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Abstract:     

Scale-free networks (SFN) arise from simple growth processes, which can encourage efficient, centralized and 

fault tolerant communication (1).     Recently its been shown that stable network hub structure is governed by 

a phase transition at exponents (>2.0) causing a dramatic change in  network structure  including a  loss of 

global connectivity,  an increasing minimum dominating node set, and a  shift towards increasing connectivity 

growth compared to node growth.   Is this SFN shift identifiable in atypical brain activity?  The  Pareto 

Distribution (P(D)~D^-β) on the hub Degree (D) is a signature of scale-free networks.  During resting-state, we 

assess Degree exponents across a large range of neurotypical and atypical subjects. We use graph complexity 

theory to provide a predictive theory of the brain network structure.  Results. We show that neurotypical 

resting-state fMRI brain activity possess scale-free Pareto exponents  (1.8 se .01) in a single individual scanned

over 66 days as well as in 60 different individuals (1.8 se .02).   We  also show that 60 individuals with Autistic 

Spectrum Disorder, and 60 individuals with Schizophrenia  have significantly higher  (>2.0) scale-free 

exponents ( 2.4 se .03, 2.3 se .04),  indicating more fractionated and less controllable dynamics in  the  brain 

networks revealed in resting state.  Finally we show that the exponent values vary with phenotypic measures 

of atypical disease severity indicating  that the global topology of the network itself can provide specific 

diagnostic biomarkers for atypical brain activity. 

Keywords:  resting state, brain networks, scale-free, mental illness,  IMaGES, graph-models

Introduction

Resting state brain activity is simple to collect,  requiring that subjects do nothing in particular for a 

short period of time (2-7) as they are brain scanned.   Resting state brain activity reflects  dynamics of the 

brain (8-10) that are correlated with various kinds of functional networks, including working memory, sensory 

and motor processes, visual pathways, and many kinds of cognitive/perceptual task related engagement.   

Often in the context of a specific task (e.g. working memory tasks such as the “n-back” task) the resting state 

networks (RS-Networks) may fall  to a lower level of activity (“deactivation” relative to baseline), although  it 
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may also increase in some sub-networks while simultaneously decreasing in others (11).    At present, there is 

no simple phasic/modal or spectral functional account of  RS-networks (nonetheless, there has been a 

considerable amount of modal/clustering and spectral analysis that has been done over the last decade), 

although a large body of research using  preprocessing and systematic controls has minimized the potential 

claim that RS-networks are a physiologic artifact due to the para-sympathetic nervous system or  that they 

have some simple common cardio-vascular origins.   Whatever their specific function may be,  they clearly  

appear to have some fundamental relation to the modulation of the larger scale brain network fluctuations 

themselves.      

It is also known that the RS-networks are not random graphs, but rather appear to be hierarchical in 

nature and highly structured (12).     This structure is often sparse due to the few local “hubs”, that are 

apparent, such that there are a few brain regions with many connections and still a larger number with many 

fewer connections and so on, and due to the sparse nature are dubbed “small world”  networks (13).  Some  

networks that designated “small world” networks are also

“scale-free” in that they are also  a special type of hub structure

that is strongly and quantitatively hierarchical,  following a well

known probability distribution over hub connections or degree,

called the Pareto (or Power function distribution).

 RS-networks are  already known to be distinctly

different in special populations that demonstrate atypical (AT)

brain activity when compared to RS-networks observed in

neurotypical (NT) controls.  For example,  in those individuals

with autistic spectrum disorder (ASD) RS-networks have been reported as having “under-connected” (14 ) long 

distance connections as well as “over-connected” short distance connections  see  (15) for discussion of both 

types).   This type of biased connectivity  has been  associated with reduced “efficiency” in potential 

communication processes (11).   In those individuals with schizophrenia, the RS-networks have been reported, 

paradoxically, as both over-connected in some sub-networks (parietal-frontal) and under-connected in other 

sub-networks (parietal-temporal), leading to a potential imbalance in the overall dynamics of their brain 

networks (11).   There are also known qualitative connectivity changes reported in aging, depression, and 

Figure 1: Adapted from (22) showing the MDS decreasing 
with Scale Free Exponent, showing a sharp phase 
transition at 2.0.  Implying more fractionated control with 
exponents >2.0.
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epilepsy (16, 17, 18).     Such network variation is possibly reflected in overall topology and structure of the 

network and are most likely to be seen in more global measures of network complexity.   In fact, Liu et al (19)  

show systematic changes in degree statistics between typical and schizophrenic networks suggesting that the 

overall global structure of the hubs in these networks are disrupted in schizophrenia.   Whether the network 

connectivity is atypical by either shifts in under or over connectivity or simultaneously by both kinds of 

connectivity biases,  we are likely to see global shifts in network communication and control.   This 

“communication efficiency” disruption has been formally quantified in the larger field of dynamical network 

theory based on the sensitivity of Scale-Free behavior.    Specifically, it  has been shown that as the  tail of such

distributions become more extreme, such networks tend towards small-world (ln(n) growth; 20), and as the 

exponents drop below 2.0  they become  “ultra-small world” (ln(ln(n)) growth),  showing highly stable and  

more efficient communication dynamics.

