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Most existing dimensionality reduction and clustering packages for single-cell RNA-Seq (scRNA-

Seq) data deal with dropouts by heavy modelling and computational machinery. Here we in-

troduce CIDR (Clustering through Imputation and Dimensionality Reduction), an ultrafast

algorithm which uses a novel yet very simple ‘implicit imputation’ approach to alleviate the

impact of dropouts in scRNA-Seq data in a principled manner. Using a range of simulated

and real data, we have shown that CIDR improves the standard principal component analy-

sis and outperforms the state-of-the-art methods, namely t-SNE, ZIFA and RaceID, in terms

of clustering accuracy. CIDR typically completes within seconds for processing a data set of

hundreds of cells, and minutes for a data set of thousands of cells.

CIDR can be downloaded at https://github.org/VCCRI/CIDR.

Introduction

scRNA-Seq enables researchers to study heterogeneity between individual cells and define cell

types from a transcriptomic perspective. One prominent problem in scRNA-Seq data analysis is

the prevalence of dropouts, caused by failures in amplification during the reverse-transcription

step in the RNA-Seq experiment. The prevalence of dropouts manifests as an excess of zeros and

near zero counts in the data set, which has been shown to create difficulties in scRNA-Seq data

analysis1, 2.

Several packages have recently been developed for the various aspects of scRNA-Seq data

analysis, including cell cycle (cyclone3 and scLVM4), normalization (scran5), differential expres-

sion analysis (scde2 and MAST6) and temporal analysis (Monocle7), but few perform pre-processing
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steps such as dimensionality reduction and clustering, which are critical steps for studying cell type

heterogeneity.

The state-of-the-art dimensionality reduction package for scRNA-Seq data is ZIFA1. It im-

plements a modified probabilistic principal component analysis methods that incorporates a zero

inflated model to account for dropout events. ZIFA uses an iterative expectation-maximization

algorithm for inference, which makes it computationally intensive for large scRNA-Seq data sets.

Another package t-SNE8 is popular among biologists, but it is not designed specifically for

scRNA-Seq data and does not address the issue of dropouts. Other recently developed tools such as

BackSPIN9, pcaReduce10, SC311, SNN-Cliq12, RaceID13, and BISCUIT14, were designed to deal

optimal clustering of single cells into meaningful groups or hierarchies. Like ZIFA, these algo-

rithms usually involve statistical modelling, which themselves require estimation of parameters.

These algorithms often make uses of iterative methods to achieve local or global optimal solutions,

and hence can be slow when processing large data sets of more than several hundred single cells.

In many practical situations, researchers are interested in fast and intuitive clustering results

that they can easily visualise. Principal Component Analysis (PCA) is a common analytical ap-

proach for data visualisation for sample heterogeneity, and is often used for dimensionality reduc-

tion prior to clustering. Many versions of PCA, such as the implementation prcomp in R, is very

fast and have been routinely been used for analysing large gene expression data sets. Nonetheless,

standard PCA is not designed to take into account of dropouts in scRNA-Seq data. In this work,

we aim to develop a fast PCA-like algorithm that takes into account of dropouts.

Results

Motivation We note that PCA is equivalent to performing a Principal Coordinate Analysis (PCoA)

on an Euclidean distance matrix derived from the data set. We posit that as long as we can reli-

ably estimate the dissimilarity between every pair of samples (i.e., single cells) in the presence of

dropouts, there is no need to explicitly estimate the values of dropouts.
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Let’s begin by examining the squared Euclidean distance between the expression profiles of

two single cells, Ci = (o1i, o2i, ..., oni) and Cj = (o1j, o2j, ..., onj), where oki and okj represent the

gene expression values of gene k in cells Ci and Cj respectively:

[D(Ci, Cj)]
2 =

n∑
k=1

(oki − okj)
2

=
∑

k∈{No Zero}

(oki − okj)
2 +

∑
k∈{Both Zeros}

(oki − okj)
2

+
∑

k∈{One Zero}

(oki − okj)
2.

