherwise. 178

Table 3. Input parameters for two hypothetical contrasting diseases.

Parameter Disease 1 Disease 2
Type Name

B
io

lo
gi

ca
l

R0 2 2
β 0.031 0.25
ρ 0.1 0.01
γ 0.016 0.125

Recovery Time (1/γ) 65 8

B
eh

av
io

ra
l

δ 0 0
κ 1 1

{uS, uP, uI, uR} {1, 0.95, 0.1, 0.95} {1, 0.95, 0.6, 1}

Behavioral Decision Analysis 179

Here we analyze the behavioral decision model used by the agents to decide whether or not to 180

engage in prophylactic behavior. In particular, we are interested in identifying the level of 181

disease prevalence above which agents would switch behavior, i.e. a switch point. A switch 182

point is defined as the proportion of infectious agents beyond which it would be advantageous 183

for an agent to switch from non-prophylactic to prophylactic behavior or vice-versa. 184

Figure 2D shows a heat map displaying the switch points calculated for a range of planning 185

horizons and protection efficacies for adopting prophylactic behavior for Disease 1 (see Fig. S1 186

for a heat map for Disease 2). The figure is divided into three regions—A, B, and C—that 187

correspond to the three different utility situations illustrated in Figs. 2A, 2B, and 2C respectively. 188

Region A corresponds to the situation in which agents never engage in prophylactic behavior 189

because the utility of being in the susceptible state is never less than the prophylactic state 190

regardless of disease prevalence (Fig. 2A). This situation occurs for low protection efficacy or 191

short planning horizons. In the case of low protection efficacy, agents do not have an incentive 192

to adopt prophylactic behavior because they expect to get infected regardless of their behavior. 193

Thus, their best strategy is to become infected and then recover in order to collect the recovered 194

payoff as quickly as possible (i.e. “get it over with”). In the case of short planning horizons, the 195

relative contributions of the expected times of being in the susceptible or prophylactic state 196
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Figure 2. Heat map of switch points for Disease 1.
(A) Situation in which non-prophylactic behavior is always more advantageous than prophylactic
behavior regardless of the proportion of infectious agents. (B) Situation in which above a certain
proportion of infectious agents (i.e. value indicated by the vertical dotted line), the prophylactic
behavior is more advantageous than non-prophylactic behavior. (C) Situation in which prophy-
lactic behavior is more advantageous whenever the proportion of infectious agents is within a
range of values represented by the two vertical dotted lines and less advantageous otherwise. (D)
Proportion of infectious agents above which prophylactic behavior is more advantageous than
non-prophylactic behavior considering the percentage of protection (% Protection) obtained for
adopting prophylactic behavior (1− ρ)× 100 and the planning horizon H. The three regions in
(D) represent the situations shown in (A), (B), and (C). In region A, agents would never adopt
prophylactic behavior. In region B, agents would adopt prophylactic behavior above the reported
proportion of infectious agents. In region C, agents would adopt prophylactic behavior only if
the proportion of infected agents are between the proportion of infectious agents represented by
the color gradient and the proportion value represented by the contour lines.

dominate the utilities calculation, as shown in Fig. 3. The figure illustrates how, when the 197

planning horizon is short, the expected percentage of time spent in the susceptible or 198

prophylactic states are greater than the expected percentage of time spent in the infectious or 199

recovered state. Given that the susceptible payoff is greater than the prophylactic payoff, agents 200

never adopt prophylactic behavior. The figure also shows how increasing the planning horizon 201

changes the distribution of time spent in each state, which reduces the influence of the difference 202

between the susceptible and prophylactic payoffs on behavioral decision. 203

Returning our focus to Fig. 2, region B corresponds to the situation in which agents will 204

adopt non-prophylactic or prophylactic behavior depending on the prevalence of the disease 205

(Fig. 2B). If the disease prevalence is smaller than the switch point, the agent opts for the 206
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Figure 3. Expected proportion of the planning horizon spent in each state.
(A) Proportion of the planning horizon agents expect to spend in each state if they decide to
adopt state S. (B) Proportion of the planning horizon agents expect to spend in each state if they
decide to adopt state P. For short planning horizons, the largest proportion of time is expected
to be spent on the susceptible or prophylactic states. Increasing the planning horizon shifts the
proportion of the state in which the agent will spend more time to the recovered state.

susceptible behavior and for the prophylactic behavior otherwise. 207

Region C corresponds to the situation in which two switch points exist instead of a single one 208

