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Abstract:  
 
Barcode sequencing (bar-seq) is a high-throughput, and cost effective method to assay large 
numbers of lineages or genotypes in complex cell pools. Because of its advantages, applications 
for bar-seq are quickly growing – from using neutral random barcodes to study the evolution of 
microbes or cancer, to using pseudo-barcodes, such as shRNAs, sgRNAs, or transposon insertion 
libraries, to simultaneously screen large numbers of cell perturbations. However, the 
computational pipelines for bar-seq have not been well developed. Available methods, which use 
prior information and/or simple brute-force comparisons, are slow and often result in over-
clustering artifacts that group distinct barcodes together. Here, we developed Bartender: an 
ultrafast and accurate clustering algorithm to detect barcodes and their abundances from raw next-
generation sequencing data. To improve speed and reduce unnecessary pairwise comparisons, 
Bartender employs a divide-and-conquer strategy that intelligently sorts barcode reads into distinct 
bins before performing comparisons. To improve accuracy and reduce over-clustering artifacts, 
Bartender employs a modified two-sample proportion test that uses information on both the cluster 
sequence distances and cluster sizes to make merging decisions. Additionally, Bartender includes 
a “multiple time point” mode, which matches barcode clusters between different clustering runs 
for seamless handling of time course data. For both simulated and real data, Bartender clusters 
millions of unique barcodes in a few minutes at high accuracy (>99.9%), and is ~100-fold faster 
than previous methods. Bartender is a set of simple-to-use command line tools that can be 
performed on a laptop.  

Availability:  Bartender is available at no charge for non-commercial use at 
https://github.com/LaoZZZZZ/bartender-1.1.   
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Introduction 

High-throughput sequencing of nucleotide barcodes (bar-seq) provides a powerful tool to assay 
and track dynamics of large numbers of lineages, genotypes or perturbations in complex cell pools. 
It generally works by growing a pool of barcoded cells under selective conditions, amplifying 
extracted barcodes using common primers, and sequencing barcode amplicons to quantify relative 
barcode frequencies in the cell pool. This approach was first applied on the Saccharomyces 
cerevisiae deletion collection, which was designed such that each individual deletion strain is 
marked with a unique barcode (Giaever et al., 2002; Winzeler et al., 1999). Bar-seq of these 
deletion strains have been used, for example, to detect gene products that are drug targets (Smith 
et al., 2009), and those that are important for surviving starvation (Gresham et al., 2011), and heat 
stress (Gibney, Lu, Caudy, Hess, & Botstein, 2013). Barcoded deletion collections have 
subsequently been generated in a number of bacteria and yeasts, allowing for similar massively 
parallel functional profiling (Han, Xu, Zhang, Peng, & Du, 2010; Hobbs, Astarita, & Storz, 2010; 
Noble et al., 2010; Schwarzmuller et al., 2014). Analogously, a growing number of studies in 
mammalian cells sequence pseudo-barcodes: short nucleotide sequences such as shRNAs or 
sgRNAs, that serve as both the cell-specific perturbation and the unique cell identifier for short-
read sequencing (Bassik et al., 2009; Schlabach et al., 2008; Silva, Rowntree, Mekhoubad, & Lee, 
2008; Sims et al., 2011; Wang, Wei, Sabatini, & Lander, 2014; Wong, Choi, Cheng, Purcell, & 
Lu, 2015).  

In addition to the above approaches where the sequence of the barcode or pseudo-barcode is known 
a priori, more recent bar-seq studies employ barcodes of random unknown sequence. As one 
example, sequencing of the DNA that happens to be adjacent to a transposon in random transposon 
insertion libraries has been used to functionally profile gene disruptions when systematic deletion 
collections are unavailable (Brutinel & Gralnick, 2012; Carette et al., 2011; Gawronski, Wong, 
Giannoukos, Ward, & Akerley, 2009; van Opijnen, Bodi, & Camilli, 2009).  A second example is 
the insertion of random barcode libraries into genomes to serve as neutral markers for lineage 
tracking studies over the course of development, evolution or cancer progression (Bhang et al., 
2015; Blundell & Levy, 2014; Levy et al., 2015; Lu, Neff, Quake, & Weissman, 2011; Nguyen et 
al., 2015). In these studies, random barcodes are generated from primers with random bases, which 
are first inserted into vectors and then into cell genomes. 

Despite the widespread use of bar-seq, computational pipelines for handling the resulting 
sequencing data have not been well developed. For barcodes of known sequence, the primary 
concern is mapping reads that may contain PCR or sequencing errors to the known barcodes. One 
naïve strategy would be to ignore reads that do not exactly match any putative barcode. However, 
given that some barcodes in the pool may be more prone to PCR or sequencing errors (Goren et 
al., 2010; Gundry & Vijg, 2012; Meyerhans, Vartanian, & Wain-Hobson, 1990; Schmitt et al., 
2012), this strategy could introduce counting biases. A more sensible strategy currently employed 
is to compare each read to the set of putative barcodes by calculating the Hamming (Hamming, 
1950) or Levenshtein distance (Levenshtein, 1966), thereby discovering the best match (Gresham 
et al., 2011). However, this strategy is extremely computationally expensive and computational 
cost grows at least quadratically with the number of putative barcodes. Additionally, a priori errors 
in the set of known barcodes (likely due to errors that occurred during Sanger sequencing of 
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barcoded clones) have been found to be common (Smith et al., 2009), meaning that unexpected 
barcodes that are present in the pool may be missed. Therefore, an unbiased barcode detection 
strategy that does not depend on prior information is needed.  