Scale-free exponents.  Before we can appreciate the potential neural network mechanisms  we are proposing 

here it is important to first review recent theory in dynamical network complexity.     Network 

complexity/dynamical theory on scale-free networks (21, 22)  has shown that there is a dramatic qualitative 

difference between those scale-free networks with exponents <2.0 as compared to those >2.0.   In fact, 

Nacher and Acuson (22) examine the dynamical control of a network by considering a model of reduced 

complexity, where a minimum set of possible nodes dominates the whole system-called the minimum 

dominating set (MDS).   The concept of MDS has been applied to the design and/or control of various kinds of 

discrete systems, which includes mobile ad hoc networks, transportation routing and computer 

communication networks but not as yet in terms of brain function.  It was shown (21)  in a series of  dynamical 

network control  simulations that the MDS shows a sharp phase transition (see figure 1) at β=2.0.   When β < 

2.0, the MDS slightly increases or even tends towards constant as the average Degree (the hub connection 

number) increases. However, the jump  in the number of dominating nodes at for β>2.0 is significantly larger, 

suggesting a drastic change in the network’s dominance phenomena when the scaling exponent begins to 

approach values near β = 2.0    Various network properties when β<2.0  are consistent with this increase in 

control, for example the average Degree  tends to grow more slowly,  (lnln(N)--”ultra small world”) with 

system size (it is not the case that all scale-free networks are small world especially for exponents >3.0).  
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Consequently, with  decreasing exponents (<2.0), as in the present case, connections tend to be cheap and 

hubs tend to be few but in contrast to those networks with exponent (>2.0) considerably more costly to 

create.     Qualitatively,  it has (21) been argued that networks with exponents below 2.0 are  similar to an 

optimized software library reuse system, where modules, which are expensive to create are at the same time 

very low cost to link and relink depending on specific task requirements.  Consequently, the hubs in SFNs with 

exponents <2.0  are few, expensive to create and generically productive in scope of use.   Also similarly,  it has 

been (21), shown that in networks, with exponents less than 2.0,  contain some type of  global control 

mechanisms  that could be used to coordinate global information in the network.   At the minimum this 

requires some sort of global information exchange mechanisms (from other unmeasured networks), that may 

not part of the  measured network itself but nonetheless  allows nodes to interact globally, unlike the case 

where the exponent >2.0.   In summary, these recent theoretical advances provide explicit predictions  that 

the scale-free exponent at 2.0 is a phase transition, that exponents below 2.0 are in fact “ultra-small world” 

and  this resultant topology predicts decreases in global information and decreased local network control.

Brain Networks hub structures and SFN exponents:   The nature of hub structures and their relationship to brain 

dynamics is also of increasing interest in the neuroimaging research involving resting state brain activity.     

Many have posited that there are various types of hubs that may be critical in controlling and organizing the 

emergent brain dynamics.    Bullmore & Sporns (11), for example argue that neuropsychiatric disorders  can by 

thought of as a sort of “dysconnectivity syndrome”, depending on the type or nature of the   disruption in  

topology of the brain networks.  They point out that some type of overall connectivity dysfunction should be 

apparent in  the interdependence of the structural and dynamical functional states of those networks.   They 

further point out that the topology and synchronization as well as most dynamical aspects of functional 

behavior are strongly affected by the variation in complexity metrics of structural connectivity.   If we assume 

the brain has evolved to maximize communication transfer and minimize wiring costs, then neuropsychiatric 

disorders that manifest in various ways through connectivity distributional biases, could be identified from 

the minimum dominating set (MDS), discussed before,  through estimates of scale-free exponents.     The 

limitation of the MDS theory is that it can only indicate structural anomalies when the SFN exponents grow 

strictly  greater than 2.0.   Nonetheless, this  theory  as adapted for this particular brain network context could
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provide diagnostic markers for various neuropsychiatric disorders but not necessarily between disorders, 

assuming the loss of network communication efficacy is a common property of each disorder.   We examine 

these implications of  MDS theory using archival data from Schizophrenics, Autistic Spectrum disorder and 

compared with two independent samples of neurotypicals.

Materials and Methods:

Resting-state Data

Single individual (RP set).  Repeated scans (23, 24)  of a single individual consisted of 66 daily  (M, T, 

TH@ 7:30am) scans contiguously  (except for  holidays).  RS-fMRI was performed in each of the 104 regular 

scan sessions throughout the data collection period, using a multi-band EPI (MBEPI) sequence lasting 10 

minutes (TR=1.16 ms, TE = 30 ms, flip angle = 63 degrees, voxel size = 2.4 mm X 2.4 mm X 2 mm, distance 

factor=20%, 68 slices, oriented 30 degrees back from AC/PC, 96x96 matrix, 230 mm FOV, MB factor=4). 

