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Abstract11

In this work we implement approximate Bayesian computational methods to improve the12

design of a wound-healing assay used to quantify cell-cell interactions. This is important as13

cell-cell interactions, such as adhesion and repulsion, have been shown to play an important14

role in cell migration. Initially, we demonstrate with a model of an ideal experiment that15

we are able to identify model parameters for agent motility and adhesion, given we choose16

appropriate summary statistics. Following this, we replace our model of an ideal experiment17

with a model representative of a practically realisable experiment. We demonstrate that,18

given the current (and commonly used) experimental set-up, model parameters cannot be19

accurately identified using approximate Bayesian computation methods. We compare new20

experimental designs through simulation, and show more accurate identification of model21
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parameters is possible by expanding the size of the domain upon which the experiment22

is performed, as opposed to increasing the number of experimental repeats. The results23

presented in this work therefore describe time and cost-saving alterations for a commonly24

performed experiment for identifying cell motility parameters. Moreover, the results pre-25

sented in this work will be of interest to those concerned with performing experiments that26

allow for the accurate identification of parameters governing cell migratory processes, espe-27

cially cell migratory processes in which cell-cell adhesion or repulsion are known to play a28

significant role.29

Keywords: Cell migration, adhesion, wound-healing, summary statistics, parameter iden-30

tification, experimental design, approximate Bayesian computation, individual-based model,31

simulation.32

1 Introduction33

Cell-cell interactions are known to play an important role in several cell migration processes.34

For example, multiple di↵erent cell-cell interactions, such as cell-cell signalling and cell-cell ad-35

hesion [1], have been identified as promoting metastasis in breast cancer. Repulsive interactions36

mediated via ephrins on the surface of neural crest stem cells are known to coordinate the early37

stages of melanoblast migration away from the neural tube [2]. More fundamentally, it is hy-38

pothesised that the emergence of cell-cell interactions over one billion years ago helped establish39

the necessary conditions for multicellular organisms [3].40

41

A well-established approach for studying cell migration is to construct an individual-based42

model (IBM) to simulate the cell migratory process of interest [4–8]. Typically, this involves43

using a computational model to simulate a population of agents on a two-dimensional surface,44

or in a three-dimensional volume. The agents in the IBM represent cells, and each agent is able45

to move and interact with other agents in the IBM. In this work we use an IBM to simulate a46

wound-healing assay1, an experiment commonly used for studying cell motility [9–11].47

48

If an IBM is an e↵ective2 representation of a cell migration process it can be used for a number49

1Wound-healing assays are also often referred to as scratch assays.
2By an e↵ective representation we mean the IBM captures the salient features of the process of interest, and

is therefore a viable research tool with which to study the process of interest.
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of purposes. One such purpose for an IBM is to perform in silico experiments to test scientific50

hypotheses. For instance, a recent study used an IBM to demonstrate that a simple mechanism51

of undirected cell movement and proliferation could account for neural crest stem cell coloni-52

sation of the developing epidermis in the embryonic mouse [4]. Other studies involving IBMs53

have tested hypotheses concerning the influence of matrix sti↵ness and matrix architecture on54

cell migration [12], and the mechanism by which cranial neural crest stem cells become ‘leaders’55

or ‘followers’ in the embryonic chick to allow their collective migration [6–8].56

57

IBMs can also be used to identify parameters in experimental data (with the caveat that the58

parameters are model-dependent). The reasoning behind using an IBM to identify parameters59

in experimental data is as follows: if an IBM is an e↵ective representation of an experiment, then60

the parameter values the IBM requires to reproduce the experimental data may be representa-61

tive of the parameter values in the biological process that is the focus of the experiment3. For62

instance, the value of a parameter that describes cell proliferation rate. Even if the parameter63

values in the parameterised IBM are not representative of the parameter values in the biological64

process, the parameterised IBM may still be used to make predictions about the process of65

interest by performing in silico experiments, as described above. These predictions can then be66

experimentally tested.67

68

Alternatively, if the IBM is an e↵ective representation of an experiment (i.e. the experimental69

data can be reproduced), but the parameters of the IBM are not identifiable, this may suggest70

the experiment is not well-designed (that is, if the experiment has been designed to estimate71

parameters). By parameters not being identifiable it is meant that di↵erent parameter values72

in the IBM can reproduce the same experimental data. If this is the case, the IBM can then be73

used to suggest improvements to the experiment’s design, namely by altering the IBM design74

such that the IBM parameters become identifiable. These alterations can then be applied to the75

experiment to improve parameter identifiability. For example, a recent study using an IBM has76

examined the time-points at which data should be collected from an experiment to maximise77

the identifiability of IBM parameters [11]. Other theoretical work has shown how to maximise78

3Throughout this work we assume that cellular processes such as migration have constant parameter values
associated with them.
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the information content of an experiment by choosing an appropriate experimental design [13].79

80

The focus of our study is to determine the experimental conditions, and experimental data,81

required for the accurate identification of cell motility and adhesion parameters in a wound-82

healing assay. To do so we employ approximate Bayesian computation (ABC), a probabilistic83

approach whereby a probability distribution for the parameter(s) of interest is generated, as84

opposed to a point estimate [10, 14, 15]. Although ABC is well-established in some fields, for85

instance in population genetics [16], its applicability for IBMs representing cell migration is86

still an area of active research [10, 11]. Recent studies combining ABC and IBMs have been87

able to identify motility and proliferation rates in cell migratory processes [10], and improve88

the experimental design of scratch assays [11]. However, as far as we are aware nobody has89

used ABC methods to examine the experimental conditions, and experimental data, required90

for the accurate identification of cell motility and adhesion parameters in a wound-healing assay.91