(1)

For simplicity, we refer to all zeros in the gene expression data as dropout candidates. In

general our argument remains valid even when a dropout candidate is allowed to have near zero

values. We note that the squared Euclidean distance in Equation 1 can be arranged as a sum of

three sum-of-squares terms. The first term is the sum of squared differences of oki and okj if they

are both non-zero values. This term is not affected by dropout. The second term is the sum of

squared differences of oki and okj if they are both zeros, so this term is zero (or very small if we

include near zero values as dropout candidates).

Therefore we observe that the main impact of dropouts comes from the third term, which

deals with the case where one value is zero and the other is not. A zero can either represent a lack

of gene expression in the ground truth or a dropout event in which a non-zero gene expression

value is observed as a zero. If we treat all observed zeros as lack of gene expression (therefore

treating the probability of it being a dropout event as zero), which is the case if we directly apply

PCA to scRNA-Seq data, this term will tend to be inflated. Nonetheless, it has been observed

that the probability of gene expression value being a dropout is inversely correlated with the true

expression levels1, 2. This means a gene with low expression is more likely to become a dropout

than a gene with high expression. Using this information, we hypothesise that we can shrink this

dropout-induced inflation by imputing the expression value of a dropout candidate in the third

term in Equation 1 with its expected value given the dropout probability distribution. This is
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the motivation behind our new method CIDR (Clustering through Imputation and Dimensionality

Reduction).

The CIDR algorithm The CIDR algorithm can be divided into the following five steps: (1) Iden-

tification of dropout candidates, (2) estimation of the relationship between dropout rate and gene

expression levels, (3) calculation of dissimilarity between the imputed gene expression profiles for

every pair of single cells, (4) PCoA using the CIDR dissimilarity matrix, and (5) clustering using

the first few principal coordinates (Supplementary Figure 1).

CIDR first performs a logarithmic transformation on the tag per million (TPM). Gene expres-

sion for each cell. The distribution of the log-transformed expression values in a scRNA-Seq data

set is typically characterised by a strong peak at zero, and one or more smaller non-zero positive

peaks representing the expression of expressed genes6, 15, 16.

For each cell Ci, CIDR finds a sample-dependant threshold Ti that separates the ‘zero peak’

from the rest of the expression distribution; Supplementary Figure 2a shows the distribution of

tags for a library in a simulated data set, and the red vertical line indicates the threshold Ti. The

entries for cell Ci with an expression of less than Ti are dropout candidates, and the entries with

an expression of at least Ti are referred to as ‘expressed’. We call this threshold Ti the ‘dropout

candidate threshold’. Note that dropout candidates include true dropouts as well as true low (or

no) expressions.

The next step of CIDR involves estimating the relationship between dropout probability and

gene expression levels. Let u be the unobserved true expression of a feature in a cell and let P (u)

be the probability of it being a dropout. Empirical evidence suggests that P (u) is a decreasing

function1, 2. CIDR uses non-linear least squares regression to fit a decreasing logistic function

to the data (empirical dropout rate versus average of expressed entries) as an estimate for P (u),

illustrated by the ‘Tornado Plot’ Supplementary Figure 2b for the simulated data set. Using the

whole data set to estimate P (u), which we denote as P̂ (u), makes the reasonable assumption that

most dropout candidates in the data set are actually dropouts, and allows the sharing of information

between genes and cells.
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P̂ (u) is used for imputation in the calculation of the CIDR dissimilarity matrix. The dropout

candidates are treated as missing values and we will now describe CIDR’s pairwise ‘implicit’

imputation process. Consider a pair of cells Ci and Cj , and their respective observed expressions

oki and okj for a feature Fk, and let Ti and Tj be dropout candidate thresholds defined as above.

Imputation is only applied to dropout candidates, hence the case in which oki ≥ Ti and okj ≥ Tj

requires no imputation. Now consider the case in which one of the two expressions is below Ti,

say oki < Ti and okj ≥ Tj; in this case oki needs to be imputed and the imputed value ôki is defined

as the weighted mean

ôki = P̂ (okj)okj +
(
1− P̂ (okj)

)
oki. (2)

To achieve fast speed in the implementation of the above step, we replace P̂ (u) with a much

simpler step function W (u), defined as

W (u) =

0, P̂ (u) ≤ TW ,

1, P̂ (u) > TW ,

(3)

where TW is by default 0.5. We refer to W (u) as the ‘imputation weighting function’ as it gives

us the weights in the weighted mean in the imputation, and we refer to the jump of W (u), i.e.,

P̂−1(TW ), as the ‘imputation weighting threshold’ (Supplementary Figure 2c). Therefore, the

implemented version of Equation (2) is

õki = W (okj)okj +
(
1−W (okj)

)
oki, (4)

where õki is used as the imputed value of oki. Lastly, if oki < Ti and okj < Tj , we set both õki and

õkj to be zeros.