(Fig. 2C). When the proportion of infectious agents is between these switch points, agents adopt 209

prophylactic behavior, while values outside this range drives agents to adopt non-prophylactic 210

behavior. This situation is of particular interest because it shows that the adoption of 211

prophylactic behavior is not always monotonically associated with the prevalence of the disease. 212

The utility calculations that agents use to decide whether to adopt a behavior are complex 213

(see Eqs. (9) and (10)); an exhaustive exploration of the parameter space is not undertaken here. 214

We instead investigate several paradigm cases related to the payoff ordering. We assume that the 215

payoff for the infectious state (uI) relies upon biological parameters of the disease and always 216

corresponds to the lowest payoff, thus we need only consider the relationship between the other 217

three payoffs. In particular, we are interested in looking at situations where the recovery payoff 218

ranges from complete recovery (case 1) to less than the prophylactic state (case 4). 219

Case 1: uS = uR > uP > uI, 220

Case 2: uS > uR > uP > uI, 221

Case 3: uS > uR = uP > uI, and 222

Case 4: uS > uP > uR > uI. 223

Because our model consists of a constant population of N agents (i.e. no mortality), cases in 224

which uS > uR represent situations where an individual suffers chronic harm from the disease. 225
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Figure 4. Heat maps of switch points for payoffs ordering cases of Disease 1 and Disease
2.
In (A) and (E) the payoff of being susceptible and recovered are equal, which means that agents
recover completely from the disease after infection. In (B) and (F), the recovered payoff is lower
than the susceptible payoff, but still greater than the prophylactic payoff meaning that it is more
advantageous being recovered than in the prophylactic state. In (C) and (G), any advantage
comparison between being in the prophylactic or recovered state is eliminated. In (D) and (G),
the disease debilitates the agent meaning that they would be better off engaging in prophylactic
behavior rather be in the prophylactic state than the recovered state. The heat maps of behavioral
change assume payoffs {uS, uP, uI, uR} of (A):{1, 0.95, 0.1, 1}, (B):{1, 0.95, 0.1, 0.97}, (C):{1,
0.95, 0.1, 0.95}, (D):{1, 0.95, 0.1, 0.9}, (E):{1, 0.95, 0.6, 1}, (F):{1, 0.95, 0.6, 0.97}, (G):{1,
0.95, 0.1, 0.95}, and (H):{1, 0.95, 0.1, 0.9}. The % Protection corresponds to the percentage of
protection obtained for adopting prophylactic behavior (1− ρ)× 100.

Figure 4 displays the switch point heat maps for these different ordering cases of Disease 1 226

(Figs. 4A – 4D) and Disease 2 (Figs. 4E – 4H). The most dramatic difference between the two 227

diseases is that changing the payoff for being recovered has a large effect on the agents’ 228

behavioral change in the cases of Disease 2, but little effect in the case of Disease 1. The reason 229

for this has to do with the biological parameters of the model, in particular, the disease recovery 230

time for Disease 1 is large (Recovery Time = 65), yet it is small for Disease 2 (Recovery Time = 231

8). Consequently, an agent expects to spend more time in the recovered state when considering 232

Disease 2 than Disease 1. When weighting these expected times with different payoffs for 233

calculating the utilities, there will be less variation in Disease 1 compared with Disease 2. 234

The effects of progressively reducing the recovered payoff are more evident for Disease 2. 235

Reducing the recovered payoff means that lower levels of prevalence will be sufficient for agents 236

to change their behavior. In the case of equal value for recovered and susceptible payoffs, agents 237

consider changing behavior only in narrow parameter range of protection efficacy and planning 238

horizon values (Fig. 4E). Progressively reducing the recovered payoff, i.e. moving from case 1 239

(Fig. 4E) to case 4 (Fig. 4H), the range of parameter values that would make agents change their 240

behavior expands (i.e. there are large areas of the parameter space in which the agents would 241
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consider changing behavior) and the disease prevalence necessary for such change to occur 242

decreases (i.e. gradual change of the color towards blue). 243

In addition to this numerical analysis, we have also obtained analytical results for case 2 244

(payoff ordering uS > uR > uP > uI) to identify the general conditions necessary for the 245

existence of one or more switch points. Mathematically, switch points occur where the utility 246

functions for S and P are equal (Eqs. (9) and (10)). Replacing the expected time notation 247

E
[
TY|DX

]
in the utility US and UP by the more concise TY|X, where X ∈ {S,P} and 248

Y ∈ {S,P, I,R}, we have 249

uSTS|S + uITI|S + uRTR|S = uPTP|P + uITI|P + uRTR|P.