92

Other methods to identify parameters in experimental data using IBMs also exist. For instance,93

a standard approach is to generate point estimates of model parameters that best reproduce94

statistics of the experimental data in the IBM. For example, the generation of motility and95

proliferation rates for agents in an IBM representing a biological process [4]. This approach,96

while applicable in some circumstances, often gives no insight into how much uncertainty exists97

in the parameters chosen, a factor that can be of importance when analysing biological systems.98

For example, relationships between parameter uncertainty and system robustness are thought99

to be connected in biological function at a systems level [17].100

101

The outline of this work is as follows: in Section 2 we introduce the IBM and define the102

cell-cell interactions we implement. We also outline the method of ABC, and the summary103

statistics we use to analyse the IBM output. In Section 3 we present results and demonstrate104

that, given an IBM representing an ideal experiment, we are able to identify IBM parameters105

for agent motility and adhesion. Following this, we replace our IBM representing an ideal exper-106

iment with an IBM that simulates a practically realisable experiment. In doing so we show that107

parameters cannot be successfully identified using ABC given the current experimental design.108

4
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To improve parameter identifiablity we compare di↵erent experimental designs, and show that109

identification of IBM parameters is made more accurate if the size of the domain upon which110

the experiment is performed is expanded, as opposed to increasing the number of experimental111

repeats. Experimentally, expanding the size of the domain is equivalent to increasing the field112

of view of the microscope used to collect the experimental data. For instance, five simulation113

repeats on a larger domain provides more accurate identification of IBM parameters than 500114

simulation repeats on a smaller domain. In Section 4 we discuss the results presented in this115

work.116

2 Methods117

In this section we first introduce the IBM. We then define what we mean by summary statistics118

and explain ABC and its implementation.119

2.1 Individual-based model120

An IBM is a computational model for simulating the behaviour of autonomous agents. The121

agents in the IBM represent cells, and each agent is able to move and interact with other122

agents. The IBM is simulated on a two-dimensional square lattice with lattice spacing � [18]123

and size L

x

by L

y

, where L

x

is the number of lattice sites in a row, and L

y

is the number of124

sites in a column. Each agent is initally assigned to a lattice site, from which it can move into125

adjacent sites. If an agent attempts to move into a site that is already occupied by another126

agent, the movement event is aborted. Processes such as this whereby one agent is allowed per127

site are often referred to as exclusion processes [18]. In the IBM time evolves continuously, in128

accordance with the Gillespie algorithm [19], such that agent movement events are modelled as129

exponentially distributed reaction events in a Markov chain. Attempted agent movement events130

occur with rate P

m

per unit time. P
m

�t, therefore, is the probability of an agent attempting to131

move in the next infinitesimally small time interval �t. A lattice site is denoted by v = (i, j),132

where i indicates the column number and j the row number. Each lattice site has four adjacent133

lattice sites (except for those sites situated on nonperiodic boundaries), and so the number of134

nearest neighbour lattice sites that are occupied by an agent, denoted by n, is 0  n  4. We135

denote the set of unoccupied nearest neighbour lattice sites by U .136
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137

The IBM domain size for simulations representing ideal experiments is L
x

= 100 by L

y

= 100,138

and the lattice sites indexed by 1  j  L

y

and 1  i  10, and 1  j  L

y

and 91  i  L

x

are139

initially occupied by agents. In Fig. 1 the initial conditions in the IBM for the ideal experiment140

can be seen. The initial condition in Fig. 1 represents a ‘wound’, in that agents are positioned141

either side of a space, the ‘wound’, that they can migrate into. The agent migration into this142

space simulates one aspect of the wound-healing process. We refer to this simulation as ideal143

because the symmetry of the initial conditions may not be possible in a realistic experimental144

setting. The initial condition is also ideal as it is ‘double-sided’, as opposed to the ‘single-145

sided’ experiment data that we will later analyse. It has been shown that double-sided initial146

conditions can provide more information than single-sided initial conditions for some model147

parameters [11]. For instance, when increasing the number of agents in a simulation improves148

parameter identifiability.149

0 20 40 60 80 100

i

100

80

60

40

20

0

j

Figure 1: The initial condition in the IBM for the ideal experiment. Yellow indicates a site
occupied by an agent and blue indicates an empty lattice site.

For the IBM of an ideal experiment all simulations have periodic boundary conditions at the150

top and bottom of the domain (i.e. for lattice sites indexed by j = 1 or j = L

y

), and no-flux151

boundary conditions at the left-hand and right-hand boundaries of the domain (i.e. for lattice152

sites indexed by i = 1 or i = L

x

).153

2.2 Cell-cell adhesion models154

In the IBM cell-cell interactions are simulated by altering the probability of an agent attempting155

to move, depending on the number of nearest occupied neighbours, n, an agent has. We employ156
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two models to simulate cell-cell interactions in the IBM, one of which has been published before157

[20, 21]. We define T (v0|v) as the transition probability of an agent situated at site v, having158

been selected to move, attempting to move to site v

0, where v

0 indicates one of the nearest159

neighbour sites of v. Therefore, T (v0|v) is only non-zero if v and v

0 are nearest neighbours. The160

transition probability in the first model, which we refer to as model A, is defined as161

T

A

(v0|v) = 1� n↵

4
, (1)162

163

where ↵ is the adhesion parameter. The subscript A on the transition probability in Eq. (1)164

indicates that this is the transition probability for model A. If ↵ > 0 Eq. (1) models cell-cell165

adhesion, and if ↵ < 0 Eq. (1) models cell-cell repulsion. The transition probabilities stated in166