            Neurotypical data (BB set)  Neurotypical individuals (25)  were  scanned while resting state fMRI activity 

was acquired (The resting-state data were scanned for  approximately 8 minutes (500 s) (TR= 2.5 s, TE = 27 ms; 

acquisition matrix = 64 × 64; flip angle = 77°; slices = 43; voxel size = 3.44 mm × 3.44 mm × 3.40 mm. High 

resolution MPRAGE anatomical images were also acquired with the scanning parameters as follows: TR = 2530

ms; TE = 3.5 ms; flip angle = 7°; resolution = 1 mm × 1 mm × 1 mm-no gap).   

Schizophrenia data.  We used data from the publicly available COBRE (26) data set.  Resting-state scans were 5 

minutes in duration (TR= 2000 ms, TE: 29 ms, matrix  = 64x64,  slices, = 32 voxel size = 3 mm x 3 mm x 4 mm).  

MPRAGE anatomical images were acquired as well: (TR = 2530 ms; TE=[1.64, 3.5, 5.36, 7.22, 9.08] ms TI =900 

ms; flip angle = 7°; resolution =1 mm x 1 mm x 1 mm.

           Autism Spectrum Disorder (ASD set)  We used data collected and archived by the Autism Brian Imaging 

Exchange (ABIDE) (27) (http://fcon_1000.projects.nitrc.org/indi/abide/)  collected at UCLA and randomly 

sampled subjects from UCLA1 and UCLA2 datasets, resulting in  60 ASD subjects.  We age-matched as close as 

possible to the Biswal set (ABIDE, 8-18, mean=13, SD=3). Resting-state data was collected for 6 minutes (TR = 

3000ms; TE = 28 ms, flip angle = 90°; slices = 34; voxel size 3.0 mm x 3.0 mm x 4.0 mm.  High resolution 

MPRAGE images were also acquired:  TR=2300 ms; TE = 2.84 ms; flip angle = 9°; resolution = 1 mm x 1 mm x 1.2

mm) 
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Preprocessing

All datasets underwent the same preprocessing steps using FSL which included brain extraction, re-

alignment using FSLs MCFLIRT, and registration to the MNI 2mm standard template using FSLs FLIRT (also see 

Motion section below).    ROIs applied to all samples, were developed from a recent analysis of 2200 subjects 

over 200 tasks (28, 29)  which identified common sets of ROIs across a dozen or so different types of tasks.   

This  comprehensive work identified 264 ROIs, subsequently, using similar data sets, other groups (30) have 

added 19+ more ROIs  (giving us 283 total) which we used to extract time series from each data set and are 

listed in the supplemental materials.   The mean time-series for each ROI was used in the subsequent analysis. 

Connectivity. 

There are a number of ways to detect and measure scale-free properties or other network complexity 

structures.  One way is simply to calculate the Pearson “r” correlation between pairs of preprocessed time 

series, from selected ROIs or voxels.     This has been termed “functional connectivity” (7), although it is 

perhaps better described as simply pairwise covariance,  since there is no real connectivity data structure 

(“skeleton”) without norming and thresholding the covariance matrix.   Even if the matrix is normed and 

carefully thresholded,  this type of network identification can be unstable and often contain many false 

positive edges, as shown in simulation studies (31) as well as  lacking  simple re-sampling validation (32).  

Moreover, correlations can be produced without any true direct connection between nodes (based on 

simulations), and so are a  poor guide to graph topology.   Moreover, correlation estimates are know to be 

highly sensitive to motion artifacts (32) making their partitioning dependent on the clustering methods used 

for partitioning (also true for partial correlation).   Consequently, although correlation methods provide some 

coarse measure of scale-free structure, they generally cannot identify scale-free structure and cannot reliably 

be used to estimate SF exponents (see supplemental material).

Another common way to estimate networks from time series fluctuations is through conditional 

independence (33).    Methods of this type can be roughly grouped as “Bayesian network' estimation in that 

they use patterns of conditional probabilities to infer the underlying network structure.   Recent simulation 

studies using fMRI-like signals, (34), have shown that Bayes network search algorithms can identify with high 
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probability known networks across at least two degrees of magnitude in network size (5-500 nodes).  One 

such Bayes network search method, designed specifically for fMRI data, stands out as being particularly 

effective by using constraints arising from individual differences across sets of brain areas (35) .   IMaGES 

(Independent Multiple sAmple Greedy Equivalence IMaGES, in fact was benchmarked at 99%/95% , 