For random barcode libraries, an additional computational problem is discovering the true 
barcodes in the pool.  That is, reads that identify a true barcode must be differentiated from reads 
that contain PCR or sequencing errors. Because sequences representing an exact match to a true 
barcode are likely to be sequenced at much higher frequencies than those with errors, one approach 
would be to ignore reads below a predefined frequency threshold and treat all other reads as true 
barcodes. However, in cell pools with a skewed barcode frequency distribution, less abundant true 
barcodes will fall below the threshold, while errors from extremely abundant barcodes rise above 
it. If each barcode in the pool is expected to be distant in sequence space from all other barcodes 
(e.g. >3 mismatches), a second approach is to cluster reads by their sequence similarities (Bhang 
et al., 2015; Levy et al., 2015; Lu et al., 2011). Here, reads that are within one or two mismatches 
of each other are grouped together, with the most abundant sequence likely to be the true barcode 
and others being errors. This approach, however, is currently extremely computationally expensive 
because each unique read must be compared against each other unique read, with the number of 
unique reads often exceeding 106 in a typical Illumina HiSeq run. To avoid calculating all pairwise 
Hamming or Levenshtein distances, we have previously used a semi-pairwise BLAST strategy to 
cluster reads (Altschul, Gish, Miller, Myers, & Lipman, 1990; Levy et al., 2015). However, even 
this strategy is computationally expensive and may often falsely merge distinct barcodes that are 
close in sequence space (see Results). 

Here, we developed Bartender, an ultrafast and unbiased clustering algorithm for identifying and 
counting barcodes and pseudo-barcodes from short read sequencing data. We use a divide-and-
conquer strategy that first identifies high-quality seeds and then iterates through each seed to sort 
short reads into different bins for parallel processing. Reads within each bin are clustered using a 
computationally efficient greedy clustering algorithm. Instead of merging clusters solely on 
sequence similarity (Hamming or Levenshtein distance), Bartender uses additional information of 
the cluster sizes to prevent over-merging.  Our algorithm includes handling of unique molecular 
identifiers (UMIs), which, if included in the sequencing reads, allow an investigator to detect and 
remove PCR duplicates (Kivioja et al., 2012; Levy et al., 2015). Additionally, we include a 
“multiple time point” mode, which uses cluster information from adjacent time points to minimize 
the impact of read errors on barcode trajectories. Compared with previous methods, we find 
Bartender to be orders of magnitude faster and more accurate for routine processing of barcodes 
and pseudo-barcodes. 

 
 
Results 
Bartender is flexible and ultrafast 

Barcode or pseudo-barcode lengths typically range between 10 and 30 nucleotides. However, with 
the advent of highly complex long oligonucleotide libraries (LeProust et al., 2010), variable 
regions may sometimes exceed	100 nucleotides (Goodman, Church, & Kosuri, 2013; Kosuri et 
al., 2013). Current tools become cumbersome for analysis of these longer barcodes for two major 
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reasons. First, longer barcodes will accumulate more errors and result in more unique reads that 
must be clustered. Second, longer barcodes will slow similarity comparisons between unique reads 
because more nucleotide positions must be accounted for. To address these problems, we built 
Bartender with the capability and speed to handle arbitrary barcode lengths. 

First, we built an extractor tool that can quickly pull the variable region from FASTQ/FASTA files 
using a user-defined pattern and sequencing quality threshold to generate a pool of barcode reads 
for clustering (Methods). Synthesis of oligonucleotides with random regions often results in few 
variants with missing or additional random bases. To account for these errors, we allow users to 
assign random nucleotide regions of variable lengths during extraction. Our extractor tool also 
estimates the combined PCR and sequencing error rate by examining the frequency of nucleotide 
errors at user-defined invariant regions of the amplicons.  

Second, the Bartender clustering tool utilizes a number of strategies to improve speed. The primary 
speedup comes from a divide-and-conquer binning strategy that greatly reduces the number of 
comparisons (Methods). Briefly, Bartender surveys the variable regions for nucleotide positions 
with the largest entropy (most variability) and generates a set of non-contiguous seeds (3-8 
nucleotides) ranked by total entropy. These seeds are then used to sort unique reads into bins, with 
all reads within a bin having an identical seed. For the first seed, each unique read is treated as one 
cluster. Comparisons are then performed within each bin to merge similar clusters (the merging 
criteria are described later), and these merged clusters are used with the next seed for further 
merging. By using seeds with the largest entropy first, Bartender creates the maximum number of 
bins at the first clustering step (when the most clusters exist) and thereby minimizes the number 
of comparisons necessary. In most cases, the number of comparisons needed drops dramatically 
between rounds of merging. A secondary speedup comes from a greedy algorithm that prioritizes 
comparisons to the largest clusters within each bin. These large clusters are the most likely to be 
“true” barcodes and have a better chance of matching to smaller clusters that are more likely to be 
a sequence that contains a PCR or sequencing error. A last source of increased speed comes from 
the use of a computationally efficient comparison metric that is described in more detail later.  

To measure the effect of these improvements, we compared Bartender clustering speed to the 
fastest existing clustering method, which performs comparisons between unique reads by BLAST 
(see Methods and (Levy et al., 2015)). We simulated 100,000 barcodes of a number of different 
realistic barcode lengths (26, 38, and 64 nucleotides), while keeping the number of total reads 
(~10M), and the combined PCR and sequencing error rate (2%) constant (see Supplementary 
Materials). For each simulation, barcode frequencies were chosen to follow an exponential 
distribution with a mean of 100.  On a standard desktop computer, Bartender performed the 
clustering within two minutes in all cases, at least two orders of magnitude faster than BLAST 
(Figure 1A). One tunable parameter that affects Bartender performance is the seed length used to 
partition unique reads prior to pairwise comparisons (Methods). Longer seeds will reduce the 
pairwise comparisons (increase speed) by creating more bins, but, if error rates are high, may result 
in under-merging because similar clusters might never find themselves in the same bin. By testing 
Bartender performance across different seed lengths, we find that longer seeds do indeed increase 
speed, however the increments become marginal when seed length is above 5 (Figure 1B). We 
next performed these same speed tests on a typical laptop computer with less computing power, 
and found that performance is only moderately diminished (< 2-fold slower, Figure 1B). In both 
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cases, a large portion of processing time used by Bartender is attributed to the Input/Output (I/O), 
particularly at longer seed lengths. Taken together, these results indicate Bartender can be used to 
process most realistic barcode libraries on most computers quickly, usually in just a few minutes. 