Given that TR|X = H− TX|X − TI|X, 250

uSTS|S + uITI|S + uR
(
H− TS|S − TI|S

)
= uPTP|P + uITI|P + uR

(
H− TP|P − TI|P

)
(uS − uR)TS|S + (uI − uR)TI|S = (uP − uR)TP|P + (uI − uR)TI|P(

uS − uR

uI − uR

)
TS|S + TI|S =

(
uP − uR

uI − uR

)
TP|P + TI|P.

Let K1 = uS−uR
uI−uR

, which weights the benefits of S and I, and K2 = uP−uR
uS−uR

, which weights the 251

benefit of S and P. Then, 252

K1TS|S + TI|S = K1K2TP|P + TI|P

TI|S − TI|P = K1

(
K2TP|P − TS|S

)
K−11

(
TI|S − TI|P

)
= K2TP|P − TS|S.

Because the payoff ordering uS > uR > uP > uI and noting that TI|S ≥ TI|P and K−11 = uI−uR
uS−uR

, 253

we have that K−11

(
TI|S − TI|P

)
≤ 0 and 0 < K2 < 1. From these we analyze some general 254

cases. 255

First, we analyze the case in which K2TP|P − TS|S ≥ 0, then K2TP|P ≥ TS|S. Because 256

K−11

(
TI|S − TI|P

)
≤ 0, there never is a switch point and agents will strictly opt for the 257

prophylaxis (i.e. state P). 258

A more interesting case is when the planning horizon H is long enough to produce the 259
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condition where TI|S ≈ TI|P ≈ 1
g − 1 implying that 260

K2TP|P − TS|S = K−11

(
TI|S − TI|P

)
K2TP|P − TS|S = 0

K2

(
1

ρfX
− 1

)
−
(

1

fX
− 1

)
= 0

K2
1

ρfX
=

1

fX

K2 = ρ.

This case always produces a switch point and occurs when 261

1− (1− fX)
H ≈ 1 =⇒ (1− fX)

H ≈ 0. 262

Note that if fX is large (i.e. 1
fX
≈ 0) or fX ≈ ρfX, then a switch point hypothetically exists 263

because it produces a condition where TS|S = TP|P. However, in these cases 264

0 = K2TP|P − TS|S = K2TS|S − TS|S =⇒ K2 = 1 and because 0 < K2 < 1, a switch point 265

never exists. 266

The last case occurs when H assumes an intermediate planning horizon. When 267

K2TP|P − TS|S < 0, we can conclude that K2 <
TS|S

TP|P
for the switch point to exist in the 268

non-limiting case (i.e. when K−11

(
TI|S − TI|P

)
6≈ 0). For example, if the payoff relative to 269

recovery of P versus S is 0.5, then agents must expect less than twice the time in P to consider 270

switching. Assuming that K2TP|P − TS|P < 0, we must then further meet the condition 271

K−11

(
TI|S − TI|P

)
= K2TP|P − TS|S to get a switch point; this occurs when 272

K2 =
K−11

(
TI|S − TI|P

)
− TS|S

TP|P
=

K−11

(
TI|S − TI|P

)
TP|P

−
TS|S

TP|P
.

Epidemic Dynamics 273

We turn now to understand how the above conditions for behavioral change may influence 274

epidemic dynamics. Here we are particularly interested in analyzing the effects of the planning 275

horizon H and the decision frequency d on the dynamics of Disease 1 and Disease 2. 276

Because we assume that the interactions among the population are well-mixed, we execute 277

the simulations using the ODE model for a population of 100, 000 agents (initially 99, 999 278

agents in the susceptible state and 1 in the infectious state), decision frequency δ = 0.01, and 279

protection efficacy (1− ρ) = 0.9. 280
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Figure 5. Effects of the Planning Horizon on the epidemic dynamics.
(A) Disease 1 epidemic dynamics for payoffs {1, 0.95, 0.1, 0.95} and ρ = 0.1. (B) Disease 2
epidemic dynamics for payoffs {1, 0.95, 0.6, 1} and ρ = 0.01. Both dynamics consider decision
frequency δ = 0.01. The solid lines represent the proportion of actual infectious agents in the
population. The line thickness is not meaningful; rather, it is used to facilitate the visualization
due to the fact that the dynamics overlap each other. The dashed lines represent the switch point
associated to the planning horizon reported with the same color in the legend. Missing dashed
lines indicate that no switch point exists for that planning horizon.

