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Abstract 

 Zebrafish are a genetically tractable vertebrate that hold considerable promise for 

elucidating the molecular basis of behavior. Although numerous recent advances have been 

made in the ability to precisely manipulate the zebrafish genome, much less is known about 

many aspects learning and memory in adult fish. Here, we develop a contextual fear 

conditioning paradigm using an electric shock as the aversive stimulus. We find that contextual 

fear conditioning is modulated by shock intensity, prevented by inhibition of (N-methyl-D-

aspartate) NMDA receptors, lasts at least 14 days, and exhibits extinction. Furthermore, fish of 

various background strains (AB, Tu, and TL) are able to acquire fear conditioning, but differ in 

fear extinction rates. Taken together, we find that contextual fear conditioning in zebrafish 

shares many similarities with the widely used contextual fear conditioning paradigm in rodents. 

Combined with the amenability of genetic manipulation in zebrafish, we anticipate that our 

paradigm will prove to be a useful complementary system in which to examine the molecular 

basis of vertebrate learning and memory.  
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Introduction 

 Zebrafish are a useful model organism for studying physiology due to their genetic 

accessibility, low cost, and potential for high-throughput analysis (Grunwald and Eisen, 2002). 

Given that approximately 70% of human genes have an obvious orthologue in fish (Howe et al., 

2013) zebrafish can be used to model various human diseases (Lieschke and Currie, 2007) and 

are emerging as a powerful tool for the in vivo screening of compounds for drug discovery (Zon 

and Peterson, 2005; MacRae and Peterson, 2015). More recently, both larval and adult 

zebrafish have been successfully utilized to study both basic questions in neuroscience, and 

gain a deeper understanding of the genetics of neuropsychiatric and neurodegenerative 

diseases  (Agetsuma et al., 2010; Ahrens et al., 2012; Schmid and Haas, 2013; Kalueff et al., 

2014; Leung and Mourrain, 2016). 

 The strength of zebrafish for understanding the genetic basis of behavior has been 

realized using forward genetic screens in both adult and larval fish (Darland and Dowling, 2001; 

Muto et al., 2005; Gerlai, 2010). With the advent of scalable genome editing technologies, such 

as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, the potential for 

performing targeted high throughput reverse genetic screens is now also feasible (Hwang et al., 

2013; Varshney et al., 2015). Additionally, zebrafish hold considerable potential in personalized 

medicine, as the CRISPR/Cas9 system has been successfully used to precisely knock-in 

exogenous DNA (Hisano et al., 2015). However, to fully leverage the zebrafish model to 

understand how genetics contributes to behavior in both health and disease requires a deep 

understanding of zebrafish behavior.  

 Adult zebrafish exhibit a rich repertoire of behaviors, from complex social interactions, to 

anxiety-like behaviors, and various forms of learning (Kalueff et al., 2013; Gerlai, 2015). 

Associative learning is an important, and highly conserved, form of learning in which an initially 

neutral conditioned stimulus (CS) is paired with an unconditioned stimulus (US) resulting in the 
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expression of a conditioned response (CR) upon subsequent exposure to the CS. Although both 

classical (Pavlovian) and operant conditioning has been demonstrated in zebrafish (Arthur and 

Levin, 2001; Xu et al., 2007; Blank et al., 2009; Agetsuma et al., 2010; Sison and Gerlai, 2010; 

Valente et al., 2012; Manuel et al., 2014; Gorissen et al., 2015; Fernandes et al., 2016), many of 

these tasks require habituation or training over multiple days, do not last beyond 24 hours 

following training, are difficult to assess, or are not generalizable to fish of different genetic 

backgrounds. Here, we describe the development of a contextual fear conditioning task in adult 

zebrafish that is robust, rapidly acquired, straightforward to measure, and allows for the 

examination of the various phases of learning (acquisition, consolidation, and retrieval).  
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Results 

Shock Intensity 

 We initially determined an appropriate shock intensity to reliably elicit both an 

unconditioned response (UR) and a CR in zebrafish. We administered shocks ranging from 0 to 

20 mA to separate groups of fish during the training period (Figure 1A). We found that a 20 mA 

shock resulted in both a robust UR (i.e. an activity burst during shock administration) and CR 

(i.e. a decrease in distance travelled following repeated shock administration) whereas a 10 mA 

shock resulted in a less consistent UR and no CR, and the 5 mA shock resulted in no 

discernible change in locomotor activity (Figure 1B).  