 
Figure 1. Bartender speed. (A) Running time for Bartender and BLAST on simulated data of barcodes of different 
barcode lengths (BLs), using 12 threads (t = 12). Bartender was performed with a seed length of 5 (l = 5). B) Bartender 
performance of simulated 38 bp barcodes using a variable number of threads (t) and seed lengths (l). Input/output 
(I/O) time is shown in orange and clustering time in shown in yellow.  For t = 12, a desktop equipped with 3.5 GHz 
6-core intel xeon E5, 64 GB memory was used. For t =4, a laptop equipped with 3.0 GHz Intel core i7 and 16GB 
memory was used. 
 
Bartender prevents over-clustering  

To make merging decisions between reads/clusters, Bartender uses a modified two-sample 
proportion test that considers both cluster distances and cluster sizes (see Methods). To determine 
the cluster distances, Bartender uses Hamming distance (see Methods) instead of Levenshtein 
distance for two reasons. First, the time complexity of computing Hamming distance is linear, 
while that of Levenshtein distance is quadratic, in barcode length, so Hamming distance is more 
efficient for long barcodes. Second, insertions or deletions (indels) are generally rare on Illumina 
sequencing platforms (our observations), so the accuracy gained by using Levenshtein distance is 
limited. Theoretically, indels can make Bartender underestimate cluster sizes, however we did not 
observe this with real data (see below). Regardless of the method used to calculate cluster 
distances, a major caveat of making merging decisions based solely on sequence similarity is that 
distinct barcodes that are close in sequence will be erroneously merged. To overcome this problem, 
we take advantage of the fact that for two clusters that are close in distance, if one cluster contains 
true barcode reads and the other contains sequencing errors of this barcode (i.e. the two clusters 
arising from the same barcode), then the cluster containing errors is expected to be at a much lower 
frequency that is a function of the error rate and the barcode length (see Methods). If, however, 
each cluster represents a true barcode, then these two clusters are more likely to be at similar 
frequencies. Therefore, Bartender considers the relative frequencies of two clusters in making 
merging decisions, with clusters that have larger frequency disparities being more likely to be 
merged.  
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To determine the accuracy of Bartender, we generated a simulated data set that consists of 100,000 
random 20mer barcodes, with their frequencies following an exponential frequency distribution 
(mean = 100) that yields ~10M total reads (Supplementary Table S1, Figure S1). The simulation 
included a 2% combined per nucleotide error rate of PCR and sequencing and yielded ~4.8M 
unique reads. Using both Bartender and BLAST, we output the consensus sequence (majority vote 
at each nucleotide position) and the count of each predicted barcode (cluster). Predicted cluster 
counts were compared to the true counts known from the simulation.  For this comparison, clusters 
with less than three reads were ignored because these low-frequency clusters are more likely to be 
erroneous and derived from another cluster in the pool (see Methods). Using the remaining 96,610 
clusters, the two methods found nearly the same number of clusters (96,517 for Bartender, 
95,537for BLAST), however Bartender generally estimated the true count with greater accuracy 
(Figure 2). In particular, many BLAST cluster estimates were too large, indicating that closely-
spaced clusters were erroneously merged (Figure 2, green triangles). BLAST over-merging 
resulted in a higher number of false negatives (Bartender = 93, BLAST = 1073), and marginally 
less false positives (Bartender = 94, BLAST = 53), with Bartender errors exclusively occurring in 
small clusters. We note that over-merging is not a problem that is unique to BLAST. All previous 
methods that use only a distance-based similarity threshold (e.g. 2 mismatches) to merge similar 
reads, but not cluster size information (unique to Bartender), are subject to the same over-merging 
artifacts as BLAST.  

 

 
Figure 2.  Comparison of Bartender and BLAST on simulated data. A scatter plot of the estimated and true counts of 
each barcode cluster for Bartender (red) and BLAST (blue).  Over-clustering by BLAST but not Bartender results in 
some unique barcodes being merged. Green triangles and inset of position weight matrices show a representative 
example of BLAST over-merging of barcodes that are two mismatches away from each other. Heatmaps show the 
rate of false positives and false negatives for Bartender (red) and BLAST (blue).  
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Bartender errors and sequencing depth   

Barcodes with low sequencing depths are difficult to accurately count for several reasons. First, 
sampling noise (derived from which molecules happen to be sequenced) scales with the square 
root of the expected number of reads (see Methods). That is, barcodes with less reads will have 
high coefficients of variation simply because of sampling on the sequencer. Second, small read 
numbers can often result in an erroneous cluster center (the predicted barcode sequence does not 
match the true barcode sequence) because PCR or sequencing errors in one read would have a 
large impact on the predicted center. These errors in small clusters often result in both false 
positives and false negatives because reads matching a true barcode sequence are missing while 
those matching a new (erroneous) barcode sequence are present. Third, merging decisions between 
small clusters become less accurate. As described above, Bartender takes advantage of cluster size 
information to make merging decisions. An unequal frequency between clusters favors merging 
because it becomes more likely that the low frequency cluster represents a sequence error of the 
high frequency cluster. However, when a barcode is present at low frequencies, both true reads 
and errors are expected to have few counts, so differences in frequency become blunted and less 
informative.    
 
To examine how barcode sequencing depth impacts Bartender accuracy, we simulated two data 
sets containing 100,000 true barcodes and ~10M reads, with error rates of 2% (Figure 3A) and 
0.33% (Figure 3B), respectively. In both cases, Bartender clustering introduced almost no errors 
for moderately large clusters (>10 reads). Counting errors for these large clusters are due almost 
exclusively to sampling at the sequencer. For smaller clusters (<10 reads), the clustering process 
did introduce additional error for reasons described above. However, the additional error due to 
clustering is small, especially at the lower 0.33% sequencing error rate, which is also the rate 
observed in real data (supplementary figure S2). Nevertheless, sequencing at a coverage sufficient 
to read each barcode at least 10 times would virtually eliminate Bartender errors.  
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Figure 3. The impact of sequencing depth on Bartender performance. A plot of the barcode count by the coefficient 
of variation (CV) for that count on simulated data with a 2% (A) and 0.33% (B) combined error rate of PCR and 
sequencing (sequencing error). The black lines are theoretical values, which follow the Binomial distribution. The 
blue lines are the CV of sampling (at the sequencer) alone, without sequencing errors or errors introduced by Bartender 
clustering. The red lines are the CV after running Bartender, and include sampling, sequencing, and clustering errors. 
All lines are smoothed with window size 0.5. 
 