Recall/Precision in adjacency and orientation (as compared with thresholded correlation, 33%, Recall, no 

orientation; 34).     IMaGES  does a number of pre-processing steps in Degree to increase the time series signal 

to noise, decrease the drift, and identify significant event change points in each series.   IMaGES is one of the 

few graph estimation methods that also exploits individual differences as constraint satisfaction 

opportunities. Thus IMaGES can both estimate common and/or distinctive aspects of ROIs between individual 

brains.     Because IMaGES is based on conditional probabilities between ROIs across multiple subjects, it is 

more robust to motion-related artifacts that tend  to induce increases or decreases in correlation in individual 

subjects often influencing the resulting network structure.  More details concerning IMaGES can be found in a 

number of papers (35, 36)  that provide more theoretical and algorithmic details.   For each data set, 6 

independent samples of 10 subjects  (11 in the RP set) each were prepared and IMaGES was performed 

separately on each set of 10 subjects resulting in 6 independently estimated graphs.    Subsequently, network 

complexity using multiple metrics,  including Efficiency, Diameter, Energy, Global Clustering Coef, Distance 

Degree Compactness, Graph Index Complexity, Mean Distance Deviation, and Vertex Degree (in/out Degree) were 

measured. The Vertex degree (the total number of in/out connections of the node) measure in particular, is of 

interest, since it can be used to assess the hub distribution and  whether the  network displays scale-free 

behavior.   For each data set, regressions to all 6 samples (of 10 or 11-in the RP case- subjects) were performed

where a straight regression line in log-log coordinates  is consistent with a Pareto distribution with negative 

exponent reflected by the slope of the line.

Fitting Scale Free Exponents.  Clauset (37) and others have pointed out the potential  biases in 

estimation of power functions  using least squares.  Simulation studies have shown in very large samples 

(>10,000) that the class of the function (e.g., power, log-normal, poisson) could be misidentified and the 

exponent could be biased even if shown to be consistent with the class of power functions.    They show that a

maximum-likelihood estimator can provide excellent results in recovering known exponents and confirming 

the power function class using the Komologorov-Smirnov (KS.p) statistic.  However, It is less clear as the 
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sample size decreases  (where estimates are still desired) whether LSE or MLE are more accurate for exponent

estimation (clearly there will be some bias—and standard errors should increase).   In fact, earlier work due to 

in estimation of power  (Pareto) functions distributions, due to Richard Quandt (38) showed over a smaller set 

of samples that there was actually good agreement with sample sizes of 50-2000, between various methods 

including LSE, MLE and Method of Moments, showing that all estimators are consistent and “practically 

indistinguishable”.   Consequently, we report both the least squares estimators and the MLE estimators as 

well as the power function class probability statistic (KS.p), which for larger values indicates that the 

distribution is not significantly different from a power function class.   Note that in this paper we are  primarily

interested in reporting the best power function exponent fit, in Degree to test the MDS complexity theory 

discussed above (which for exponents decreasing below 3 or less are predicted to be power functions), 

despite it being possible to fit other functions given the error variance.    In general, we show  that the MLE 

estimator, tends to be more extreme than the LSE estimator with a higher standard error over sets of 

subjects.  We will also use a standard bias correction estimator on the aggregate (6 sets) independent sets 

later in the paper for yet a  3rd  type of scale-free hub estimation.      Below in table 1, we report the average 

value over all six independent samples for all parameters, showing that the power function does, in fact,  

provide a  strong fit to the Degree distributions per network data.

Results    

 Individual repeated scans: IMaGES was applied  to a single subject (RP set; 23, 24) who was scanned for

66 consecutive days.  Six samples of 11 subjects each were independently fit with IMaGES after  standard 

preprocessing was  applied for drift, motion and intra-session normalization.     The  unique graph calculated 

by IMaGES  is shown for only one of the six independent samples (11 subjects) in Figure 2A.  Examination of 

the graph in figure 2A, indicates a relatively small number of hubs distributed mainly through temporal,  

parietal and orbital frontal lobes.    Network complexity using multiple indices across all 66 days for each of 

the  six  independent sample “individuals” (11 randomly selected per set) was measured.   These measures 

included (we indicate in parentheses the value of one of grouped samples): Efficiency (0.7), Diameter (8 ) 

Energy (349.0) Global Clustering Coef (0.14), Distance Degree Compactness (563574), Graph Index Complexity 

(0.08), Mean Distance Deviation (103), Vertex order (3) and in/out order.   Each of these measures was estimated 
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over the eleven samples and had remarkable stability,  varying over all sets less than 1% over the 66 days.   

The hub degree ( not average degree) measure in particular, is of interest, since it can be used to assess the 

strength of the  network scale-free behavior.    The degree probability distributions (Pareto distribution) of the

one graph shown in Figure 2A, is graphed in log-log coordinates in  Figure 2B.    This figure also  shows 

regressions to all 6 independent samples (different color points)  graphed as degree distributions with 

regression in Log-Log coordinates.   A straight regression line in these coordinates is consistent with a Pareto 

distribution with negative exponent reflecting the slope of the line  (Note that we also estimated MLE 

exponents and tested the significance of power function class).      The slopes of all distributions are  tightly 

clustered around a mean value of 1.8, s.e. 0.01, with the total variance accounted for by the regressions for all 

sets to be about 90%.    The MLE estimates were similar but systematically lower at 1.6, s.e. .02.  The 

Komologorov-Smirnov “p” (KS.p) statistic was .33 indicating moderate to high support for a power function 

class.   These distributions indicate clearly that the resting state networks are-- given the <2.0 

exponents--“ultra-small world” (20).   Although networks with exponents less then 2.0 are not uncommon (e.g.

protein interaction networks, networks  of co-authors etc..) as outlined above they are known to be  

qualitatively and fundamentally different from those scale-free networks >2.0.  