The UR of fish to the shock stimulus differed depending on the shock intensity administered 

(F(3,74) = 41.8, P = 6.6 ˣ 10-16) with a Dunnett post-hoc tests indicating that the 10 mA and 20 

mA groups differed from the no shock group (5 mA: P = 0.88, 10 mA: P < 1.0 ˣ 10-4, 20 mA: P < 

1.0 ˣ 10-4 Figure 1C). Additionally, the distance travelled of fish subjected to different shock 

intensities was different during the last half of the training trial (F(3,74) = 29, P = 1.6 ˣ 10-12) with 

a Dunnett post-hoc test indicating that only the 20 mA group differing significantly from the no 

shock group (5 mA: P = 0.68, 10 mA: P = 0.99, 20 mA: P < 1.0 ˣ 10-4; Figure 1D).  

When placed back into the tank during the test, all three groups administered shocks 

initially had a decrease in their locomotor activity, however, the 5 and 10 mA groups returned to 

baseline levels of activity within 2 minutes, whereas the decrease in swimming in the 20 mA 

group was persistent throughout the trial (Figure 1E). Examination of the first half of the testing 

trial confirmed that there was a stimulus dependent effect of treatment on distance travelled 

(F(3,74) = 3.6, P = 0.018) with a Dunnett post-hoc test indicating that only the 20 mA group 

differed from the no shock group (5 mA: P = 0.35, 10 mA: P = 0.54, 20 mA: P = 0.0053; Figure 

1F). However, Bonferroni corrected one-sample t-tests found a strong trend towards a 

difference from zero for the 5 mA group and that both the 10 and 20 mA groups significantly 
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differed from zero (no shock: P = 1, 5 mA: P = 0.058, 10 mA: P = 0.038, 20 mA: P = 0.00018). 

Taken together, these data suggest that administration of 20 mA shocks results in the formation 

of a robust CS-US (tank-shock) association with less pronounced effects using the 5 and 10 mA 

shock intensities. Furthermore, the effect on behavior during testing appears to be most 

pronounced during the first half of the testing trial (Figure 1E). Based on these findings, we used 

the 20 mA shock intensity throughout the rest of our experiments and focus our analysis on the 

first 2.5 minutes of testing. 

 

Tank Specificity 

 The decrease in swimming we observe following shock administration to zebrafish may 

reflect injury, and not a conditioned fear response. Therefore, we sought to determine if fear 

conditioning in zebrafish is context-specific, a well-known characteristic of contextual fear 

conditioning in rodents (Owen et al., 1997; Rudy and O’Reilly, 1999). To accomplish this, we 

interspersed exposure to another novel tank (tank B) with exposure to the tank in which shocks 

were administered (tank A; Figure 2A). When fish were tested in tank A, they had a persistent 

decrease in their distance travelled relative to baseline compared to testing in tank B (Figure 

2B). Comparing fish during the first half of the trial confirmed that testing in tank A resulted in a 

decrease in locomotor activity compared to testing in tank B (t(58) = 2.71, P = 0.0088; Figure 

2C). These data suggest that zebrafish are able to discriminate between tanks, and thus the 

conditioned response is unlikely to be due to injury. 

 

MK-801 

 Many forms of learning in a variety of species are known to depend on NMDA receptor 

function (Abel and Lattal, 2001), including zebrafish (Blank et al., 2009; Sison and Gerlai, 2011). 
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To determine if contextual fear conditioning similarly requires NMDA function, we administered 

20 µM MK-801, an NMDA receptor antagonist, to zebrafish following training in contextual fear 

conditioning (Figure 3). We found that fish treated with vehicle had a persistent decrease in 

locomotor activity during testing, whereas those treated with MK-801 did not (Figure 3A). An 

examination of the first half of testing confirmed that vehicle treated fish suppressed their 

locomotor activity compared to MK-801 treated fish (t(35) = 3.45, P = 0.0015; Figure 3B). 