Application to high-complexity bar-seq data     
To compare Bartender and BLAST performance on real sequencing data, we next clustered 
published data of a high-complexity barcode library (~0.5M barcodes, 20 random bases, 26 total 
bases) that has been sequenced deeply (~136M reads) to generate ~3M unique barcode reads (Levy 
et al., 2015). The two methods discovered 488,983 overlapping barcode clusters, with 2,602 
additional clusters identified only by Bartender and 22 only by BLAST (Figure 4A). Of the 2,602 
Bartender-only clusters, 2,301 contained more than 10 reads (Figure 4B), indicating that they are 
likely to be true barcodes (from the Bartender error analysis above). The 22 BLAST-only clusters 
were all present at low frequencies (<5, Figure 4B), suggesting they likely arose from read errors. 
The overlapped clusters between BLAST and Bartender (Figure 4D) reveals that the two methods 
generally correlate well (Figures 4D and S3, Pearson’ correlation = 0.97). For many barcodes, 
however, BLAST estimated higher counts than Bartender, echoing findings on simulated data 
(Figure 2), and suggesting BLAST is over-clustering. To investigate this possibility, we examined 
these outliers and found that, in most cases, BLAST merged two or more distinct barcodes 
together. A representative example of BLAST over-merging is shown in Figures 4C and 4D (grey 
triangles): several barcodes with similar counts that are close in sequence space can be 
distinguished by Bartender but not BLAST. Similar speed improvements found with simulated 
data are also found with this real data set (Bartender = 5.4 minutes, BLAST = 337 minutes, 4 
threads). A detailed examination of Bartender running time with this real data is given in Figure 
S4.  
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Figure 4 Bartender and BLAST performance on real data. (A) Ven diagram of the number of clusters identified by 
Bartender and BLAST. (B) Histogram of the number of counts for barcodes identified by BLAST but not Bartender 
(blue), and Bartender but not BLAST (red). Some large Bartender clusters (size > 1500) are not shown. (C) Position 
weight matrices of the highlighted clusters from (D).  The first cluster is generated by BLAST, is variable at multiple 
nucleotide positions, matches the sequence of the first Bartender cluster (second black dot), and incorporates many 
additional unique clusters that are distinguished by Bartender (red dots). All Bartender clusters display low variation 
at each nucleotide position. D) Scatter plot of the counts of each barcode detected by both Bartender and BLAST 
(black), Bartender only (red), and BLAST only (blue squares). Grey triangles are a representative example of BLAST 
over-clustering and are further explained in (C). 
 

Bartender includes UMI handling 
Unique molecular identifiers (UMIs) are additional, usually random, sequences that are added to 
template molecules before PCR that allow an investigator to detect and remove PCR duplicates 
and thereby improve the accuracy of amplicon counting (Kivioja et al., 2012; Levy et al., 2015). 
Bartender allows a user to attach a UMI sequence to each barcode prior to clustering: the user must 
simply generate a comma-separated file that contains one barcode and one UMI on each line. 
Following clustering, Bartender will search for identical UMIs within each cluster and report 
counts that include or exclude repeated UMIs (putative PCR duplicates). We note here that UMI 
length must be carefully considered as part of the experimental design, and provide more some 
general guidelines in the discussion. 

Bartender includes multiple time point handling 
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A growing number of studies perform time course bar-seq experiments that require tracking 
barcode lineages over time (Gresham et al., 2011; Levy et al., 2015). In some cases, lineages will 
persist at low frequencies or be driven over time to extinction. These sorts of scenarios present 
additional challenges for Bartender clustering. As discussed above, a small cluster is more likely 
to result in a difference between the true barcode sequence and the sequence Bartender calls. These 
cluster center errors will result in some barcodes at low frequencies artificially “disappearing” at 
some time points and then “reappearing” at others, greatly impacting interpretation of the lineage 
trajectory. One work-around we previously employed (Levy et al., 2015) was to pool reads from 
all time points, cluster the big pool to build a map between each unique read and a barcode cluster, 
and then reconstruct the counts at each time point from this map. However, this approach is 
computationally expensive and can easily exceed the memory limitations of even a powerful 
desktop computer. To avoid these issues, we include a “multiple time point” mode in Bartender. 
This feature allows time points to be clustered independently, thereby reducing computational 
overhead and allowing for parallelization. Once individual time points are clustered, Bartender 
joins clusters between adjacent time points under the assumption that barcodes in a time point are 
a subset of the clusters the previous time point. For a time point t, Bartender first joins clusters 
with the exact same center (sequence) to t-1. Then, any unjoined clusters in t are joined to clusters 
in t-1 if their centers that are within one mismatch. This second step (joining across mismatches) 
is particularly important for barcodes that are being driven to low frequencies. For these small 
clusters (e.g. <3, see above), the estimated cluster center is more likely to be erroneous, and by 
using information from the prior time point, Bartender becomes more accurate at estimating their 
frequencies.  
 