Between Individual Networks:   In Degree to further establish the statistical validity of the exponent in 

the brain connectivity, we also randomly sampled 60 neurotypical individuals  (BB set)  who were (26)   

scanned while  resting state fMRI activity was acquired (The resting-state data were scanned for 500 s with a 

TR of 2.5 s, resulting in 200 images for each subject.    We, again,  constructed 6 independent sets of 10 

sampled subjects each and submitted each set of 10  subjects independently to IMaGES.   From the resultant 

graphs (see Figure 3A showing one selected graph from the six)  complexity analysis and degree was 

determined for each of the set of 6 graphs and an degree distribution was constructed per set and regressions

were found per set all shown in Figure 3B.   The resultant complexity measures are similar in value with a few 

exceptions to the RP repeated scans.  For example the following set were estimated, Efficiency (.8), Diameter 

(7), Energy (504), Global Clustering Coef (.08), Distance Degree Compactness (481281), Graph Index Complexity 

(.08), Mean Distance Deviation (85), Vertex order (3.25) and in/out orderagain varying over nodes.   As expected 

the variance across samples is higher then the RP set due to the fact that the sample involves different 

individuals, particularly in the intercept, but less so  in slope.   The MLE estimate this time was very similar to 
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the LSE, ( 1.8, .s.e. 0.01).  The Degree distribution slope is the same in both individual repeated scans  (RP set) 

and now in the group-wise data (1.8, s.e. 0.01) a Welch two sample t-test between the two sets of 6 measures 

(RP and BB) confirms this (t = -1.5339, df = 10, p-value = 0.1561).   Consistent with this slope overlap is the 

similarity of the various complexity measures including Global clustering coefficient (0.14,0.08), Efficiency 

(.7,.8) Diameter (7,8), Mean Distance Deviation (85,103 ) and Graph Index complexity (.08,.08).     The next set 

of analyses involve special populations including individuals with Autistic Spectrum Disorder and those with 

early onset Schizophrenia.     Here two questions arise.  Given the known network  communication and 

connectivity disruption in special populations,  do these networks still  show the scale-free signature and does 

the slope vary within the same range as established before in neurotypicals?   We first consider the case of 

Autistic Spectrum Disorder        

Autistic Spectrum Disorder (ASD) is a disease that appears to disrupt network communication 

processes, probably initiating through corpus callosum, and spreading into  frontal-parietal networks.    In 

particular, connectivity distributions  are shorter than those connections found in neurotypicals, indicating a 

hyper-connectivity in various regions of the brain (40).   We used data collected and archived by the UCLA 

ABIDE (28) consortium and randomly sampled subjects from Samples 1 and 2, resulting in  60 ASD subjects 

(Scanning parameters for ABIDE and COBRE are documented  above and also on the database sites).   After fitting

the RS-networks with IMaGES we then calculated the  standard complexity measures again including:  

Figure 2A: Graph structure identified from resting state fMRI
data collected over 66 days from a single individual (RP).

Figure 2B:  Degree distribution calculated from the graph 
network identified in figure 2A using IMaGES.  Each of 6 
distribution aggregated over 11 days are fit to a Pareto distribution in
log-log coordinates.   
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Efficiency (0.77),  Diameter (7), Energy (470), Global Clustering Coef (0.02) Distance Order Compactness (568988),

Graph Index Complexity (0.06), Mean Distance Deviation (88), Vertex Order 2.9) as well as the Degree 

distribution for each  set of 10 sampled individuals,  resulting again in 6  independent regressions in Log-Log 

coordinates shown in figure  4B.    On the left of this figure (figure 4A) we show a typical graph derived from 1 

set of 10 subjects in the 6  ASD  samples.      The overall graph structure as identified by IMaGES is similar to 

the neurotypical graphs in terms of gross features, but as the complexity statistics reveal, there are subtle 

differences.  For example the global clustering coefficient has dropped by a factor of 3 or 4 compared with 

either neurotypical samples sets, while the index complexity has also decreased slightly.   Also the Degree 

distribution exponent has increased from the neurotypicals to 2.4, s.e. .03 also confirmed by the MLE estimate

(2.8, s.e .0.1).  In general it appears that the overall hub structure for ASD has become more fractionated and is

tending towards more localized hubs per region.     