Figure 5 shows the effects of different planning horizons on the epidemic dynamics for both 281

Disease 1 (Fig. 5A) and Disease 2 (Fig. 5B). For short planning horizons (i.e. H = 1), agents do 282

not ever consider changing behavior in either disease. This corresponds to the situation in 283

Region A in Fig. 2A in which being prophylactic is never worth the cost, hence the epidemic 284

dynamics are not affected. Similarly, in the cases of H = 30 for Disease 1 and H = 45 for 285

Disease 2, we notice that neither of the two epidemic dynamics change. The dynamics are not 286

affected because the disease prevalence does not reach the switch point (the switch points are 287

indicated by the dashed lines in Fig. 5). 288

In the cases of H = 45 and 90 for Disease 1 and H = 30 for Disease 2, however, agents 289

change behavior, affects the epidemic dynamics. For Disease 1, the effect is characterized by the 290

decrease on the peak size and a prolonged duration of the epidemic. Although the dynamics of 291

Disease 2 are also affected, the effect is small because a lower portion of the population crosses 292

the switch point. 293

In other cases, increasing the planning horizon further may cause agents to never 294

contemplate a change in their behavior, for example H = 90 for Disease 2. This means that 295

agents willingly assume the risk of getting infected and then recover, which seems intuitive 296

given the short recovery time and severity of the disease. 297

To assess the effect of the frequency that agents make behavioral decisions on the epidemic 298

dynamics, we fix the value of the planning horizon for Disease 1 (H = 90) and Disease 2 299

(H = 30), and vary the decision rate. Figure 6 shows the effects of different decision frequencies 300
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on the epidemic dynamics. This figure illustrates how increasing the decision frequency reduces 301

the peak size while prolonging the epidemic, and additionally may generate multiple waves of 302

infection for Disease 1. These multiple waves are generated because increasing the decision 303

frequency means individuals react faster to an increase in prevalence and adopt the prophylactic 304

behavior. This bends the trajectory of disease incidence downward, but the reduction in 305

prevalence causes the pendulum to swing back and individuals return back to their 306

non-prophylactic behavior, thus creating an environment for the resurgence of the epidemic.
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Figure 6. Effects of the Decision Frequency on the epidemic dynamics.
(A) Disease 1 epidemic dynamics for payoffs {1, 0.95, 0.1, 0.95}, ρ = 0.1, and H = 90. (B)
Disease 2 epidemic dynamics for payoffs {1, 0.95, 0.6, 1}, ρ = 0.01, and H = 30.

307

Risk Perception 308

Empirical evidence shows that humans change behavior and adopt costly preventative measures, 309

even if disease prevalence is low. This is especially true for harmful diseases with severe 310

consequences to those being infected, such as Ebola or the Severe Acute Respiratory Syndrome 311

(SARS). For example, despite the low level of recorded cases during the 2003 SARS outbreak in 312

China (approximately 5,327 cases), people in the city of Guangzhou avoided going outside or 313

wore masks when outside [21, 20]. Combined with the severity of the disease, other factors like 314

misinformation or excess media coverage may distort the real perception of disease prevalence 315

(i.e. risk perception), making individuals respond unexpectedly to an epidemic. 316

Several models incorporate specific mechanisms regulating the diffusion of information 317

about the disease to understand the above factors and how they contribute to the distortion of 318

risk perception [5, 10, 18]. Here our focus is slightly different. We are interested in 319

understanding the effects that such perception distortion has on the epidemic dynamics. Thus in 320

our model, we have incorporated a distortion factor κ that alters the agents’ perception about 321

disease prevalence used in calculating their utilities. For κ = 1, agents have the true perception 322
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of the disease prevalence; for κ > 1, the perceived disease prevalence is inflated and κ reflects 323

an increase in the risk perception of being infected; for κ < 1, the perceived disease prevalence 324

is reduced below its true value. 325

Distorting the perception of a disease prevalence can lead to changes in the decision making 326

process, and consequently on epidemic dynamics, as illustrated in Fig. 7 (see Fig. S2 for Disease 327

2). Figure 7A shows the proportion of infectious agents above which the prophylactic behavior 328

is more advantageous than non-prophylactic behavior assuming agents know the real disease 329

prevalence (κ = 1). By distorting the perceived disease prevalence to increase the risk 330

perception of being infected (κ = 1.5), the real proportion of infectious agents necessary for 331

agents to engage in prophylactic behavior is reduced as shown in Fig. 7B. Hence, the distortion 332

on disease prevalence makes agents engage in prophylactic behavior even when the chance of 333

being infected is low. This affects the epidemic dynamics by reducing the peak size but 334

prolonging the epidemic and generating multiple waves of infection as shown in Fig. 7C.
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Figure 7. Heat maps of switch points and epidemic dynamics for Disease 1.
Proportion of infectious agents above which the prophylactic behavior is more advantageous than
the non-prophylactic behavior considering the percentage of protection obtained for adopting the
prophylactic behavior (1− ρ)× 100 and the planning horizon H. (A) No perception distortion,
thus κ = 1; while (B) Distortion factor κ of 1.5, which reduces the proportion of infectious
agents above which the prophylactic behavior is more advantageous. (C) Epidemic dynamics for
different distortion factors that shows how increasing κ reduces the peak size and prolongs the
epidemic.
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Discussion 336