To test the accuracy of the multiple time point feature, we simulated an evolution of 100,000 
barcoded cells over 112 generations (Supplementary Materials).  Most of these cells were set to 
have an identical fitness which we define as 0. However, 5000 (5%) cells were set to have a higher 
fitness that is drawn from a truncated exponential distribution (𝜆 = 0.00083 and bounds	of	0.05	
of	 0.15). We assume the fitness of each cell lineage is unchanging over the course of the 
competition (no adaptive mutations). Over time, higher fitness lineages will expand and drive 
lower fitness lineages to low frequencies and eventually to extinction. We simulated sampling 
barcode lineage frequencies at various time points, assuming ~10M total reads per time point, 
performed Bartender clustering, and compared these results to the true barcode frequencies known 
from the simulation (Figure 5A). Additional time points generally improved Bartender’s 
performance. Bartender detected 100,389 barcode clusters including all true barcodes (no false 
negatives) and 389 erroneous barcodes (false positives). All false positives were only present in 
the first time point and no subsequent time points, and would be easily identified and ignored by 
an investigator. Bartender was extremely accurate at estimating barcode frequencies over time, but 
accuracy suffered when lineages fell to low frequencies of 2-3 reads per barcode. To exemplify 
this point, we sampled the barcode frequencies more densely during the mass extinction event that 
begins at ~70 generations in our simulation (Figure 5B). During this time, we find that Bartender 
slightly underestimates the number of barcode lineages that are still present in the pool. As 
discussed above, these errors are generally due to PCR and sequencing errors in low frequency 
lineages that cause Bartender to miscall barcode cluster centers. When the number of lineages 
becomes stable (~5000 large lineages at 81 generations), Bartender is again able to correctly 
identify all barcodes that exist in the pool. 
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Figure 5. Bartender performance on time course data. A simulation was performed of 100,000 barcoded cells with 
different fitness coefficients that are evolved in competition for 112 generations (A) Lineage trajectories of 1000 
randomly selected barcodes (colors).  Solid lines are trajectories estimated by Bartender and dashed lines are the true 
trajectories. (B) The number of barcodes present in the pool at a count greater than 1 (red) and the number detected 
by Bartender (turquoise). At ~70 generations, lineages without a growth advantage begin to go extinct. During the 
following mass extinction, Bartender slightly underestimates the number of barcodes present.  
 
 
Discussion 
To the best of our knowledge, Bartender is the first general clustering algorithm for accurate and 
fast counting of barcode and amplicon reads. Bartender’s accuracy stems from a new statistical 
test schema that uses both nucleotide sequence and cluster size information to prevent over-
merging; its speed stems from a novel binning strategy and a computationally efficient greedy 
clustering algorithm. Bartender includes handling of both UMIs and time course data, and 
promises to be a useful tool for a large number of diverse applications.  
 
Bartender includes three parameters that are tunable for different applications: the maximum 
cluster distance that may be merged (d), the seed length (l, see Results), and the merging threshold 
(z, see Methods). We recommend using the default seed length (l = 5) and maximum cluster 
distance (d = 2) for applications where shorter run times are not a priority. The remaining 
parameter, z, should be set according to the expected coverage per barcode and the barcode library 
complexity.  For low to medium coverage (<500 reads/barcode), we recommend starting with the 
default setting for z (= 5). However, in some cases, it may be necessary to adjust the z. For example, 
we have noticed some nucleotide sequences in our random barcode libraries are more prone to 
PCR or sequencing errors (i.e. errors at that position are greater than e), and, if these errors occur 
within an abundant barcode, they may cause the same erroneous read to occur at a high frequency 
and therefore be interpreted as an independent barcode cluster. At extremely high coverage (e.g. 
>10,000 reads/barcode in a low-complexity barcode library), this problem is amplified because a 
high error position in any barcode will create this artifact. In this case, we recommend setting z 
higher.  In cases where all barcodes are expected to be distant (an average of 5-6 mismatches from 
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a nearest neighbor), we recommend disabling the merging threshold (z = -1) to make merging 
decisions based on the cluster distance (d) only. In this scheme, all sequences within a user 
specified distance of each other will be merged, however, because barcodes are distant, it is 
unlikely that any real barcodes will be merged together (over-merging). Furthermore, disabling 
the merging threshold will remove the possibility of nucleotide sequences with abnormally high 
errors causing artifacts. We note that Bartender will only perform well if most barcodes within the 
pool are sufficiently spaced such that they are at least 3-4 mismatches away from a nearest 
neighbor (see (Blundell & Levy, 2014; Levy et al., 2015) for a discussion on random barcode 
design). In cases where this rule is broken (Bhang et al., 2015), Bartender performance will be 
encumbered, as will any existing clustering approach.  
 
Bartender speed is mainly due to the fact that it partitions unique reads into bins and restrains 
sequence comparisons to those within each bin. We use the entropy at each nucleotide position to 
prioritize seeds that have the highest probability of creating a maximal number of bins, and thereby 
minimizing the number of pairwise sequence comparisons. Barcode designs with regions of 
varying complexity (e.g. (Goodman et al., 2013; Kosuri et al., 2013; McKenna et al., 2016)) could 
potentially disrupt this process and greatly slow Bartender. Take, for example, a barcode that is 
split into low complexity (e.g. 1000 random variants) and high complexity (e.g. 1M random 
variants) regions. Because a nucleotide in either region would be expected to have high entropy, 
Bartender may choose initial seeds that contain only low complexity nucleotides resulting in far 
fewer bins. One potential solution would be to use a seed selection protocol that considers 
associations between nucleotides (e.g. information gain or mutual information), however this is 
not implemented here. 

Bartender removes PCR duplicates by simply searching for repeated UMIs within each cluster 
(exact matches) and removing these from the counts. Because it searches only for exact UMI 
matches, a PCR or sequencing error that happened to occur in a repeated UMI would not be 
recognized as a repeat and thus result in over-counting of that cluster. However, the alternative, 
merging UMI with similar sequences, raises greater problems. Large clusters may contain many 
UMIs, and, because UMIs are generally short, UMI clustering would erroneously merge many 
distinct UMIs that are close in sequence. Even using our exact match criterion, it is possible that 
extremely large barcode clusters will begin to use up all available UMIs resulting in under-
counting. For example, a barcode that is read 100,000 times and contains an 8mer UMI (48 = 
~65,000 possible sequences) will necessarily have UMI repeats even when each sequenced read 
stems from a unique template molecule. To avoid these problems, we recommend selecting a UMI 
length that results in at least 10-fold more possible sequences than the largest expected cluster. 

Bartender includes a multiple time point mode that is designed to generate barcode trajectories for 
time course data. Importantly, information from a previous time improves count estimates for low 
frequency barcodes because erroneous cluster centers (due to sequence errors) are more likely to 
be assigned to a true barcode. This mode assumes that all barcodes at any time point are a subset 
of the barcodes in the previous time point. In some cases, this mode could be applied to 
experiments other than a time course (e.g. bar-seq across different conditions). However, we advise 
extreme caution. If there are only a few (2-3) conditions, and there is a large overlap in the barcodes 
present in each condition, then multiple time point mode could be directly applied using an 
arbitrary order of the conditions. However, in cases where the overlap between barcodes present 
in each condition is expected to be small, we do not advise using the multiple time point mode. 
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Rather, Bartender should be applied to each condition separately and then barcode clusters from 
different conditions should be compared by another method.  