Schizophrenic (SZH).   Schizophrenia is yet another devastating mental illness that also has observed 

shifts in brain connectivity distance distributions.  In this case the connectivity distributions show both 

systematic under-connectivity as well as over-connectivity across various areas of the brain, however with a 

total global mean shift towards longer distance connections and less hyper-connectivity (41).     In contrast to 

ASD distributions,  Schizophrenia tends to have the opposite connectivity distribution, possessing global hypo-

Figure 3A: Graphical structure identified from Resting 
state fMRI time series from 60 different individuals.  Each
distribution is the aggregate of ten individuals into six 
different samples.

Figure 3B: Degree distribution of graphical model identified by IMaGES in 
figure 3A.  Each of 6 distribution s aggregated over 10 individuals each is 
regressed to a Pareto distribution in log-log coordinates.
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connectivity relative to hyper-connectivity in the  ASD distance distributions, nonetheless connectivity is 

disrupted.      We assessed the graphical structure using the COBRE (26) data set, randomly sampling 60 

subjects from the 80 subjects in the dataset who also were scanned during resting state.    These subjects 

were also again fit with IMaGES over  the 6 sets of 10 subjects each, producing an example of one of the 

resultant graphs shown if Figure 5A.   Again we calculated the various complexity measures and Degree 

distribution from this graph. The complexity measures were not unlike the ASD profile including Efficiency 

(0.79), Diameter (7), Energy (541), Global Clustering Coef (0.057), Distance Degree Compactness (554156), 

Graph Index Complexity (0.07), Mean Distance Deviation (73), Vertex Order (3.0)   The Order distribution 

for each of the 6 regressions of each graph is shown in  Figure 5B, and shows an average slope value of 2.3,  

with s.e. 0.04,  and a slightly higher MLE exponent  of  2.9 with s.e. 0.2.    These are values statistically  

indistinguishable from the ASD scale free distribution exponent of 2.4 ( t = 1.14, df = 9.539, p-value = 0.2805).

The two neurotypical exponents (RP and BB) are significantly different from the two  special 

populations  (ASD and SZH) samples (Welch's two-sample t-test:  t = 7.1095, df = 13.119, p-value = 7.549e-06), 

indicating that the special populations possess scale free distribution exponents greater than 2.0 , with a 

more than a 30% increase over the neurotypical exponents putting those individuals with atypical brain 

activity in the scale-free exponent regime of greater than 2.0 (21).    We present all  estimated exponents and 

related parameters in the next table over all 6 independent sets of 10  (11; RP) subjects each with per cent 

Figure 4A: Graphical structure identified from 6 
different samples of 10 individuals each with Autistic 
Spectrum Disorder from the UCLA ABIDE database, 
using samples 1 and 2. 

Figure 4B: Degree distributions from graphical structure in figure 4A, 
showing 6 different samples aggregated over 10 individuals from the 
UCLA ABIDE ASD database.
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variance accounted for (r^2) and standard errors (se).

Parameter 

Estimates

  LSE/se           PVAC/se MLE/se KS.p>/se

RP    1.8/.01   .89/.01   1.6/.02  .33/.09
BB   1.8/.02   .84/.02   1.8/.02  .42/.1

ASD    2.4/.03   .84/.02    2.8/.1   .77/.06
SZH    2.3/.04   .87/.01    2.9/.2   .72/.1

                                 Table 1:   Scale Free exponent estimation (LSE and MLE) and standard errors

Motion.  A possible alternative explanation of the exponent variation might be thought to be in the 

potential increase in motion artifacts that could create a confound, especially in  atypical populations (33,41).  

In Degree to remove motion artifacts as a potential explanatory variable, we provide three different kinds of 

controls and analysis.    First,  in Degree to establish a baseline motion  we  measured the displacement of 

brain volumes over time using fsl_motion_outliers, showing that there was an average displacement of the 

atypical populations greater than the typical populations (t=3.5,df =12.37, p<0.01).    To test whether this 

difference could be the source of the SFN exponent difference we observed that there were also significant 

individual differences in displacement motion, therefore allowing us to sub-sample from the atypical 

populations  a specific set of low-motion subjects  that overlapped with the average displacement 

distributions for neurotypical populations.    Specifically, we used standard methods for detecting outlier 

motion in the BOLD time series (using both fsl_motion_outliers and CompCOR; removing “spikes” >1/2 mm) and 

selected  sets of 10 subjects each from the ASD sample and the SZH sample with the smallest motion 

displacement averages that were within the range of the neurotypical subject motion (t=1.2,df=12.5, p>0.15; 

maximum % average frame displacement >.5mm, NT, 4%, SZH, 5%, ASD, 8%).  In those cases the exponents 

refit per group and still showed values consistent with each group:   where the exponents were >2.0 (ASD, 

2.59, SZH 2.8) despite the absence of significant motion displacement differences between the typical and 

atypical groups.    This in itself indicates motion has minimal or in fact, no effects on complexity of the hub 

structure.