We have also implemented CIDR directly using P̂ (u) without the step function simplifica-

tion. Shown by Tables 1 and 3, the simplification step indeed speeds up the algorithm, and Tables

2 and 3 show that the step does not compromise clustering accuracy.

Then, the dissimilarity between Ci and Cj is calculated using Equation 1 with the imputed

values. We call this imputation approach ‘implicit’, as the imputed value of a particular observed

expression of a cell changes each time when it is paired up with a different cell.
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Dimensionality reduction is achieved by performing PCoA on the CIDR dissimilarity matrix.

It is known that clustering performed on the reduced dimensions improves the results17. CIDR

performs hierarchical clustering on the first few principal coordinates, and decides the number of

clusters based on the Calinski-Harabasz Index18.

Toy example Figure 1 shows a toy example that illustrates the effect of dropouts and how CIDR

can improve clustering in the presence of dropouts. The toy data set consists of eight cells that

form two clusters (the red cluster: c1-c4, and the blue cluster: c5-c8; Figure 1a). Dropout affects

mostly genes with lower expression levels, and hence has a greater impact on cells in the red

cluster. Clustering quality can be quantified by the mean squared distance between every pair

of cells within a cluster (WC distance) and between clusters (BC distance). The data set is said

to have a strong clustering structure if it has low WC distances and high BC distances. In other

words, a high ratio of BC/WC distances is an indication of good clustering structure. As illustrated

in Fig 1a and 1b, dropout increases both within and between cluster distances. In this case, it also

decreases the BC/WC ratio. Using the CIDR dissimilarity matrix, we were able to greatly shrink

the mean within-cluster distance, while mostly maintain the mean between-cluster distance. In

other words, CIDR can shrink the within-cluster distances more than the between-cluster distances

in a dropout-affected data set. As a result, CIDR is able to better preserve the clustering relationship

in the original non-dropout data set (Figure 1c).

As a comparison, we have also considered an alternative method in which dropout candi-

dates were imputed to the row mean (IRM) of the expressed entries. This is a straightforward and

commonly-used approach for dealing with data with missing values. When applying IRM to our

toy data set, we observe that both the between- and within-cluster distances shrink very signifi-

cantly (Supplementary Figure 3). In fact, in this case IRM shrinks the between-cluster distances a

lot more than the within-cluster distances, and therefore dilutes the clustering signal.

This toy example illustrates that the power of CIDR comes from its ability to shrink dropout-

induced within-cluster distances while largely maintain the between-cluster distances. For theoret-

ical justification, see the Methods section.
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Simulation study

For evaluation, we have created a realistic simulated scRNA-Seq data set. We set the number of

markers for each cell type low to make it a difficult data set to analyse. Supplementary Figure 2a

shows the distribution of tags for one randomly chosen library in this simulated data set. The spike

on the left is typical for scRNA-Seq data sets and the tags in this spike are dropout candidates.

We have compared CIDR with the standard PCA implemented by the R function prcomp, two

state-of-the-art dimensionality reduction algorithms – t-SNE and ZIFA, and the recently published

scRNA-Seq clustering package RaceID. As RaceID does not perform dimensionality reduction,

the first two dimensions output by t-SNE have been used in the two dimensional visualisation of

RaceID. Since prcomp, ZIFA and t-SNE do not perform clustering, for the purpose of comparison,

we have applied the same hierarchical clustering procedure used by CIDR. We use the Adjusted

Rand Index19 to measure the accuracy of clustering.

As shown in Figure 2, the only algorithm that displays three clearly recognisable clusters in

the first two dimensions is CIDR. CIDR’s accuracy in cluster membership assignment is reflected

by an Adjusted Rand Index much higher than the other four compared algorithms (Figure 2f).