Eq. (1) must satisfy167

0 
UX

v

0

2U

T

A

(v0|v)  1. (2)168

169

Equation (2) ensures the probability of an agent, if selected to move, attempting to move to170

any of its unoccupied nearest neighbour sites never exceeds unity, and so constrains the value ↵171

can take. The transition probability in the second model, which we refer to as model B [20, 21],172

is defined as173

T

B

(v0|v) = (1� ↵)n

4
, (3)174

175

and must satisfy176

0 
UX

v

0

2U

T

B

(v0|v)  1. (4)177

178

As in model A if ↵ > 0 Eq. (3) models cell-cell adhesion, and if ↵ < 0 Eq. (3) models cell-cell179

repulsion.180

181

Models A and B simulate di↵erent forms of cell-cell interaction. In model A the transition182

probability is a linear function of n. Meanwhile, in model B the transition probability is a183

nonlinear function of n. Not only may these di↵erent forms of cell-cell interaction be relevant184
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for di↵erent cell types, but implementing two models of cell-cell interaction allows us to test the185

robustness of the methods we present in this work.186

2.3 Summary statistics187

Summary statistics are lower-dimensional summaries of data that provide a tractable means to188

compare di↵erent sets of data. Summary statistics are important because experimental data is189

often of high dimensionality, and if we want to use experimental data to e�ciently guide com-190

putational algorithms we require ways to accurately summarise it. We now define the summary191

statistics we apply to the IBM output and experimental data. Following this we describe how192

we utilise these summary statistics to implement ABC.193

194

We initially use three summary statistics to evaluate the IBM output, all of which have been195

considered previously [9, 22]. The reason we study three summary statistics is to ascertain196

which summary statistic is most e↵ective for the identification of agent motility and adhesion197

parameters in the IBM. These summary statistics are as follows:198

Average horizontal displacement of agents199

The average horizontal displacement of all agents, ī, in a given time interval, [t
i

, t

f

], in the IBM200

is calculated as201

ī =
1

N

NX

k=1

|ik
ti
� i

k

tf
|, (5)202

203

where ī is the average horizontal displacement of agents, N is the total number of agents in the204

simulation, ik
ti

is the column position of agent k at time t

i

, and i

k

tf
is the column position of205

agent k at time t
f

. We only look at the horizontal displacement of agents as this is the direction206

in which the majority of agent displacement will occur, due to the initial conditions of the IBM207

(Fig. 1). It has previously been shown that di↵erent cell-cell interactions have di↵erent e↵ects208

on the average displacement of agents in an IBM [21]. As may be expected, repulsive (adhesive)209

interactions between agents tend to increase (decrease) the average displacement of agents, and210

so the average displacement of agents may be a useful summary statistic for distinguishing211

between repulsive and adhesive cell-cell interactions in the IBM.212

8
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Agent density profile213

The agent density profile at time t in the IBM is calculated as:214

C

t

(i) =
1

L

y

LyX

j=1

{v}. (6)215

216

Here C

t

(i) is the agent density profile and is the indicator function for the occupancy of a217

lattice site v (i.e. 1 if an agent occupies lattice site v, and 0 if it is not occupied by an agent).218

We have shown previously that di↵erent cell-cell interactions have di↵erent e↵ects on the agent219

density profile [21]. For instance, repulsive interactions between agents can create a concave220

agent density profile, whereas adhesive interactions between agents can create a convex agent221

density profile. Therefore, the agent density profile may be an e↵ective summary statistic for222

distinguishing between repulsive and adhesive cell-cell interactions in the IBM.223

Pairwise-correlation function224

The final summary statistic we consider is the pairwise-correlation function (PCF). The PCF225

provides a measure of the spatial clustering between agents in an IBM, and has been used226

frequently in the analysis of cell migratory processes [4, 9, 23, 24]. The PCF has also been227

successfully used as a summary statistic for the parameterisation of IBMs of cell migration [10].228

We use i

k

t

to denote the column position of agent k at time t, il
t

to denote the column position229

of agent l at time t, and define c
t

(m) to be the number of occupied pairs of lattice sites for each230

nonperiodic4 horizontal pair distance m = 1, . . . , L
x

�1 at time t. This means c
t

(m) is given by231

c

t

(m) =
NX

k=1

NX

l=k+1

{|ik
t

� i

l

t

| = m}, 8 m = 1, . . . , L
x

� 1, (7)232

233

where is the indicator function such that it is equal to 1 if |ik
t

� i

l

t

| = m, and is equal to234

0 otherwise. In Eq. (7) only the pair agent distances in the horizontal direction are counted.235

Given the translational invariance of the initial conditions in the vertical direction of the IBM,236

the majority of important spatial information will be in the horizontal direction5. Binder237

and Simpson [24] demonstrated that is necessary to normalise Eq. (7) to account for volume238

4By nonperiodic it is meant the distance measured between two agents cannot cross the IBM boundary.
5This approach is in agreement with previous studies [24], which showed the most relevant information from

the PCF summary statistic is perpendicular to the wound axis in a wound-healing assay.
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exclusion. The normalisation term is239

ĉ

t

(m) = L

2
y

(L
x

�m)⇢⇢̂, 8 m = 1, . . . , L
x

� 1, (8)240
241

where ⇢ = N/(L
x

L

y

), and ⇢̂ = (N�1)/(L
x

L

y

�1). Equation (8) describes the expected number242

of pairs of occupied lattice sites, for each nonperiodic horizontal pair distance m, in an agent243

population distributed uniformly at random on the IBM domain. Combining Eqs. (7) and (8),244

the PCF is245

q

t

(m) =
c

t

(m)

ĉ

t

(m)
, (9)246

247

where q

t

(m), the PCF, is a measure of how far c

t

(m) departs from describing the expected248

number of occupied lattice pairs for each horizontal distance of an agent population spatially249

distributed uniformly at random on the IBM domain.250

2.4 Approximate Bayesian computation251

Here we introduce our ABC algorithm [14]. We define M as a stochastic model that takes252

parameters ⇥ and produces data D. This relationship can be written as D ⇠ M(⇥). For the253