 

Time Course 

 Thus far we have found that contextual fear memories are present one day following 

training, which is a time frame consistent with numerous previous studies examining memory in 

zebrafish (Blaser and Vira, 2014; Kalueff et al., 2014; Gerlai, 2015) However, it is largely 

unknown how long memories in zebrafish may last. In order to determine how long-lasting the 

contextual fear conditioning memory is, we trained separate groups of zebrafish with delays of 

7, 14, 21, or 28 days between training and testing (Figure 4). We found that at all delays, the 

decrease in locomotor activity at the beginning of testing was clearly present (Figures 4A-D, 

left). Analysis of the first half of the testing trials indicated that a robust fear memory lasts 

between 14 and 21 days (7 days: t(36) = 3.25, P = 0.0025; 14 days: t(38) = 2.80, P = 0.0079; 21 

days: t(37) = 1.89, P = 0.066; 28 days: t(39) = 1.53, P = 0.13; Figures 4A-D, right).  

 

Extinction 

 One phenomenon related to associative learning is extinction. In extinction, repeated 

exposure to the CS in the absence of the US results in a reduction of the CR. We attempted to 

extinguish the tank-shock association by repeated exposure of the fish to the conditioning tank 

on successive days. We found that, although within session extinction is present during each of 
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the four days of testing, the decrease in locomotor activity at the beginning of the session 

persisted throughout the days of testing (Figure 5A). A 2 ˣ 4 (group ˣ day) repeated measures 

ANOVA applied to the change in distance travelled during the first half of each testing trial found 

a main effect of group (F(1,61) = 31.5, P = 5.13 ˣ 10-7), but not day (F(3,183) = 2.11, P = 0.10), 

and a day by group interaction (F(3,183) = 4.44, P = 0.0049; Figure 5B). Bonferroni corrected 

post-hoc tests found that shocked fish differed from un-shocked fish at each day (day 1: P = 

1.68 ˣ 10-7, day 2: P = 0.0019, day 3: P = 0.026, day 4: P = 0.026), and that the shocked fish at 

days 3 and 4, but not day 2, differed from shocked fish at day 1 (compared to day 1, day 2: P = 

0.073, day 3: P = 0.0038, day 4: P = 0.0034). Taken together, these data suggest that the 

memory partially extinguished from day 1, but was still present after four consecutive days of 

exposure to the conditioning tank. 

 

Tu and TL fish 

 Many learning tasks in rodents, and some in fish, are known to be affected by the 

genetic background of the strain under study (Owen et al., 1997; Gerlai, 1998; Vignet et al., 

2013; Gorissen et al., 2015). Thus, we sought to determine if different widely used strains of 

zebrafish exhibit responses in our contextual fear conditioning paradigm that are similar to the 

AB strain we have examined thus far. Tu fish have been used for sequencing of the zebrafish 

genome (Howe et al., 2013) and TL fish are another commonly used strain that are genetically 

distinct from both the AB and Tu strains (Trevarrow and Robison, 2004; Guryev et al., 2006). 

Fish of both the Tu and TL background exhibited responses during training that were similar to 

that of AB fish, although the decrease in swimming in Tu fish appeared to plateau more quickly 

than in either the AB or TL strains (Figures 6A and B, left). Both Tu and TL fish increased their 

locomotor activity in response to the 20 mA shock (Tu: t(30) = 4.13, P = 0.0027; TL: t(36) = 

3.30, P = 0.0022).  An examination of data during successive exposures to the testing tank 
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indicated that Tu fish had both robust within and between session extinction (Figure 6C) 

whereas TL fish showed little within session extinction and only moderate between session 

extinction (Figure 6D). 