CIDR outputs all the principal coordinates as well as a plot showing the proportion of variation

explained by each of the principal coordinates (Supplementary Figure 2d).

We perturbed the various parameters in the simulation study to test the robustness of CIDR

and examine how its performance depends on these parameters. As expected, the Adjusted Rand

Index decreases as the dropout level or the number of cell types increases (Supplementary Figures

4a and 4c). However, in cases when the Adjusted Rand Index is low, the performance of CIDR can

be improved to close to 1 by increasing the number of cells (Supplementary Figures 4b and 4d).

Scalability of CIDR Given the ever increasing size of scRNA-Seq data sets, and hence the im-

portance of speed of scRNA-Seq data analysis software, we have created a simulated data set of

10,000 cells to test the scalability of CIDR and other algorithms. The results are shown in Table 3

- CIDR completed the analysis within 45 minutes, which is more than 4-fold faster than the sec-
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ond fastest algorithm prcomp (3.1 hours), and many more times faster than t-SNE (21.8 hours),

ZIFA (1.6 days), and RaceID (did not complete execution within 14 days). In fact, CIDR is the

only algorithm that completed the analysis within an hour, while achieving a very high clustering

accuracy (Adjusted Rand Index = 1).

Biological data sets

We have applied CIDR and the four compared algorithms on three very different biological data

sets where the cell types are reported in the original publications. In these studies, cell types

were determined through a multi-stage process involving additional information such as cell type

molecular signatures. For the purpose of evaluation and comparison, we have applied each of the

compared algorithms only once in an unsupervised manner to test how well each algorithm can

recover the cell type assignments in the studies.

Human brain scRNA-Seq data set Figure 3 shows the comparison results for the human brain

scRNA-Seq data set20. In this data set there are 420 cells in 8 cell types after we exclude hybrid

cells. Determining the number of clusters is known to be a difficult issue in clustering; CIDR

has managed to identify 7 clusters in the brain data set, which is very close to 8, the number of

annotated cell types in this data set. CIDR has also identified the members of each cell type largely

correctly, as reflected by an Adjusted Rand Index close to 0.9, which is a great improvement over

the second best algorithm (Figure 3f). In the two dimensional visualisation by CIDR (Figure

3e), the first principal coordinate separates neurons from other cells, while the second principal

coordinate separates adult and fetal neurons. Note that t-SNE is non-deterministic and it outputs

dramatically different plots after repeated runs with the same input and the same parameters but

with different seed to the random number generator (Supplementary Figure 5).

CIDR allows the user to alter the number of principal coordinates used in clustering and the

final number of clusters, specified by the parameters nPC and nCluster respectively. We altered

these parameters and reran CIDR on the human brain scRNA-Seq data set to test the robustness of

CIDR (Supplementary Figure 6). When these parameters are altered from the default values, the
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clusters output by CIDR are still biologically relevant. For instance, 4 is recommended by CIDR

as the optimal nPC, and in the resulting clustering, fetal quiescent neurons and fetal replicating

neurons are output as two different clusters (Figure 3e); while when nPC is lowered to 2, these

two types of cells are grouped as one cluster, i.e., fetal neurons (Supplementary Figure 6a).

We will now use the CIDR neuron cluster in the human brain scRNA-Seq data set20 as an

example to illustrate how to use CIDR to discover limitations in the annotation. In Figure 3e the

cluster that corresponds best with the annotated neurons is denoted by crosses; there are only six

disagreements, marked by 1-6 in Figure 3e, which are denoted by crosses but not annotated as

neurons. We use cell type markers from an independent study21 to investigate the cause of these

disagreements. In Figure 4, these six samples are denoted by ‘CIDR 1’, ‘CIDR 2’, etc, and as all

six samples express neuron markers, CIDR’s labels for them are justified. The first five out of these

six samples express both neuron markers and the markers of the respective annotated cell types,

suggesting that each of these samples contains RNAs from multiple cells, or they are potentially

new cell types. The CIDR principal coordinates plot (Figure 3e) correctly places these five samples

between neurons and the respective annotated cell types. The sixth sample only expresses neuron

markers, suggesting a mistake in the annotation, and CIDR correctly places this sample in the

middle of the neuron cluster. We have carried out the same analysis using prcomp and ZIFA, and

both methods can only identify ‘CIDR 4’ and ‘CIDR 6’, marked by 1 and 2 respectively in Figures