IBM presented in this work ⇥ = (P
m

,↵), where ⇥ is sampled from a prior distribution, ⇡, and254

so this relationship can be written as ⇥ ⇠ ⇡. The relationship between ⇡ and ⇥ is often written255

as ⇥ ⇠ ⇡(⇥), which indicates that a new ⇥ sampled from the prior distribution may depend on256

the previous ⇥. This relationship will be relevant later on in this work, however, initially each257

⇥ sampled from ⇡ is independent of the previous ⇥.258

259

The identification of IBM parameters in this work centres around the following problem: given260

a stochastic model, M , and data, D, what is the probability density function that describes ⇥261

being the model parameters that produced data D? More formally, we seek to obtain a poste-262

rior distribution, p(⇥|D), which is the conditional probability of ⇥ given D (and the model, M).263

264

Typically, to compute the posterior distribution a likelihood function, L(D|⇥), is required.265

This is because the likelihood function and posterior distribution are related in the following266
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manner by Bayes’ theorem:267

p(⇥|D) / L(D|⇥)⇡(⇥). (10)268
269

That is, the posterior distribution is proportional to the product of the likelihood function and270

the prior distribution. Approximate Bayesian computation is a well-known method for esti-271

mating posterior distributions of model parameters in scenarios where the likelihood function272

is intractable [14]. By an intractable likelihood function it is meant that the likelihood function273

is impossible or computationally prohibitive to obtain.274

275

In many cases for ABC, due to the high dimensionality of the data, D, it is necessary to276

utilise a summary statistic, S = S(D). The summary statistics we employ in this work are277

of varying dimension. For instance, the agent density profile at time t has L

x

data points,278

whereas the average agent displacement at time t has one data point. Therefore we write S(D)279

as S(D)
r,t

, where S(D)
r,t

is the rth data point in the summary statistic at the tth sampling time.280

281

The ABC method proceeds in the following manner: we wish to estimate a posterior dis-282

tribution of ⇥ given D. We now simulate the process that created D using model M with283

parameters ⇥, sampled from ⇡, and produce data D̃. We calculate the di↵erence between a284

summary statistic applied to D and D̃ with285

d =
TX

t=1

RX

r=1

|S(D)
r,t

� S(D̃)
r,t

|, (11)286

287

where R is the number of data points in S(D) and T is the number of sampling times. We288

repeat the above process many times, that is, sample ⇥ from ⇡, produce D̃, calculate d with289

Eq. (11), and only accept ⇥ for which d is below a user defined certain threshold (alternatively,290

a predefined number of ⇥ that minimise d can be accepted). This enables us to generate a291

distribution for ⇥ that is an approximation of the posterior distribution, p(⇥|D), given M .292

More specific details of the ABC algorithms we implement are introduced when necessary in293

the text.294
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3 Results295

We begin by demonstrating that for an IBM representing an ideal experiment we are able to296

identify model parameters, given we use the appropriate summary statistics.297

3.1 Ideal experiment298

To ascertain the e↵ectiveness of the chosen summary statistics to identify model parameters,299

we first attempt to identify ⇥ from data generated synthetically. Synthetic data is IBM data300

generated with fixed parameter values, and so can be thought of as a simulation equivalent of301

experimental data. To generate the synthetic data using the IBM we proceed as follows:302

1. We choose parameters ⇥ to identify. To help clarify this explanation let us make these303

parameters ⇥ = (P
m

,↵) = (0.5, 0.1) in model A6.304

2. For model A we perform a simulation of the IBM with ⇥ = (0.5, 0.1), generate data,305

D, and calculate summary statistics, S(D), from the simulation at our time-points of306

interest. These times are t = [240, 480, 720]. We choose these times as they are the307

times (in minutes) we will later analyse for the simulations of the practically realisable308

experiment, and correspond to 4 hours, 8 hours and 12 hours into an experiment.309

3. We repeat step 2. ten times and calculate the ensemble average for each summary statistic310

for each individual time-point.311

This procedure generates synthetic data for which we will now attempt to identify the param-312

eters. In this work we present estimates for P
m

= 0.5 and ↵ = 0.1 for model A, and P

m

= 0.5313

and ↵ = 0.25, and P

m

= 0.5 and ↵ = �0.1 for model B. We examined identifying further com-314

binations of values of P
m

and ↵ from synthetic data. What we present here is a representative315

sample of the combinations we tested.316

317

Throughout this work we sample P

m

and ↵ for our model from uniform priors. In the case318

of model A, P
m

2 [0, 1] and ↵ 2 [�0.2, 0.25], and for model B, P
m

2 [0, 1] and ↵ 2 [�0.2, 1.0].319

6A value of Pm = 0.5, given that the simulation time will later be defined to be in minutes, and the length
of a lattice site represents cell length (typically between 10µm-100µm), means that the motility of the agents is
biologically realistic. The parameter ↵ is dimensionless. The experimental realism of these parameters will be
expanded on when we address the simulation of a practically realisable experiment.
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We stipulate these lower and upper bounds for ↵ for both models A and B to make sure in-320

equalities (2) and (4) are satisfied.321

322

We begin by implementing an ABC rejection algorithm since we expect to identify model323

parameters quickly as we are simulating an ideal experiment. The rejection ABC algorithm324

proceeds as follows:325

1. Run 104 IBM simulations, in each case using ⇥ sampled uniformly at random from the326

prior distributions.327

2. Compute the distance d as defined in Eq. (11) for simulation times t = [240, 480, 720].328

3. Accept the 100 parameter values, ⇥, that minimise d.329

In Fig. 2 the posteriors generated using each of the three summary statistics applied to data330

from simulations of an ideal experiment are displayed. The most e↵ective summary statistic331

for identifying the synthetic data parameters is the PCF. The e↵ectiveness of the PCF for pa-332

rameter identification is evident in the location of the posterior distribution density relative333

to the red dot (the red dot represents the synthetic data parameter values), and the narrow334

spread of the posterior distribution density as indicated by the scale bar in Fig. 2 (c), (f) and335