In Tu fish, a 2 ˣ 3 (group ˣ day) repeated measures ANOVA performed on the difference 

scores during the first half of testing during each extinction day found a main effect of group 

(F(1, 30) = 28.0, P = 1.0 ˣ 10-5), a main effect of day (F(2, 60) = 6.44, P = 0.0029) and a strong 

trend towards an interaction between day and group (F(2,60) = 3.02, P = 0.056; Figure 6E). 

Bonferroni corrected post-hoc tests indicated that shocked Tu fish differed from un-shocked fish 

at days 1 and 2, with a trend towards a difference on day 3 of extinction (day1: P = 0.0038, day 

2: P = 0.005, day 3: P = 0.087). Furthermore, comparisons with the first day of testing indicated 

that fish significantly decreased their activity on day 3, but not day 2, of extinction testing 

(compared to day 1, day 2: P = 0.24, day 3: P = 0.037).  

In TL fish, a 2 ˣ 4 (group ˣ day) repeated measures ANOVA using difference score data 

from the first half of testing on each day found a main effect of group (F(1, 36) = 79.8, P = 1.16 ˣ 

10-10), and a main effect of day (F(3,108) = 2.97, P = 0.035), but no group by day interaction 

(F(3, 108) = 1.50, P = 0.22; Figure 6F). Bonferroni corrected post-hoc tests comparing shocked 

and un-shocked fish for each day found that shocked fish differed from un-shocked fish at each 

day (day 1: P = 2.19 ˣ 10-7, day 2: P = 0.00016, day 3: P = 2.4 ˣ 10-5, day 4: P = 0.0056) and that 

in shocked fish only testing on day 4 was different from the first day of testing (compared to day 

1, day 2: P = 0.16, day 3: P = 0.30, day 4: P = 0.028). Taken together, these data suggest that 

extinction takes longer and is less robust in TL fish compared to both AB and Tu fish. 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2016. ; https://doi.org/10.1101/068833doi: bioRxiv preprint 

https://doi.org/10.1101/068833


Contextual Fear in Zebrafish     10 
 

Discussion 

 In the present study, we find that contextual fear conditioning in zebrafish is a robust and 

rapidly-acquired task that allows for the examination of numerous types of learning. Contextual 

fear conditioning can be modulated by the strength of the shock, lasts at least 14 days, 

extinguishes following repeated exposure to the context (tank), and can be acquired by fish with 

a variety of genetic backgrounds. Furthermore, the apparatus was built from inexpensive off-

the-shelf components and the analyses were performed using open-source software, thereby 

making this behavioral paradigm easily scalable and widely accessible. 

 The simplest alternative explanation for the findings in the present study is that the 

decrease in locomotor activity observed following shock administration is due to injury and not 

the formation of a tank-shock association. However, several aspects of our findings argue 

against this interpretation. Firstly, in almost every experiment, there is significant within session 

extinction where the decrease in locomotor activity is greatest during the first half of the test 

session and approaches zero during the second half of testing. If the fish were injured by the 

shock, we would expect the decrease in locomotor activity to remain constant throughout the 

session. Secondly, if fish were injured due to the shock, it is unlikely that administration of MK-

801 would be able to prevent learning in this paradigm (Figure 3). Thirdly, fish are able to 

modulate their decrease in locomotor activity based on the tank in which they are placed where 

the decrease is greater in the tank they were shocked in as opposed to a different novel tank 

(Figure 2). If the suppression of locomotor activity were due to injury, we would expect the 

decrease to be the same in both tanks. Finally, we see no effect on locomotor activity after 

placement back in home tanks immediately following shock administration when any such effect 

of injury would be most obvious (unpublished observations).  

 Although a number of other aversive learning tasks have been described in zebrafish, 

none have been reported to be as rapidly acquired, robust, and generalizable as the contextual 
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fear conditioning task we describe here. For example, inhibitory avoidance in zebrafish has 

been found to be rapidly acquired, requiring only one trial for learning (Blank et al., 2009). 