3a and 3c. It not not possible to carry out this analysis using t-SNE or RaceID, because they

incorrectly group neurons and other cell types in the same clusters. These errors are illustrated in

Figures 3b, 3d and 4, in which we can see that cells incorrectly grouped with neurons by t-SNE

and RaceID, denoted by ‘t-SNE 1’, ‘t-SNE 2’, etc, have little expression in neuron markers.

Human pancreatic islet scRNA-Seq data set The human pancreatic islet scRNA-Seq data set22

has a smaller number of cells – 60 cells in 6 cell types after we exclude undefined cells and bulk

RNA-Seq samples. CIDR is the only algorithm that displays clear and correct clusters in the first

two dimensions (Figure 5). Regarding clustering accuracy, CIDR outperforms the second best

algorithm by more than 3-fold in terms of Adjusted Rand Index (Figure 5f).
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Mouse brain scRNA-Seq data set In the mouse brain scRNA-Seq data set9 there are 1,800 cells in

7 cell types. Supplementary Figure 7 shows the results of the comparison study using this data set.

In this case, t-SNE achieve the highest Adjusted Rand Index, and this is tightly followed by CIDR.

Both t-SNE and CIDR perform much better than other tested methods (Table 2 and Supplementary

Figure 7), but CIDR (1 minute) is significantly faster than t-SNE (23 minutes) (Table 1). Also, we

note that in the original publication9 cell-type labels were assigned based on a multi-step procedure

involving filtering and applying a modified bi-clustering algorithm, and the clustering results were

visualised by t-SNE.

Discussion

CIDR has ultrafast runtime, which is vital given the rapid growth in the size of scRNA-Seq data

sets. The runtime comparison results between CIDR and the other four algorithms over five data

sets are shown in Tables 1 and 3. On a standard laptop, it takes CIDR only seconds to process a

data set of hundreds of cells and minutes to process a data set of thousands of cells. It is faster

than prcomp and all other compared algorithms; in particular, it is more than 50-fold faster than

ZIFA, which is another dimensionality reduction method that was specifically designed to deal

with dropout in scRNA-Seq data analysis.

Data pre-processing steps such as dimensionality reduction and clustering are important in

scRNA-Seq data analysis because detecting clusters can greatly benefit subsequent analyses. For

example, clusters can be used as covariates in differential expression analysis6, or co-expression

analysis can be conducted within each of the clusters separately23. Certain normalization proce-

dures should be performed within each of the clusters5. Therefore, the vast improvement CIDR

has over existing tools will be of interest to both users and developers of scRNA-Seq technology.

Methods

Dropout candidates To determine the dropout candidate threshold that separates the first two

modes in the distribution of tags (logTPM) of a library, CIDR finds the minimum point between
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the two modes in the density curve of the distribution. The R function density is used for kernel

density estimation, and the Epanechnikov kernel is used as the smoothing kernel. For robustness,

after calculating all the dropout candidate thresholds, the top and bottom 10 percentiles of the

thresholds are assigned the 90th percentile and the 10th percentile threshold values respectively.

CIDR also gives the user the option of calculating the dropout candidate thresholds for only some

of the libraries and in this option the median of the calculated thresholds is taken as the dropout

candidate threshold for all the libraries.

In the kernel density estimation CIDR uses the default bandwidth selection method ‘nrd0’ of

the R function density with ‘adjust = 1’ . We have varied the ‘adjust’ parameter and re-calculated

the Adjusted Rand Indices for both the human brain20 and human pancreatic22 scRNA-Seq data

sets, and Supplementary Figure 8 shows that CIDR is robust with respect to this bandwidth adjust-

ment. When the ‘adjust’ parameter is varied from 0.5 to 1.5, the Adjusted Rand Indices for CIDR

for both the human brain and human pancreatic islet data sets stay much higher than the next best

methods; see Figures 3f and 5f.