Second, in order to further control for  the possibility that motion is a potential  confound, we 

selected a sample of 10 subjects in the neuro-typical with high displacement motion over time and then refit 

the Pareto and estimated the exponent in this high motion sample .  If motion is a factor then we might 

expect a shift in exponent to be higher in this case, in fact, the exponent was identical  to the original overall 
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motion sample where exponents  were less then 2.0 (i.e., Hi Motion NT, 1.85).    Consequently these tests show

that although our atypical samples, do possess more average displacement motion then typical samples, they 

do not at the same time affect the scale-free exponents, and therefore are shown to be  mainly independent of 

the scale free distributions and their global topology.

Finally, we  more generally tested  the effects of head motion, by simulation tests which were 

designed with injected noise into the original ASD or SZH time-series.  Once adding the noise, we then refit 

the  distributions and  estimated exponents showing no change  in the exponents as noise increased up to10% 

of the mean value of the original time-series.  In these simulations that as long as noise is injected uniformly 

throughout the network structure, as compared to some systematic noise injected in specific parts of the 

network structure.  might reduce connectivity globally as overall edge correlation decreases randomly, thus  

potentially reducing uniformly the number of hubs throughout the topology as opposed to differentially 

altering the overall topology at either the high or the low end of these distributions, which would have to 

occur in order to change a topological feature of the graph such as degree statistics.      So although motion 

might  be the source of many kinds of first order statistical artifacts (especially within in correlation measures, 

see 33) and false alarms, it appears not to be a factor in the more complex hub degree statistics estimated 

using conditional independence methods such as in Bayesian search methods like IMaGES.

Figure 5A: Graphical structure identified from fMRI
time series  using IMaGES from 6 samples (one
sample shown) aggregated over 10 individuals from
the COBRE database.

Figure 5B: Degree distributions identified from graphical structure 
shown in Figure 5A.  Each of six samples containing 10 individuals 
from the COBRE database were regressed against a Pareto 
distribution in log-log coordinates.
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Aggregate Estimates of exponents: controlling for saturation (min-x) and cutoff bias.  Finally, we provide a 3rd 

independent way to estimate the exponents to provide further convergent evidence for the MDS theory.    

In this case, we use an estimator often used for fitting SFNs, that can deal with two common biases in the 

scale-free exponent; one is referred to as low degree saturation at the initial part of the distribution which 

indicates potential mis-estimation or sampling error.  The second bias is at the back end of the  tail and usually 

referred to as high degree cutoff.    Neither bias actually rules out Scale-Free network behavior (1) and leads to 

a specific  SFN distribution estimator  that is typically used to detect how the strength of the log-log linearity  

while  controlling  for both biases:

P(k) ~ (k+k0)^-α *(exp(-k/k1))

Figure 6: Aggregate degree distribution over the 6 independent estimates.  Fits are based on "scale-free" estimator 
with two kinds of bias.  One bias indicated by parameter k0, is termed the high degree saturation bias, while the second
bias represented by k1, is called the low degree cut-off bias.  All parameters were fit with nonlinear least squares (NLS) 
fitter allow all parameters to vary freely.   All fits were excellent with R^2>.92,  Atypical populations showed even 
greater divergence from 2.0 while neurotypical groups showed values below 2.0 consistent with the MDS theory.
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lnP(k)~ -α ln (k+k0) – (k/k1)   (linear version)

In this equation, k is the hub degree and  the k0, estimates the amount of low degree saturation bias, while the 

k1 term estimates the amount of bias due to high degree cutoff.     We aggregated the 6 independent samples 

into one distribution per group and re-estimated the exponents one more time.   Shown in  Figure 6 are the 

distributions with the bias correction per group.   The bias parameters were left to vary so that the overall bias

of each of the log-log fits could be estimated.      In the Neurotypical cases, RP and BB both were best fit with 

with small k0 (0.1, 1.4)) and larger k1(1,1.7) with exponent values still <2.0  (1.4, 1.8), while the Atypical groups

were best fit with larger k0 bias terms and smaller k1 (1.9, 0.3; 1.6, 0.5).      These estimates were more similar 

to the MLE differences between the Neurotypical and Atypical groups that crossed 2.0.   The Atypical groups, 

in fact, had considerably higher values (3.7, 3.0), then either MLE or linear LSE estimates but again consistent 

with the MDS theory that shows phase transition at 2.0.

Classifier Results. We  also used classifier methods to look for more convergent evidence for the MDS  

complexity theory.   First,  we applied a naïve Bayes classifier (nBC) to the exponents from the neurotypical 

and atypical samples to predict group membership based on the distributions of the exponents in each group. 

Predicted Actual

NT AT

NT .92 .01

AT .08 .99

                      Table 2: Naive Bayes Classifier on exponents

Shown in table 2 is the 10 fold cross-validation showing high probability classification rates for both typical 

and atypical groups.   Using the nBC we can also estimate  the conditional probability of each group given the 

SFN exponent value.  In this plot (Figure 7) we can see that the cross-over exponent for equal conditional 

probability is near 2.1, consistent with the MDS complexity theory outlined before.  