However, some strains of fish, such as the widely used AB strain, are unable to learn inhibitory 

avoidance (Gorissen et al., 2015) whereas we find that the AB, Tu, and TL strains all 

demonstrate robust learning of contextual fear conditioning. Both operant and classical fear 

conditioning to a discrete visual cue have been described in adult zebrafish using a shock 

(Agetsuma et al., 2010; Valente et al., 2012) or alarm pheremone as the US (Hall and Suboski, 

1995). However, work using shocks required multiple trials with the memory lasting no longer 

than 6 hours (Agetsuma et al., 2010; Valente et al., 2012), and the alarm pheromone only elicits 

an unconditioned response in ~40% of fish (Hall and Suboski, 1995). In contrast, we find that 

our contextual fear conditioning memory lasts at least 14 days (Figure 4) and the shock US 

elicits a measurable, robust, and consistent increase in locomotor activity across several strains 

of fish (Figures 1 and 6).  

 To the best of our knowledge, the present study is the first demonstration of memory 

retention beyond 24 hours after one-trial learning in zebrafish. Establishment of a learning task 

with a clearly delineated acquisition phase and sufficient strength to last weeks is useful as it 

allows for the study of not only molecular/cellular consolidation that occurs over 24 hours 

following learning, but also slower processes (e.g, systems consolidation or forgetting) that may 

emerge over the course of days and weeks rather than hours (Abel and Lattal, 2001; Wixted, 

2004; Frankland and Bontempi, 2005). Interestingly, we found that in zebrafish the strength of 

the fear memory decreased progressively as the interval between training and testing increased 

(Figure 4). This is in contrast to what is observed in rodents, where fear memories tend to have 

the same or greater strength at increasing delays (Fanselow et al., 1994; Houston et al., 1999).  

 In addition to contextual fear learning, our learning paradigm can also be used to study 

extinction. Extinction of associative memories has previously been reported in zebrafish for 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2016. ; https://doi.org/10.1101/068833doi: bioRxiv preprint 

https://doi.org/10.1101/068833


Contextual Fear in Zebrafish     12 
 

inhibitory avoidance (Piato et al., 2011), visual discrimination learning (Colwill et al., 2005), and 

conditioned place avoidance (Yu et al., 2006). Here, we find that extinction occurs both within a 

single testing session as well as between sessions during repeated exposure to the testing tank. 

Interestingly, we find that fish of the Tu background extinguish after three days of exposure to 

the test tank whereas fish from the AB and TL genetic backgrounds still have significantly 

elevated levels of fear even after four days of extinction. This is similar to what is observed in 

the extinction of contextual fear in rodents, where complete extinction of the fear response 

occurs in some strains of rodents but not others (Stiedl et al., 1999; Camp et al., 2009).  

 Taken together, we find contextual fear conditioning in adult zebrafish to be a reliable, 

long-lasting, and versatile task for studying various aspects of associative learning. The 

paradigm described here is similar in many ways to contextual fear conditioning in rodents that 

has proven to be a powerful tool for probing the many facets of learning and memory (Johansen 

et al., 2011; Maren et al., 2013). The robustness of fear conditioning, along with the ability to 

modulate the strength of learning via shock intensity, makes it suitable to examine factors that 

may either enhance or inhibit learning.  
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Materials and Methods 

Subjects 

 Subjects were AB, Tu, or TL Zebrafish 3-6 months of age. Male and female fish were 

housed together, 7-11 per 2 L tank. All fish were bred and raised at the Hospital for Sick 

Children in high density racks under standard conditions with a 14:10 light/dark cycle (lights on 

at 8:30). Fish were fed twice daily with Artemia salina. Behavioral testing took place between 

12:00 and 18:00. All procedures were approved by the Hospital for Sick Children Animal Care 

and Use Committee.  

 

Apparatus 

 The behavioral apparatus consisted of two identical Aquaneering crossing tanks 

(ZHCT100T) covered with white self-adhesive film and two horizontal black stripes to provide 

visual cues. Two stainless steel mesh grids were also placed at each end of the tank. Tanks 

were surrounded by white Plasticore to prevent interference from external visual stimuli. 