Another useful feature of Bartender is that it reports an entropy-based measurement for cluster 
quality to an output file, which can be used in downstream analyses as an indicator that a cluster 
might contain more than one true barcode. The cluster quality is a measure of the read 
heterogeneity within a cluster. For each cluster, a position weight matrix is generated from all the 
unique reads contained in the cluster and the cluster quality is reported as the largest binomial 
entropy value across all positions in this matrix (see Methods).   

Based on our experience, Bartender will work well with a standard laptop or desktop computer for 
most applications. Available memory (RAM) is generally the limiting factor for Bartender 
processing, and the necessary RAM is a function of the number of unique barcode reads and the 
barcode length. We recommend 4-6 GB RAM for datasets with less than 1M unique 40mer 
barcodes, and 8-10 GB RAM for datasets with less than 3M unique 60mer barcodes. 

 

Methods 
Dissimilarity measures between reads and clusters 

Suppose there are 𝑁 unique reads and let 𝑟) be the ith unique read with a frequency of 𝑓). For two 
distinct reads (𝑟) and 𝑟+) with the same length 𝐿, their Hamming distance (Hamming, 1950)  is 
defined as follows: 

                                   𝑑 𝑟), 𝑟+ = 	 𝐼 𝑟) 𝑘 	≠ 	 𝑟+ 𝑘3
456                                    (1) 

where 𝑟)(𝑘) is the nucleotide at the kth position of sequence 𝑟), and 𝐼 𝑥  is an indicator function 
such that  

𝐼 𝑥 = 1			if	x	is	true
0			if	x	is	false. 

For a particular barcode cluster 𝐶 that may contain several unique reads, its size is defined to be: 

𝑆 𝐶 = 	 𝑓)GHH	IJ∈L          (2) 

The centroid of the cluster 𝐶  is defined as a sequence 𝑐 = [𝑐6𝑐O … 𝑐3] , where 𝑐4 =
	 argmax
T∈ U,L,V,W

𝑓) ∗ 𝐼 𝑟) 𝑘 == 𝑏GHH	IJ∈L , for	𝑘 = 1,… , 𝐿 . That is, the centroid consists of 

nucleotides that are most frequent at each position. Since a cluster usually corresponds to a 
barcode, the centroid can also be viewed as an estimate of the corresponding barcode. 

For two distinct clusters 𝐶[, 𝐶\ , let 𝑐[, 𝑐\  denote their centroids. We use Hamming distance 
between the two centroids as the dissimilarity metric to define the distance between the two 
clusters, which is given as follows: 

                                     𝑑 𝐶[, 𝐶\ = 	𝑑(𝑐[, 𝑐\)                                                   (3)  
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The BLAST clustering method 

In the BLAST-based clustering protocol, three major steps are critical for its accuracy and 
efficiency. The first step is to find a size threshold to split unique reads into high- and low-
frequency groups, where high-frequency reads are likely to be a true barcode and low-frequency 
are likely to be sequencing and/or PCR errors. This splitting step is necessary to reduce the number 
of pairwise sequence comparisons and improve computational speed (clustering can take >10-fold 
longer without the splitting). The size threshold is related to the underlying experimental design 
(i.e. the expected number of barcodes and their underlying frequency distribution) and the 
sequencing parameters such as sequencing depth and error rate. In the simulated and real (Levy et 
al., 2015) data sets we use, the size thresholds are set to 2 and 10, respectively. Once the unique 
reads are divided into two lists, the second step is to group similar high frequency sequences by 
performing all pairwise comparisons within the high-frequency list, where the similarity is a 
function of the e-value in the BLAST package. Two clusters are joined if any two sequences (one 
in each cluster) pass the e-value threshold. Cluster joining continues until the number of clusters 
is stable. Lastly, sequences with low-frequency unique reads (below the pre-specified size 
threshold) are then matched to the high-frequency clusters by BLAST using the same criteria. A 
majority vote method is used at each nucleotide position to define the cluster center, which 
represents a cluster tag for any downstream analysis. 
 
Bartender workflow overview  
Bartender processes barcodes with different lengths independently. The overall Bartender 
workflow for processing barcodes with same length is shown in Figure 6. First, total reads are 
tabulated to form a list of unique reads and corresponding frequencies. Using this list of unique 
reads, a sequence of overlapping 5-8 base pair seeds is selected. These groups of unique reads are 
considered as initial clusters, and are partitioned into bins using the first seed. Clusters within each 
bin are merged using a statistical test described below. These new clusters then serve as the input 
for the next round of binning, and this is repeated until all seeds have been processed. Lastly, three 
output data files are generated: the consensus cluster sequence (the barcode) and its counts, the 
quality of each cluster, and a map between each unique read and the cluster it belongs to. Unique 
Molecular Identifiers (UMIs) for each read that are stored with each cluster are then used to remove 
PCR duplicates by searching for identical UMIs within each cluster. The detailed logic is described 
by Algorithm 1 in the supplement. 
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Figure 6. A schematic flowchart of the Bartender clustering algorithm. 

Bartender Extractor  
Bartender extractor is a simple command-line tool designed to extract barcode from raw reads.  It 
assumes that each read has at most one barcode that is flanked by some fixed sequences to locate 
the barcode.  A barcode template could be one large random region or consist of multiple small 
random regions separated by spacers. Because indels may occur during barcode generation, users 
can specify a length range for each random region. While extracting, this tool keeps track of the 
total number of base errors identified in the flanking (constant) regions and estimates the sequence 
error using the percentage of these errors.  The extractor allows at most one mismatch in each 
flanking region, so, in order to obtain relatively accurate error estimation, the length of a flanking 
sequence should not be set to be too long (we recommend 5 bases). If sequence error is not uniform 
across all positions in an amplicon and error biases in the flanking regions exist, this sequence 
error estimate might be slightly incorrect. However, we recommend using this error rate as the 
baseline for Bartender clustering. The Bartender clustering command provides a second estimate 
of the error rate based on the random regions. If the error rate estimated by the clustering 
component is significantly different from that estimated by the extractor, we recommend rerunning 
Bartender clustering with more conservative parameter values (i.e. with smaller d and/or z).  