Dimensionality reduction Principal coordinates analysis is performed on the CIDR dissimilarity

matrix to achieve dimensionality reduction. Because the CIDR dissimilarity matrix does not in

general satisfy the triangle inequality, the eigenvalues can possibly be negative. This doesn’t matter

as only the first few principal coordinates are used in both visualization and clustering, and their

corresponding eigenvalues are positive. Negative eigenvalues are discarded in the calculation of the

proportion of variation explained by each of the principal coordinates. Some clustering methods

require the input dissimilarity matrix to satisfy the triangle inequality. To allow integration with

these methods, CIDR gives the user the option of Cailliez correction24, implemented by the R

package ade4. The corrected CIDR dissimilarity matrix does not have any negative eigenvalues.

Determining the number of principal coordinates CIDR implements an algorithm which is a

variation of the scree25 method to automatically determine the number of principal coordinates

used in clustering. CIDR outputs a plot that shows the proportion of variation explained by each of

the principal coordinates, and the scree approach looks for the ‘elbow’ in the curve beyond which
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the curve flattens.

More specifically, CIDR assigns eigenvalues into groups based on the differences in con-

secutive eigenvalues. A new group is created each time a consecutive difference is greater than

a cutoff point determined as a fraction of the largest difference. If the size of the current group

exceeds a pre-determined threshold, the sum of sizes of all but the current group is returned as the

number of principal coordinates used in clustering.

Users are encouraged to inspect the proportion of variation plot output by CIDR, and possibly

alter the number of principal coordinates used in clustering.

Clustering Hierarchical clustering is performed using the R package NbClust. CIDR’s default

clustering method for hierarchical clustering is ‘ward.D2’26, and the number of clusters is decided

according to the Calinski-Harabasz Index18. The algorithm for cluster number decision is again a

variation of the scree25 algorithm. More specifically, the algorithm examines the second derivative

of the Calinski-Harabasz Index versus the number of clusters curve (Supplementary Figure 2e).

Upon user request, CIDR can output the Calinski-Harabasz Index versus the number of clusters

plot; if needed, the user can overwrite the number of clusters.

Simulation study Simulated log tags are generated from a log-normal distribution. For each

cell type, an expected library, i.e., the true distribution of log tags, is first generated, and then

dropouts and noise are simulated. For each cell type, the expected library includes a small number

of differentially expressed features (e.g., genes, transcripts) and markers; by markers we mean

features that are expressed in one cell type and zeros in all the other cell types.

A probability function π(x), where x is an entry in the expected library, is used to simulate

dropouts. π(x) specifies how likely an entry becomes a dropout, so intuitively it should be a

decreasing function. In our simulation, we use a decreasing logistic function. The parameters of

the logistic function can be altered to adjust the level of dropouts. After the simulation of dropouts,

Poisson noise is added to generate the final distribution for each library.
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Biological data sets Tag tables from three recent scRNA-Seq studies (human brain20, human pan-

creatic islet22 and mouse cerebral cortex9) were downloaded from the data repository NCBI Gene

Expression Omnibus (GSE67835, GSE73727, GSE60361). To ensure good quality, samples with

a library size less than 10,000 have been excluded. The raw tag tables were used as the inputs for

CIDR. For other dimensionality reduction and clustering algorithms, rows with tag sums less than

or equal to 10 were deleted. Log tags, with base 2 and prior count 1, were used as the inputs for

ZIFA, as suggested by the ZIFA documentation. Data sets transformed by logTPM were used as

inputs for prcomp and t-SNE.

Theoretical justification Here we show that CIDR always shrink the expect distance between two

dropout-affected samples (i.e., single cells), and has a higher expected shrinkage rate for within-

cluster distances than between cluster distances. It is this property that ensures that CIDR dissimi-

larity matrix better preserves the clustering structure in the data set.

For simplicity of discussion, let’s assume that dropouts are zeros. We will now explain why

imputation by Equation (2) in the main text improves clustering.

Suppose that a particular feature F has true expression level x1, x2, and x3 for three cells

C1, C2, and C3 respectively. Let’s assume x1 ≤ x2 ≤ x3. Let P be the true dropout probability

function, and P̂ be the empirically estimated dropout probability function used in CIDR. Both P

and P̂ are monotonically decreasing functions, and satisfy 0 ≤ P, P̂ ≤ 1.