(i). The agent density profile summary statistic performs less well than the PCF for parameter336

identification, especially for model A (Fig. 2 (b)). In the case of the average agent displacement337

many combinations of P
m

and ↵ lead to the same average agent displacement, which results338

in an extended region of possible parameter values. To some extent this is to be expected, as339

increasing either P

m

or ↵ will have opposing e↵ects on the average agent displacement. This340

means that using agent displacement as a summary statistic results in parameter identifiability341

issues in this example.342

343

To quantify the di↵erence between the performance of the di↵erent summary statistics we use344

the Kullback-Leibler divergence, which is a measure of the information gained in moving from345

the prior distribution to the posterior distribution [25]. The Kullback-Leibler divergence for a346
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Figure 2: (a)-(c) Posterior distributions for model A for an ideal experiment with di↵erent
summary statistics: (a) average displacement of agents in the horizontal direction; (b) agent
density profile; (c) PCF. In all cases the red dot indicates the value of the parameters used
to generate the synthetic data, P

m

= 0.5, ↵ = 0.1. As indicated by the colour bar the yellow
regions indicate areas of high relative density of the posterior distribution, while the blue regions
indicate areas of low relative density of the posterior distribution. (d)-(f) Model B, P

m

= 0.5,
↵ = 0.25: (d) average displacement of agents in the horizontal direction; (e) agent density
profile; (f) PCF. (g)-(i) Model B, P

m

= 0.5, ↵ = �0.1: (g) average displacement of agents in
the horizontal direction; (h) agent density profile; (i) PCF.

discrete probability distribution is defined as follows:347

D

KL

(p|⇡) =
X

l

p(⇥
l

|D)log

✓
p(⇥

l

|D)

⇡(⇥
l

)

◆
, (12)348

349

where the index l accounts for all possible discretised parameter pairs (i.e. all combinations of350

P

m

and ↵). A larger D
KL

(p|⇡) value suggests that more information is obtained (the entropy351

of the distribution is reduced) when moving from the prior distribution to the posterior distri-352
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bution7. We discretise our posterior distribution onto a lattice with 26 equally spaced values of353

P

m

and 26 equally spaced values of ↵.354

355

Computing D

KL

(p|⇡) for all nine plots in Fig. 2 gives: (a) 1.77; (b) 1.70; (c) 2.32; and (d)356

2.15; (e) 2.57; (f) 3.35; and (g) 2.45; (h) 2.72; (i) 3.27. In tandem with the proximity of the357

peak of the posterior distribution densities to the red dots in Fig. 2 (c), (f) and (i), compared358

to Fig. 2 (a)-(b), (d)-(e) and (g)-(h), this suggests that the PCF summary statistic is more359

e↵ective for parameter identification than the average agent displacement and agent density360

profile summary statistics.361

3.2 Practically realisable experiment362

In the previous section we demonstrated that for ideal experimental conditions the PCF sum-363

mary statistic is best able to identify synthetic data parameters (for an IBM of an ideal ex-364

periment), and so moving forward we will only use the PCF summary statistic for parameter365

identification. Previous work has combined summary statistics to improve parameter identifi-366

cation [10]. However, in this case it makes a negligible improvement to the posterior (results367

not shown)8.368

369

We now replace our IBM that represents an ideal experiment with an IBM that represents370

an actual experiment, and examine if synthetic data parameters can be identified in the IBM.371

We provide brief details of the experiment here, however, a more detailed description can be372

found in the supplementary material. In Fig. 3 a typical initial frame of the experimental data373

can be seen.374

375

In total we have data from five repeats of the experiment. Each data set contains cell track data376

for every cell for sixty-four hours imaged at twenty minute intervals. Therefore, we have the377

information required to apply our summary statistics to the experimental data. More specifi-378

cally, we have the position of all cells at each time interval so that the PCF may be computed.379

7However, this does not necessarily mean the posterior distribution is a more accurate representation of the
parameter distribution.

8That there is little improvement in parameter identification from combining summary statistics is to be
expected. Combining summary statistics is most e↵ective when the posterior distributions are ‘orthogonal’,
which is not the case for the posterior distributions created by the summary statistics presented here.
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Figure 3: Typical initial frame of the experimental data. The cells are positioned such that they
will migrate primarily horizontally into the space without cells, this space represents a wound
(the direction of migration is indicated by the white arrow). The red and green cells are the
same cells, with red and green indicating which phase of the cell cycle cells are in. In this work
we do not take the cell cycle into account.

380

One key di↵erence between the ideal and practically realisable experiments is the size of the381

domain and, because of this, the number of agents in a simulation. As we have data from five382

experiments we now generate our synthetic data from five repeats of the IBM, using the same383

procedure as described in Section 3.1.384

385

The experimental images were captured by a microscope with a field of view of 597.24 µm386

by 597.24 µm. The cell size in the experimental images is consistent with each cell occupying a387

26 µm by 26 µm square lattice site. Given the size of the microscope field of view this means388

the IBM domain size is L

x

= 23 by L

y

= 23. We use the average initial conditions from the389

experiment to generate the initial conditions in the IBM. Exact details of how the initial con-390

dition is generated in the IBM, and how experimental data is mapped to a lattice can be found391

in the supplementary material.392

393

We also alter the IBM to have flux (nonperiodic) boundary conditions at the left-hand and394

right-hand boundaries of the domain (i.e. for lattice sites with j = 1 or j = N

y

). The left-most395

column is kept at or above a constant density throughout the simulation time course. That is,396

after any movement event from the left-most column in the simulation the column density of397

the left-most column is calculated, and if found to be below a certain density agents are added398

to empty sites in this column chosen uniformly at random until the required density is achieved.399
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This mechanism ensures that the agent density profile in the IBM replicates the evolution of400

the experimental data throughout the simulation. Further details regarding the implementation401

of this boundary condition are provided in the supplementary material. The top and bottom402

boundaries of the IBM domain remain periodic as cells were seen to move in and out of the403

microscope field at these boundaries in the experimental images, at an approximately equal rate.404