 
The extractor transfers the specified barcode template into regular expression and extracts the 
matched subsequence from each read in the raw file (FASTQ or FASTA format). A user defined 
quality threshold can also be used to filter out low-quality barcodes (only applicable to FASTQ 
format).  When the average quality is below this threshold, these reads will be ignored. The 
matched sequence (flanking regions removed) and the corresponding line number in raw (FASTQ 
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or FATSA) file are output to a file. This file can be used directly for Bartender clustering. 
Alternatively, this file can be used in combination with user-generated UMI file, to replace the line 
number with the UMI prior to clustering. If UMIs are included, Bartender will by default remove 
duplicates during clustering.  

Seeds selection and binning    

To calculate  entropy values for N unique reads with length L, we first summarize a position weight 
matrix, i.e. the frequency of each of the four nucleotides (A, C, T, G) at each position: 𝑓T,4 =

𝑓) ∗ 𝐼[𝑟) 𝑘 == 𝑏]]
)56 , where 𝑏 ∈ 𝐴, 𝐶, 𝐺, 𝑇  and 𝑘 = 1,… , 𝐿 . At each position 𝑘 , the four 

nucleotides are dichotomized into two groups, one with the most frequent nucleotide (the major 
allele) and another with the other three nucleotides (the other alleles). The relative frequencies of 

the major and other alleles are then calculated and denoted as 𝑝4 =
bcd

e∈ f,g,h,i
je,k

je,ke∈ f,g,h,i 	
 and 1 − 𝑝4 , 

respectively. The entropy at position k is defined as: 

                                 𝐸 𝑘 = 	−𝑝4𝑙𝑜𝑔O 𝑝4 − 1 −	𝑝4 𝑙𝑜𝑔O(1 −	𝑝4)                          (4) 

Seeds are then selected based on the order of the entropy values. Positions with larger entropies 
are used in earlier iterations of binning. Nucleotide positions with too low entropies below a pre-
specified (or user-defined) threshold are excluded from seed selection.  

Next, clusters, based on their centroids, are sorted into different bins based on selected seeds. The 
binning process is demonstrated in Figure 7.  The centroids of all clusters in one bin contain the 
same seed sequence. There are two major computational advantages of binning by seeds. First, 
unnecessary pairwise comparisons between distant clusters are dramatically reduced because only 
clusters within the same bin will be compared. Second, each bin can be processed independently, 
making it easy to parallelize the algorithm on multiple-core computers. Intuitively, a longer seed 
generates more bins and correspondingly decreases the number of clusters in each bin. The seed 
length is a critical parameter that balances the speed and accuracy of the clustering algorithm. That 
is, longer seeds increase speed by reducing pairwise comparisons, but are more likely to leave 
spurious barcodes ungrouped, thereby increasing false positives. By default, seed length is set to 
be five (see Figure 7 for details), and Bartender iterates through the seed position list using a sliding 
window with a size of the seed length and slide one nucleotide at a time.  
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Figure 7. Binning by seeds. A toy example of seed selection on eight unique sequences with a seed size of two. The 
entropy value at each position is calculated and positions are sorted in descending order, with ties broken 
arbitrarily.  Here, positions eight and six have the highest entropy and are used as the first seed, breaking the sequences 
into six bins (right). The next seed is positions are by default positions six and seven. 

 
Clustering within one bin 

Since there may be thousands of barcode clusters within one bin, pairwise comparisons within a 
bin are still computationally expensive. To further improve the speed, we developed a greedy 
clustering algorithm that uses cluster frequency information to prioritize comparisons. The 
rationale is that clusters with high frequencies are more likely to represent a true barcode, while 
those at low frequencies are more likely to be errors. We take advantage of this and adopt a strategy 
similar to that used in the BLAST method by first splitting clusters into high- and low-frequency 
bins based on the mean cluster size, which is derived from the empirical distribution of the sizes 
of all clusters. Since error reads are expected to greatly outnumber reads with true barcode 
sequences, the mean cluster size is expected to partition the majority of error-containing sequences 
(and maybe a minority of true barcodes) into the low-frequency group. Each cluster in the low-
frequency group is compared to clusters in the high-frequency group using the statistical test 
described below, and three scenarios may occur: if no high-frequency cluster is found, this low-
frequency cluster is added to the high-frequency cluster group, as it is likely to be a true barcode 
cluster; if only one high-frequency cluster is found, the low-frequency cluster is merged to this 
cluster; if >1 high-frequency clusters match, the low-frequency cluster will be merged with the 
high-frequency cluster with the closest sequence. If multiple high-frequency clusters are equally 
close to this low-frequency cluster, then it will be merged into the largest high-frequency cluster. 
Following this step, pairwise comparisons between all high-frequency clusters are performed using 
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the same statistical test described below, and clusters are merged if they pass. A more detailed 
description is given in the supplement Algorithm 2. 

Cluster merging 

Clusters that are close in distance may arise from two possibilities: (1) one cluster is a true barcode 
cluster and another is a cluster with error reads, and (2) both clusters are true barcode clusters. To 
avoid over-merging in the second case, we use a modified two-sample proportion test to make the 
merging decision for the two clusters.  