Graph Structure Classification test.  The next classifier test focused on the overall global topology. Can 

we discriminate the neurotypicals from the atypicals using only the graph structure itself, independent of the 

SFN exponents?  This would provide an independent albeit coarse confirmation (consistency test ) of the 

scale-free exponent markers in that the overall graph structure itself provides discrimination between 

Figure 7: showing the 10-fold cross validation sampled 100 times.  
 Estimated conditional prob. Dependent on  SFN exponent.   
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neurotypical and atypical groups.  To test this possibility  we converted each graph to an adjacency vector 

consisting of  of 39,903 (283 x 282)/2 edges indicated by

either “0” or “1”.   We removed nodes that were either all

“0” or “1” leaving 15,035 edges to be submitted to SVM

(logistic kernel)  for both atypical  (141) and neurotypical

(130) subjects.   Using an SVM classifier logistic kernel, the

classification overall accuracy based on 10 fold cross-

validation was 97%  overall correct accuracy.  This result

further confirms the  graph complexity difference of

neurotypical groups from atypical groups based on only

the underlying graph structure, thus providing further support  that there is  a shift in overall topological 

measures such that SFN exponents might index

Exponent varies with  Phenotypic Severity (individual differences).   Given the conditional probability 

dependence on group exponent and individual graph classification results, we further examined whether 

individual variation in the atypical groups would show dependence on phenotypic measures of  the severity of 

the diseases.  Shown in Figure 8 using the ASD sample of the atypical group we created exponents per subject 

and then correlated them with autistic verbal disturbance measures in particular the ADI_R_Verbal_Total_BV 

(“current”, ABIDE phenotypic measures) showing a strong correlation (R=0.6, p<.0001).   No correlation 

occurred with other measures such as IQ sub-scores or social disturbance measures in the ABIDE phenotypic 

variables.     

Using the COBRE phenotypic measures (there was only one) of diagnostic category (DSM: 295.3- 

Schizophrenia-paranoid type—both common and at the same time one of the most severe diagnostic 

categories as compared to Residual type (295.6, for example), we sorted exponents from individuals in the top

10% and bottom 10% and then simply counted the number of Schizophrenia-paranoid per group doing 

binomial tests showing that the top 10% exponents (>3.0) were significantly dependent on number of 

Paranoid Schizophrenia in the sample (p<.00001), where the bottom 10% (<3.0) were not (p>.13).

Figure  8: Verbal Disturbance Measures ("current") as a 
function of SFN exponent per individual
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Discussion.  

We have shown that the identified SFN exponents  can potentially provide a biomarker for the atypical

brain activity in two special populations.   This result depends on a number of innovations and assumptions.  

First as discussed above, is the recent theoretical work on network complexity showing that network stability 

and communication are causally related to the hierarchical hub structure.   Clearly, stronger modular and 

cluster structure allows a small group of nodes to provide global communication and synchronization (42).  

This modularity and communication efficiency is shown by (22) to be indexed by the SFN exponents as they 

cross a value of 2.0.   A second innovation concerns the specific Bayes network search model—IMaGES—which 

scales with a large number of nodes (>500), and is sensitive to the conditional dependence and orientation 

tests.  This type of search allows  for the node structure to express more subtle hub and modular 

configurations unlike simpler connectivity measures (e.g correlation) that cannot (see supplemental material 

on correlations).      The orientation graphs are  also shown to be robust against head motion that in fact,  

could be greater in atypical populations.   We provide 4 different tests including sub-sampling low motion 

atypical subjects showing that their SF exponents are unchanged.

   Brain mechanisms for this type of scale-free exponent difference between neurotypicals and the two 

special populations are plausibly related to the types of biases in connectivity distributions that are both  

apparent, but in different ways in mental diseases such as Schizophrenia and Autistic Spectrum Disorder.   

Both under-connectivity and over-connectivity can produce shifts in increasing density or sparseness from a 

normative distribution that typically supports the communication of a larger number of nodes with a smaller 

control set.  Consequently, there might be a number of different ways network communication and control 

can fail or be disrupted.    Of course, we are not therefore arguing that these two diseases are  the same, 

however,  that the SFN exponent is unable to distinguish between Autism and Schizophrenic populations, is 

actually a potentially important outcome.  There have been similarities between these two special populations

that date back to1940s, and although the two mental disorders are now considered to be clearly clinically 

distinct, they also  share many clinical features.  For example,  social withdrawal, communication impairment, 

and poor eye contact seen in ASD are similar to the negative symptoms seen in youths with Schizophrenia, but

again we stress there are many other differences.   Nonetheless,  If the exponents found for the special 

populations are clustering the two groups,  this would be consistent with a common loss of global network 
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control, and the reduction of potential dynamical control and fractionation of the network hub structures.  

These  shifts in brain network control  would also be  consistent with disruptions in cognitive control and 

working memory,  hallmarks of the cognitive deficits seen in both of these populations.
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