405

To reduce the computational time of the ABC algorithm we now employ the Metropolis-Hastings406

algorithm. We do not implement rejection ABC as we expect parameter identification to be less407

e�cient with a more realistic model, and so we implement a sequential Monte Carlo method.408

Given our model assumptions our implementation of the Metropolis-Hastings algorithm reduces409

to a Markov chain Monte Carlo method with a correlated outcome [14], of which we attempt410

106 realisations. Details of the implementation of the algorithm are given in the supplementary411

material. As before we sample from uniform priors P
m

2 [0, 1] and ↵ 2 [�0.2, 0.25] for model A,412

and P

m

2 [0, 1] and ↵ 2 [�0.2, 1.0] for model B, and collect simulation data at t = [240, 480, 720].413

We collect simulation data at three time-points so that the computational time is of practical414

length (our longest ABC implementations took approximately 192 hours). A value of P
m

= 0.5,415

given that the simulation time is in minutes, and the length of a lattice site is 26 µm, means416

that the motility of the agents is biologically realistic. To be precise, the agents here are ap-417

proximately five times faster than cell motility rates previously published [4, 9]9. However, the418

cells considered in [4, 9] are not thought to exhibit cell-cell adhesion, and so a higher motility419

rate is sensible as agent movement is being reduced in the case of cell-cell adhesion in our IBM.420

421

In Fig. 4 it can be seen that the synthetic data parameters cannot be accurately identified422

using our ABC method, with the PCF summary statistic, given the current IBM design. This423

is evident in the location of the red dots relative to the posterior distributions, and the wide424

spread of the posterior distributions as indicated by the scale bar in Fig. 4. A possible reason425

why the synthetic data parameters cannot be identified is that the synthetic data does not426

accurately represent the parameter values used to generate it, making parameter identification427

infeasible. To examine this possibility we calculated the variance in the PCF synthetic data10.428

9Using the relationship that the di↵usion coe�cient is equal to Pm�2.
10The variance was calculated using MATLAB’s in-built var function.
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In Fig. 5 (a)-(c) the blue line indicates the variance in the PCF synthetic data for the current429

simulation design generated from five repeats of the IBM on a domain of size L

x

= 23 by430

L

y

= 23.
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Figure 4: Posterior distributions for simulations of the experiment described in Section 2.5
using the PCF as a summary statistic for an IBM of size L

x

= 23 and L

y

= 23. The synthetic
data is generated from five repeats of the IBM. (a) Model A: P

m

= 0.5, ↵ = 0.1, (b) model B:
P

m

= 0.5, ↵ = 0.25, (c) model B: P
m

= 0.5, ↵ = �0.1. In all cases the red dot indicates the
value of the parameters used to generate synthetic data.
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Figure 5: The variance in the PCF synthetic data for model B with P

m

= 0.5, ↵ = 0.25 and
di↵erent IBM domain sizes. Panels (a)-(c) display synthetic data generated from five repeats
of the IBM, panels (d)-(f) display synthetic data generated from 500 repeats of the IBM. The
domain size is indicated in the legend.

431

432

If the variance in the summary statistics of the synthetic data precludes accurate identifica-433
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tion of model parameters using ABC, a sensible strategy may be to examine methods to reduce434

the variance in the summary statistics of the synthetic data. Reducing the variance of the435

summary statistics may mean the synthetic data is a more accurate reflection of the parameters436

values used to generate it. This may also explain why parameter identification for the ideal437

experiment was successful, as the variance in the summary statistics of the synthetic data was438

much smaller than for the practically realisable experiment (data not shown).439

440

We conjectured that the variance in the summary statistics of the synthetic data could be441

reduced in two ways:442

1. increasing the number of IBM repeats used to generate the synthetic data;443

2. increasing the size of the IBM domain while keeping the column density of the initial444

conditions invariant. An example of this proposed initial condition is given in Fig. 6 (b).445

Importantly, increasing the size of the IBM domain increases the number of agents in446

the simulation, and can be thought of as equivalent to increasing the field of view of the447

microscope.448

In Fig. 5 the variance in the PCF synthetic data for model B with P

m

= 0.5 and ↵ = 0.25449

for di↵erent domain sizes and varying numbers of repeats can be seen. It is evident that the450

variance in the PCF calculated from 500 repeats of a L

x

= 23 by L

y

= 23 sized domain (blue451

line in Fig. 5 (d)-(f)) is greater than the variance in the PCF calculated from five repeats of452

a L

x

= 23 by L

y

= 184 sized domain (purple line in Fig. 5 (a)-(c)). This can be understood453

by considering Eq. (7): the number of occupied lattice pairs for each horizontal pair distance454

used to generate the PCF does not increase linearly with the number of agents. Specifically,455

the number of occupied lattice pairs for each horizontal pair distance that generates the PCF456

is proportional to11457

N(N � 1)

2
. (13)458

459

Therefore, the identification of parameters in experimental data using the PCF as a summary460

11This is not quite correct as a distance of ‘0’ between agents, that is they share the same column, is not
accounted for in Eq. (7). To make Eq. (13) exact is not trivial as the expected number of agents each agent
shares a column with depends on both the column position and simulation time.
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Figure 6: Increasing the size of the simulation domain while keeping the initial column densities
the same. Panel (b) is twice the size of panel (a), however, the average initial density of each
column is the same for both panels (a) and (b).

statistic may be best facilitated by increasing the size of the domain upon which the experiment461

is performed, rather than increasing the number of repeats of an experiment with a smaller do-462

main. Further variance plots for models A and B for the PCF summary statistic can be found463

in the supplementary material.464

465

It is important to note that it is also the case for the agent density profile synthetic data.466