The true dissimilarity between C1 and C2 contributed by feature F is

Dtrue(C1, C2, F ) = (x1 − x2)
2.

In the presence of dropouts in the observed data, the expected value of dissimilarity between

C1 and C2 contributed by feature F is
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E
(
Ddata(C1, C2, F )

)
=
(
1− P (x1)

)(
1− P (x2)

)
(x1 − x2)

2+

P (x2)
(
1− P (x1)

)
x21 + P (x1)

(
1− P (x2)

)
x22.

(5)

Meanwhile the expected value of the CIDR dissimilarity between C1 and C2 contributed by

feature F is

E
(
DCIDR(C1, C2, F )

)
=
(
1− P (x1)

)(
1− P (x2)

)
(x1 − x2)

2+

P (x2)
(
1− P (x1)

)(
1− P̂ (x1)

)2
x21+

P (x1)
(
1− P (x2)

)(
1− P̂ (x2)

)2
x22.

(6)

Comparing Equation (5) and Equation (6), it is clear that the only difference is the presence

of the factor
(
1 − P̂ (xi)

)2 in the last two terms. Since 0 ≤ P̂ (x) ≤ 1, we can deduce that(
1− P̂ (xi)

)2 ≤ 1, which means E
(
DCIDR(C1, C2, F )

)
≤ E

(
DData(C1, C2, F )

)
for pair of cells

C1 and C2. This demonstrates that CIDR shrinks the expected distance between two points in the

presence of dropouts.

Furthermore, let’s consider the expected rate of shrinkage between C1 and C2 contributed by

feature F ,

Eshrinkage rate(C1, C2, F ) =
E
(
Ddata(C1, C2, F )

)
− E

(
DCIDR(C1, C2, F )

)
E
(
Ddata(C1, C2, F )

)
= 1−

E
(
DCIDR(C1, C2, F )

)
E
(
Ddata(C1, C2, F )

) . (7)

Let’s considerEshrinkage rate(C1, C2, F ) andEshrinkage rate(C1, C3, F ). Since CIDR always shrink

the expected distance between two points, and that
(
1 − P̂ (x3)

)2 ≥
(
1 − P̂ (x2)

)2, our intuition

is that Eshrinkage rate(C1, C3, F ) is likely smaller than or equal to Eshrinkage rate(C1, C2, F ). In other

words, we hypothesise that the shrinkage rate between two closer points is larger than or equal to

the shrinkage rate between two points that are further apart. To prove this property is algebraically
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very complex, so we have conducted an extensive computational study on the rate of shrinkage;

Supplementary Figure 9 shows that for a variety of monotonically decreasing P and P̂ , and for any

fixed x1, the expected rate of shrinkage becomes smaller when x2 becomes larger. In particular,

Supplementary Figure 9f shows the case when P̂ is a step function. We observe that in all tested

cases our hypothesis holds. Therefore we are satisfied that in practice CIDR shrinks within-cluster