Individuals acting in their own self-interest make behavioral decisions to reduce their likelihood 337

of getting infected in response to an epidemic. We explore a decision making process that 338

integrates the prophylaxis efficacy and the current disease prevalence with individuals’ payoffs 339

and planning horizon to understand the conditions in which individuals adopt prophylactic 340

behavior. 341

Our results show that the adoption of prophylactic behavior is sensitive to a planning horizon. 342

Individuals with a short planning horizon (i.e. “live for the moment”) do not engage in 343

prophylactic behavior because of its adoption costs. Individuals with a long planning horizon 344

also fail to adopt prophylactic behavior, but for different reasons. They prefer to “get it over 345

with” and enjoy the benefits of being recovered. In both these situations, the epidemic dynamics 346

remain unchanged because the individuals do not have an incentive to engage in prophylactic 347

behavior even when the disease prevalence is high. For intermediate planning horizons, however, 348

individuals adopt prophylactic behavior depending on the disease parameters and the 349

prophylaxis efficacy. The effects on disease dynamics include a reduction in peak size, but a 350

prolonged epidemic. 351

These results are consistent with the findings of Fenichel et al. [6], who also concluded that 352

behavioral change is sensitive to a planning horizon. Despite generating similar results, the SPIR 353

and Fenichel et al. models differ in several aspects. In the latter, susceptible agents optimize 354

their contact rate by balancing the expected incremental benefits and costs of additional contacts. 355

Moreover, the agents take into consideration only the payoffs of being susceptible and recovered 356

when optimizing the contact rates. In the SPIR model, however, agents maintain a constant 357

contact rate, yet adopt prophylactic behavior that reduces the chance of getting infected. When 358

agents are deciding to engage in prophylactic behavior, they take into account the payoff of all 359

possible epidemiological states. The fact that we reach the same conclusion using different 360

models further supports the claim that the planning horizon is a relevant decision making factor 361

in understanding epidemic dynamics. 362

Although associated with the prevalence of disease, the adoption of prophylactic behavior is 363

not always monotonically associated with it. Its adoption depends on the behavioral decision 364

parameters. For severe diseases with long recovery time, e.g. Disease 1, the option of 365

prophylactic behavior is less sensitive to changes in the payoffs (Fig. 4A–D) compared to less 366
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severe diseases with shorter recovery time, e.g. Disease 2 (Fig. 4E–H). Therefore, understanding 367

the payoffs related to each disease is critical to proposing effective public policies, especially 368

because there is not a “one-size-fits-all” solution. 369

Another aspect to highlight is that the beneficial adoption of prophylactic behavior can be 370

achieved through two different public policies: change the risk perception or introduce 371

incentives that reduce the difference between the susceptible and prophylactic payoffs. The 372

problem with increasing the risk perception is that if it is overdone, it leads to the opposite result 373

to the one that is desired. Because individuals perceive their risk of getting the disease as highly 374

probable, they prefer to “get it over with” and enjoy the benefits of being recovered. In contrast, 375

the more the prophylaxis is incentivized the better the results, e.g. reduction of epidemic peak 376

size. 377

Similar to our SPIR model, Perra et al. [15] and Del Valle et al. [4] also proposed an 378

extension to the SIR model and included a new compartment that reduces the transmission rate 379

between the susceptible and infectious states. A clear distinction between these models and the 380

SPIR model is that their agents do not take into account the costs associated with moving 381

between the susceptible compartment and this new compartment. While in Perra et al. [15] 382

agents make the decision to move between compartments based on the disease prevalence, in 383

Del Valle et al. [4] new constant transfer rates are defined to handle the transition. 384

In addition to these differences, an advantage of the SPIR model with respect to all other 385

models that implement some behavioral change is the distinction between the disease dynamics 386

and behavioral models. This distinction renders the model flexible by making it easier to, e.g. 387

couple other decision making processes. Consequently, this modular and flexible model 388

architecture facilitates the execution of comparative experiments with different behavioral 389

decision models, which we plan to perform as future work. 390
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