If generated from 500 repeats of a L

x

= 23 by L

y

= 23 sized domain, the agent density profile467

synthetic data will have greater variance than the agent density profile synthetic data generated468

from five repeats of a L

x

= 23 by L

y

= 184 sized domain (data not shown). In this case it469

is an artefact of the lattice-based model. This is because the density of each column in the470

IBM can take on a greater range of values between 0 and 1 as the column length is increased,471

leading to a reduction in variance in the agent density profile synthetic data (especially in the472

initial conditions of the simulations used to generate the synthetic data). However, as we do not473

use the agent density profile summary statistic to identify parameters in the current simulation474
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design we do not pursue this matter further.475

3.3 Improving the experimental design476

We now confirm that more accurate identification of synthetic data parameters occurs by ex-477

panding the domain upon which the experiment is performed, as opposed to increasing the478

number of experimental repeats.479

480

In Fig. 7 (a)-(c) we plot the posterior distribution for synthetic data generated from 500481

repeats of a L

x

= 23 by L

y

= 23 sized domain, while in Fig. 7 (d)-(f) we plot the posterior482

distribution generated from synthetic data generated five repeats of a L

x

= 23 by L

y

= 184483

sized domain. As predicted, it is apparent that increasing the domain size is more e↵ective for484

parameter identification than increasing the number of repeats used to generate the synthetic485

data. This is evident in the location (and narrow spread) of the posterior distribution relative486

to the red dot, whereby the posterior distribution is closer to the red dot in the case of Fig.487

7 (d)-(f) compared to Fig. 7 (a)-(c). Despite this, the identification of the parameters for488

repulsive interactions remains somewhat elusive (Fig. 7 (f)). A possible reason for this is that489

the repulsive interaction we present here is a weak one, due to the constraint of Eqs. (2) and490

(4), and larger values of |↵| are easier to identify as they have a more profound e↵ect on the491

behaviour of the agent population.492

493

Computing D

KL

(p|⇡) for all six plots in Fig. 7 gives: (a) 2.55; (b) 2.69; (c) 1.53; and (d)494

3.69; (e) 2.97; (f) 3.54. In tandem with the proximity of the peak of the posterior distribution495

densities to the red dots in Fig. 7 (d)-(f) compared to Fig. 7 (a)-(c), this suggests that gener-496

ating synthetic data on a larger domain is more e↵ective for improving parameter identification497

than increasing the number of repeats used to generate the synthetic data.498

4 Discussion499

In this work we have presented methods to identify motility and adhesion parameters in an500

IBM of a wound-healing assay. Our findings suggest that for a commonly performed exper-501

iment increasing the size of the experimental domain can be more e↵ective in improving the502
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Figure 7: (a)-(c) Posterior distributions for simulations of the experiment using the PCF as a
summary statistic for an IBM simulated on a domain of size L

x

= 23 by L

y

= 23 with synthetic
data generated from 500 repeats. (a) Model A: P

m

= 0.5, ↵ = 0.1, (b) model B: P
m

= 0.5,
↵ = 0.25, (c) model B: P

m

= 0.5, ↵ = �0.1. (d)-(f) Posterior distribution plots for simulations
of the experiment using the PCF as a summary statistic for an IBM simulated on a domain
of size L

x

= 23 by L

y

= 184 with synthetic data generated from five repeats. (a) Model A:
P

m

= 0.5, ↵ = 0.1, (b) model B: P
m

= 0.5, ↵ = 0.25, (c) model B: P
m

= 0.5, ↵ = �0.1. Further
figure information can be found in Fig. 4.

accuracy of parameter identification, when compared to increasing the number of repeats of the503

experiment. This is because increasing the size of the domain, which is equivalent to increasing504

the number of cells in the experiment, more e↵ectively reduces the variance in the synthetic505

data from which the parameters are identified. The reason for this reduction in variance is506

explained by Eq. (7), where the number of agent pair counts that generate the PCF increases507

nonlinearly with the number of agents on the domain. In addition, increasing the size of the508

experimental domain may make the collection of experimental data less time-consuming, as509

potentially fewer repeats of the experiment will have to be conducted. For instance, five repeats510

of the experiment on a larger domain provides more information about parameters than 500511

repeats of the experiment on a smaller domain (in the examples we have presented in this work).512

513

We also studied using the average horizontal displacement of agents and the agent density514

profile as summary statistics. These were found to be less e↵ective than the PCF in parameter515

identification. This was especially the case for the averaged agent displacement, whereby a516
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range of adhesion and motility parameters could result in the same average agent displacement.517

This result suggests that agent displacement may not be a suitable summary statistic for esti-518

mating cell motility and adhesion parameters, due to parameter identifiability issues.519

520

The obvious extension to the work presented here is to experimentally validate the findings.521

That is, expand the wound-healing experimental domain and demonstrate: i) the cell migratory522

process can be e↵ectively described by the model we have presented here; and ii) the experi-523

mental parameters are identifiable with a larger experimental domain. If validated, alterations524

could be made to the IBM to try and further improve parameter identification, and evidence525

may be provided that demonstrates which adhesion model, A or B, is more applicable to the526

cell type under consideration.527

528

To conclude, the findings presented in this work will be of particular interest to those con-529

cerned with performing experiments that enable the e↵ective parameterisation of cell migratory530

processes. In particular, cell migratory processes in which cell-cell adhesion or repulsion are531

known to play an important role. More generally, we have also suggested time and cost-saving532

alterations to a commonly performed experiment for identifying cell motility parameters.533
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S1: Practically realisable experiment IBM design12

Initial conditions13

To map the position of cells in the experimental images where cell position is a continuous14

variable, (x, y), to a discrete lattice site, (i, j), we use the following formulae15

i =
l
x

�

m
, j =

l
y

�

m
, (S1)

where d·e denotes the ceiling function and � is as defined in the main text. Given the experi-16

mental data and the lattice size no two cells were mapped to the same lattice site1.17