distances more than between-cluster distances due to this differential shrinkage rate property.
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Figure 1: A toy example to illustrate the effect of dropout in scRNA-Seq data on clustering
and how CIDR can alleviate the effect of dropouts. (a) This toy example consists of eight single
cells divided into two clusters (the red cluster and blue cluster. Dropout causes the within-cluster
distances among the single cells in the red cluster to increase dramatically, as well as increasing the
between cluster distances between single cells in the two clusters. (b) CIDR reduces the dropout-
induced within-cluster distances while largely maintains the between-cluster distances. (c) The
hierarchical clustering results using the original data set (no dropout), the dropout-affected data
set, and the dropout-affected data set analysed using CIDR.
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Figure 2: Performance evaluation with simulated data. Simulated scRNA-Seq data set param-
eters: 3 cell types, 50 cells in each cell type, 20,000 non-differentially expressed features, 150
differentially expressed features and 10 markers for each cell type. The three colors denote the
three true cell types; while the different plotting symbols denote the clusters output by each algo-
rithm. (a) - (e) Clustering output by each of the five compared algorithms; (f) Adjusted Rand Index
is used to compare the accuracy of the clustering output by each of the compared algorithms.
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Figure 3: Performance evaluation with the human brain scRNA-Seq data set. In this data set
there are 420 cells in 8 cell types after the exclusion of hybrid cells. The different colors denote
the cell types annotated by the study20; while the different plotting symbols denote the clusters
output by each algorithm. (a) - (e) Clustering output by each of the five compared algorithms;
(f) Adjusted Rand Index is used to measure the accuracy of the clustering output by each of the
compared algorithms. Samples labelled by numbers are disagreements between the annotation and
the clustering of the respective algorithm.
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Figure 4: Expression of cell type markers. Four groups of cell type markers from an independent
study21: neurons, astrocytes, oligodendrocytes and endothelial. The first 12 columns are selected
samples which the annotation agrees with the CIDR clustering. Columns 13-18 are samples which
are not annotated as neurons but clustered with neurons by CIDR, prcomp or ZIFA. Columns 19-24
are selected samples which are not annotated as neurons but clustered with neurons by t-SNE or
RaceID.
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Figure 5: Performance evaluation on the human pancreatic islet scRNA-Seq data set. In this
data set there are 60 cells in 6 cell types after the exclusion of undefined cells and bulk RNA-Seq
samples. The different colors denote the cell types annotated by the study22; while the different
plotting symbols denote the clusters output by each algorithm. (a) - (e) Clustering output by each
of the five compared algorithms; (f) Adjusted Rand Index is used to measure the accuracy of the
clustering output by each of the compared algorithms.
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Tables

Table 1: Runtime comparison between CIDR and four other algorithms. CIDR is the default CIDR
algorithm implementation with step function simplification, while CIDR (L) is the implementation
with the non-simplified logistic function. The algorithms were run on a standard laptop: 2.8 GHz
Intel Core i5 (I5-4308U), 8GB DDR3 RAM). *RaceID failed to converge for the mouse brain data
set.

Data set Size CIDR CIDR (L) prcomp t-SNE RaceID ZIFA
Pancreatic Islet 60 5.2s 5.3s 2.9s 8.5s 48.6s 40.1mins

Simulation 150 1.9s 2.3s 2.9s 14.2s 20.7s 32.1mins
Human Brain 420 6.6s 8.9s 13.7s 1.4mins 1.5mins 1.1hours
Mouse Brain 1,800 57.9s 1.1mins 3.2mins 23.1mins 2.5hours∗ 1.8hours

Table 2: Clustering accuracy (measured by Adjusted Rand Index) comparison between CIDR and
four other algorithms. CIDR is the default CIDR algorithm implementation with step function
simplification, while CIDR (L) is the implementation with the non-simplified logistic function.
RaceID failed to converge for the mouse brain data set.

Data set Size CIDR CIDR (L) prcomp t-SNE RaceID ZIFA
Pancreatic Islet 60 0.68 0.42 0.21 0.20 0.22 0.20

Simulation 150 0.92 0.90 0.48 0.02 0 0.00
Human Brain 420 0.90 0.88 0.48 0.57 0.39 0.53
Mouse Brain 1,800 0.52 0.37 0.26 0.62 0.37∗ 0.32

Table 3: Runtime and clustering accuracy (measured by Adjusted Rand Index) comparison be-
tween CIDR and four other algorithms on a simulation data set with 10,000 cells. CIDR is the
default CIDR algorithm implementation with step function simplification, while CIDR (L) is the
implementation with the non-simplified logistic function. The algorithms except ZIFA were run on
an AWS ec2 r3.2xlarge instance. *ZIFA ran out of memory on the AWS ec2 r3.2xlarge instance,
and its runtime was recorded from a run on an AWS ec2 r3.8xlarge instance. **RaceID didn’t
complete after 14 days.

Simulation (10K) CIDR CIDR (L) prcomp t-SNE RaceID ZIFA
Time 44.5mins 1.5hours 3.1hours 21.8hours >14days 1.6days∗

Adjusted Rand Index 0.99 1.00 0.99 0.00 N/A∗∗ 0.09

Additional Files

Additional file 1 — Supplementary Figures Supplementary Figures 1 - 9.
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