Webcams (Logitech C270) were mounted approximately 35 cm above tanks. An alternate tank 

(Tank B) consisted of a 1.8 L Aquaneering tank (ZT180) with blue and green stripes on the 

bottom. To further differentiate the alternate tank from the training tank, several visual stimuli 

(photographs of Norwegian Fjords) were placed on the inside walls of the Plasticore enclosure. 

A Nextech (c-215) camera was placed approximately 40 cm in front of the tank. Videos were 

recorded on a laptop PC using Free Screencast software at approximately 15 frames per 

second and encoded using the Xvid MPEG-4 codec. DC electric shocks were administered 

using a Bio-Rad PowerPac Basic power supply.  
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Behavioral Procedure 

 The basic behavioral procedure had three phases (Figure 1A): pre-exposure, 

baseline/training, and testing. During pre-expsoure on day 1, fish were placed individually in the 

test tank for five minutes. On day 2, baseline and training, individual fish were placed in the test 

tank for 10 minutes. Locomotor activity during the first half of the session was considered 

baseline. During the second half of the session, fish received five shocks (3 seconds, 5-20 mA) 

spaced one minute apart starting 5 minutes into the session. On day 3, individual fish were 

placed back in the test tank for five minutes. Video was recorded for each session and saved for 

offline analysis. Before and after each individual fish was placed in the apparatus, tanks were 

rinsed with distilled water and filled with 800 mL of fresh system water. Clear plastic lids were 

placed on the top of the tank during recording. At least two separate tanks of fish were used for 

each experimental group. 

 

Behavioral Analysis 

 Videos of individual fish were tracked using Ctrax (Branson et al., 2009) and the 

distance travelled during each second was calculated using a custom written Python script 

(available at http://github.com/jkenney9a/Zebrafish). A difference score was used to quantify the 

change in swimming activity during a given test period compared to the baseline period: 

𝐷𝑆𝑖,𝑡𝑒𝑠𝑡(𝑡) =
𝐷𝑖,𝑡𝑒𝑠𝑡(𝑡)−𝐷𝑇(𝑖),𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐷𝑖,𝑡𝑒𝑠𝑡(𝑡)+𝐷𝑇(𝑖),𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
  

Where DS is the difference score, D is distance travelled, i is an individual fish, t is time, and T(i) 

is the tank that fish i is from. Because the fish were group housed and we could not reliably 

distinguish individual fish from one another, the average distance travelled for a given tank was 
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used as the baseline measure (D̄). When calculating the difference score during training, the 

following equation was used: 

𝐷𝑆𝑖,𝑡𝑟𝑎𝑖𝑛(𝑡) =
𝐷𝑖,𝑡𝑟𝑎𝑖𝑛(𝑡)−𝐷𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(240 ≤ 𝑡 ≤ 299)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐷𝑖,𝑡𝑟𝑎𝑖𝑛(𝑡)+𝐷𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(240 ≤ 𝑡 ≤ 299)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
  

Where the baseline distance travelled was calculated as the average distance the individual fish 

travelled during each second of the last minute of baseline.   

 Data from training and testing in fear conditioning are presented in two formats: 1) 

Average difference scores for each second of training or testing calculated as described above. 

Given the considerable noise in second by second data, these data are fit using a local 

polynomial regression to provide a measure of the overall trend in the data. 2) An average of 

difference scores during the first or second half (2.5 minutes) of training or testing. We use data 

generated from this method for inferential statistics to determine group differences and are 

presented as the mean ± SEM.  

 

Drug Administration 

 A stock solution of MK-801 (0924; Tocris) was diluted into 100 mL of facility water. Fish 

were placed in a 250 mL semi-opaque beaker with MK-801 (20 µM) or vehicle (water) 

immediately following training in fear conditioning for 15 minutes.  