18

The application of Eq. (S1) to the initial frames of the five experiments allowed the aver-19

age initial condition for the IBM to be calculated. These initial conditions are expressed in20

terms of the average initial density of each column. These average initial column densities are:21

Column Initial density

1st 0.8261

2nd 0.7826

3rd 0.8261

4th 0.8261

5th 0.8261

6th 0.7391

7th 0.6957

8th 0.6087

9th 0.5217

10th 0.2609

11th 0.2174

12th 0.0870

13th � 23rd 0

22

To generate the initial conditions at the start of each IBM realisation each site in a column23

1
If two cells did map to the same lattice site, one of these cells would be placed in the nearest unoccupied

lattice site to the original lattice site. If there was more than one nearest unoccupied lattice site, one of these

sites would be chosen uniformly at random for the cell to be mapped to.

2
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receives an agent uniformly at random at a probability equal to the average initial column24

density of the column the site is in. Therefore, the initial condition in the IBM is generated25

such that an ensemble average of the initial conditions of many realisations would equal the26

averaged initial conditions from the experiment. An example of this initial condition can be27

seen in the main text.28

Boundary conditions29

Following the start of the simulation the density of the first column is checked after each agent30

movement event out of the first column in the IBM. If the first column’s density is below 0.6,31

agents are added uniformly at random to empty sites in the first column until the density32

of the first column is greater than 0.6. This mechanism and density ensures that the agent33

density profile in the IBM matches the experimental density profile for the entire course of the34

experimental data throughout the simulation.35

S2: Sequential Monte Carlo ABC algorithm36

We define a transition kernel w that proposes ⇥0 values as a bivariate uniform distribution. The37

transition kernel ensures Pm 2 [0, 1] and ↵ 2 [�0.2, 0.25] for the model A, and Pm 2 [0, 1] and38

↵ 2 [�0.2, 1.0] for the model B. The parameter d⇤ is a constant selected so that approximately39

one percent of the proposed parameter sets are accepted, the value of which is obtained through40

trial and error.41

42

To implement a sequential Monte Carlo method (Metropolis-Hastings algorithm) we proceed as43

follows [1]:44

R1 If at ⇥ step to ⇥0 according to a transition kernel w(⇥ ! ⇥0).45

R2 Simulate D̃ from the model using ⇥0 and calculate the summary statistic S(D̃) at each46

sampling point. That is, for each individual t = [240, 480, 720] calculate d:47

d =
RX

r=1

|S(D)r,t � S(D̃)r,t|, (S2)

If d > d

⇤ (at any t) reject ⇥0 and return to R1.48

3
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R3 Calculate49

h = min

✓
1,

⇡(⇥0)w(⇥0 ! ⇥)

⇡(⇥)w(⇥ ! ⇥0)

◆
.50

R4 Accept ⇥0 with probability h.51

R5 Return to 1 until 106 steps have been attempted.52

Initially, we sample ⇥ randomly from the prior distribution until a parameter set has been53

accepted (R4).54

4
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S3: Further variance plots for models A and B for the PCF55

summary statistic.56
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Figure 1: The variance in PCF synthetic data for model A with Pm = 0.5, ↵ = 0.1 for di↵erent
IBM domain sizes. Panels (a)-(c) display synthetic data generated from five repeats of the IBM,
panels (d)-(f) display synthetic data generated from 50 repeats of the IBM and panels (g)-(i)
display synthetic data generated from 500 repeats of the IBM.
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Figure 2: The variance in the synthetic data for model B with Pm = 0.5, ↵ = 0.25 for di↵erent
IBM domain sizes. Panels (a)-(c) display synthetic data generated from five repeats of the IBM,
panels (d)-(f) display synthetic data generated from 50 repeats of the IBM and panels (g)-(i)
display synthetic data generated from 500 repeats of the IBM.
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Figure 3: The variance in PCF synthetic data for model B with Pm = 0.5, ↵ = �0.1 for di↵erent
IBM domain sizes. Panels (a)-(c) display synthetic data generated from five repeats of the IBM,
panels (d)-(f) display synthetic data generated from 50 repeats of the IBM and panels (g)-(i)
display synthetic data generated from 500 repeats of the IBM.
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S4: Experimental methods57

The details of the experiment we aim to identify cell motility and adhesion parameters from is as58

follows: Fucci2a 3T3 flp-In cells were maintained in dulbeccos modified eagle medium (DMEM)59

containing 10% fetal calf serum, 1% Penicillin/Streptomycin and 100µg/ml Hygromycin B [2].60

A silicon well (Ibidi) was attached to the surface of a 24 well glass bottomed plate (Greiner61

bio-one) by surface tension and allowed to attach overnight. Cells were plated within the in-62

sert and allowed to attach phenol-red free DMEM (Biochrom) containing 10% fetal calf serum,63

and 1% Penicillin/Streptomycin. Cells migrating from the leading edge of the cell mass were64

then imaged with a 20x objective using a Nikon A1R inverted confocal microscope in a heated65

chamber supplied with 5% CO2 in air. All image analysis tasks (required to generate the initial66

conditions for the IBM of a practically realisable experiment) were performed using custom67

written macros for the Fiji [3] distribution of ImageJ an open source image analysis package68

based on NIH Image [4]. The cell nucleus of each cell was identified by merging of the green69

and red channels containing the Fucci signal followed by segmentation. The centre of mass of70

each object in the segmented image was then determined automatically.71

72

In total we have data from five repeats of the experiment. Each data set contains cell track data73

for every cell for sixty-four hours imaged at twenty minute intervals. Therefore, we have the74

information required to apply our summary statistics to the experimental data. More specif-75

ically, we have the position of all cells at each time interval so that the expected horizontal76

displacement of cells, cell density profile, and PCF may be computed.77
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