Let 𝐶6and 𝐶O denote the two clusters being tested, with centroids of 𝑐6 and 𝑐O, respectively. The 
distance between 𝐶6and 𝐶O  is 𝑑 𝐶6, 𝐶O = 𝑑 𝑐6, 𝑐O = 	𝑑 . Let 𝐶q  denote the new cluster when 
𝐶6and 𝐶O are merged, with a new centroid 𝑐q, which is the center of the larger cluster between 
𝐶6and 𝐶O . The sizes of 𝐶6and 𝐶O  are S(𝐶6)	and	𝑆(𝐶O), and the size of 𝐶q  is 𝑆(𝐶q  ) = S(𝐶6) +
𝑆(𝐶O). Let 𝑒),q, 𝑖 = 1,2  be the cumulative number of base pair errors of  reads in 𝐶)	with respect 
to the new cluster 𝐶q: 

                                      𝑒),q = 	 𝑑(𝑟4, 𝑐q)GHH	Ik∈LJ ∗ 	𝑓)                                                    (5) 

Let 𝑝),q be the error rate of cluster 𝐶) with respect to the new cluster 𝐶q, which is defined as: 

                                            𝑝),q = 	
xJ,y

3∗z(LJ)
                                                                         (6) 

The idea is that if one barcode cluster indeed originates from errors of another barcode cluster, the 
size of the error cluster should be much smaller than that of the true barcode cluster.  

The hypotheses can be formulated as  

𝐻|: 𝑝6,q = 𝑝O,q				𝑣𝑠			𝐻6:	𝑝6,q ≠ 𝑝O,q 

The test statistic is given by: 

                                      𝑍 = 	 ��,y���,y
��,y(����,y)
�∗�(g�)

	�	
��,y(����,y)
�∗�(g�)

	
																																																																(7) 

Z becomes large under two scenarios: 1) the distance between cluster centroids is large, or 2) there 
is a small but consistent sequence difference between two sufficiently large cluster centroids. 
Therefore, we reject 𝐻| for large Z values when two clusters should not be merged.  

Evaluation of the Bartender accuracy 

Differences between the true barcode size (count) and the Bartender estimate result from three 
primary sources of error: sampling error, sequence error, and additional error introduced by 
Bartender clustering. Sampling error refers to the size difference between the theoretically 
expected copy number (based on the relative frequency in the cell population) and the number of 
copies that are actually sequenced on the sequencer. This error cannot be removed and thus 
represents the lower bound of all error. Sequence error refers to mismatches introduced during 
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PCR or sequencing, which Bartender attempts to correct. In the ideal case, Bartender would cluster 
reads while correcting for all sequencing errors and introducing no additional error.   

To evaluate the Bartender accuracy, a large simulated dataset with a defined sequence error rate, 
or a real dataset (Levy et al., 2015), is randomly partitioned into n equal subsets to mimic the 
sampling process. Bartender is then applied to each partition. For simulated data, Bartender results 
are compared to the true cluster centers known from the simulation; For real data, these results are 
compared to clusters that were generated by running Bartender on the entire data set prior to 
partitioning.  

Since each read is sampled individually, for a particularly cluster, its size in each partition follows 
a Binomial distribution (equation 8).  

                                               𝑓�	~	𝐵𝑖𝑛(𝐹�,
6
�
)                                                                     (8) 

where 𝐹� is the size of the corresponding cluster in whole dataset. 

So the expected cluster size in one partition is given by 

                                              Ε 𝑓� = 	𝜇 = 𝐹� 𝑛,                                                                (9) 

and the standard deviation in one partition is given by 

                                               𝜎� = 	 𝐹�
6
�
∗ ��6

�
                                                                 (10) 

The coefficient of variation (CV) (equation 11) and its estimator (equation 12) are used to gauge 
the error effects.  

                                                  𝐶𝑉 = 	 �
�
                                                                            (11) 

                                                 𝐶𝑉 = 	 �
[
                                                                             (12) 

where 𝑠 = 	 (j��j)�

��6
�
�56 ,  𝑥 = 	𝑓 =

j��
���

�
, and 𝑓� is the observed frequency of each cluster in 

partition p. 

Sequence comparisons between BLAST and Bartender on a real data 

We use ~130M reads of a 26mer barcode library (Levy et al., 2015) to compare BLAST and 
Bartender performance on real data. Here, the barcode library was generated from a random primer 
and, in contrast with simulated data, some barcodes are by chance longer or shorter than the 
expected 26 bases. Bartender uses a comparison metric based on the Hamming distance that does 
not allow comparisons between barcodes of different lengths, and instead clusters barcodes of 
different lengths independently. In contrast, BLAST uses a comparison metric based on the 
Levenshtein distance that allows barcodes of different lengths to be compared directly. This 
difference complicates comparisons between Bartender and BLAST, because BLAST cluster 
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centers (the consensus nucleotide at each position) can be influenced by “frame-shifts” where reads 
with an additional or missing base at one position causes a misalignment in many other positions. 
Therefore, to maximize the overlaps between Bartender and BLAST results, we redefine the 
BLAST cluster center as the most frequent unique read within each cluster. Comparisons between 
BLAST and Bartender clusters are then performed using this definition of the BLAST cluster 
center. 

 

Multiple time point mode 

For time course bar-seq data, Bartender first clusters data at each time point separately, then orders 
these clustering results by time point for further processing (Figure 8). For a time point t, Bartender 
first joins clusters with the exact same center (sequence) to t-1. Then, any unjoined clusters in t 
are used a query to clusters in t-1 if their centers that are within one mismatch.  If no match is 
found and the size of cluster in time t is reasonably large (larger than a user-defined threshold), it 
will be recorded as a true barcode for time point t. If only one match is found in t-1, these barcode 
clusters are joined through time. If more than one match is found in t-1, the cluster in time t is 
joined with the largest cluster found in time t-1. This process is performed iteratively for all time 
points. Since the size of each barcode cluster has been recorded for all time points, with “zeros” 
for clusters absent at any time point, the final result contains a list of clusters and their counts at 
each time point (lineages). The overall cluster quality and position weight matrix across all time 
points are also included in the final report. More details are presented in the Algorithms 3 and 4 in 
Supplement. 
 

 
Figure 8. A flowchart of cluster merging across multiple time points. The merging strategy starts from a list of 
clustering results of each time point. Clusters from the latest available time point are merged to identical clusters from 
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the previous time point. Clusters without an identical match merged with the most appropriate (see the main text) 
cluster within one mismatch. Other unmatched clusters will be kept only if its size is larger than the user specified size 
threshold.  
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