 

Statistical Analyses 

 Data were analyzed with one-way ANOVAs and two-way repeated measures ANOVAs 

as appropriate. Dunnett post-hoc tests were used to compare multiple groups to un-shocked 

fish as indicated. Experiments with two groups were analyzed using independent samples t-
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tests. When multiple pair-wise comparisons were made using one-sample or independent 

samples t-tests, results were corrected using the Bonferroni method as indicated. All statistical 

analyses was performed using R (v3.1.3).  
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Figure Captions 

Figure 1 

Contextual fear conditioning in adult zebrafish. A) Scheme indicating behavioral procedure used 

for inducing fear conditioning in zebrafish. B) Second-by-second difference scores during 

training in contextual fear conditioning. C) Difference scores at shock administration during 

training. D) Difference scores over the last 2.5 minutes of training. E) Second-by-second 

difference scores during the five minute test session. F) Difference scores over the first 2.5 

minutes testing. Semi-transparent lines are average second-by-second data. Solid lines are the 

result of a local polynomial regression fit with 95% confidence interval for the fit (gray ribbons). * 

- p < 0.05 compared to un-shocked fish, ^ - p < 0.05 compared to a difference score of zero, ~ - 

p < 0.10 compared to a difference score of zero, n = 19-20. 

 

Figure 2 

Contextual (tank) discrimination in adult zebrafish. A) Scheme indicating the behavioral 

procedure used to test for fear memory generalization. B) Second-by-second difference scores 

during testing in contextual fear conditioning in either tank A or tank B. C) Difference scores 

over the first 2.5 minutes of the test session. Semi-transparent lines are average second-by-

second data. Solid lines are the result of a local polynomial regression fit with 95% confidence 

interval for the fit (gray ribbons). * - p < 0.05 compared to testing in Tank B, n = 30. 

 

Figure 3 

The effect of MK-801 administration after training on contextual fear conditioning. A) Second-by-

second difference scores during testing in contextual fear conditioning in fish administered 
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vehicle or MK-801 (20 µM). B) Difference scores over the first 2.5 minutes of testing of fear 

conditioning. Semi-transparent lines are average second-by-second data. Solid lines are the 

result of a local polynomial regression fit with 95% confidence interval for the fit (gray ribbons). * 

- p < 0.05 compared to MK-801 treated fish, n = 18-19. 

 

Figure 4 

Effect of different retention delays on contextual fear conditioning in adult zebrafish. Fish were 

tested after a delay of 7 (A), 14 (B), 21 (C), or 28 (D) days following training. Second-by-second 

difference scores during the entire test (left) and during the first 2.5 minutes of testing (right). 

Semi-transparent lines are average second-by-second data. Solid lines are the result of a local 

polynomial regression fit with 95% confidence interval for the fit (gray ribbons). * - p < 0.05, † - p 

< 0.10 compared to un-shocked fish, n = 19-21. 

 

Figure 5 

Extinction of contextual fear conditioning in adult zebrafish. A) Second-by-second difference 

scores during each of 4 successive days of testing following training in contextual fear 

conditioning. B) Difference scores over the first 2.5 minutes of 4 successive days of testing 

following training in contextual fear conditioning. Semi-transparent lines are average second-by-

second data. Solid lines are the result of a local polynomial regression fit with 95% confidence 

interval for the fit (gray ribbons). * - p < 0.05, † - p < 0.10, n = 31-32. 

 

Figure 6 
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Contextual fear conditioning in Tu and TL zebrafish strains. Behavior during training in Tu (A) 

and TL (B) fish with second-by-second data on the left and response to the shock on the right. 

Second-by-second difference scores during successive days of testing in Tu (C) and TL (D) fish. 

Difference scores during the first 2.5 minutes of 3 or 4 successive days of testing in Tu (E) and 

TL (F) fish.  Semi-transparent lines are average second-by-second data. Solid lines are the 

result of a local polynomial regression fit with 95% confidence interval for the fit (gray ribbons). * 

- p < 0.05, † - p < 0.10, n = 15-20.  
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Figure 1 
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Figure 2 
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Figure 3  
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Figure 4 
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Figure 5 
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Figure 6 
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