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Most existing dimensionality reduction and clustering packages for single cell RNA-Seq (scRNA-

Seq) data deal with dropouts by heavy modelling and computational machinery. Here we in-

troduce CIDR (Clustering through Imputation and Dimensionality Reduction), an ultrafast

algorithm which uses a novel yet very simple ‘implicit imputation’ approach to alleviate the

impact of dropouts in scRNA-Seq data in a principled manner. Using a range of simulated

and real data, we have shown that CIDR outperforms the state-of-the-art methods, namely

t-SNE, ZIFA and RaceID, by at least 50% in terms of clustering accuracy, and typically com-

pletes within seconds for processing a dataset of hundreds of cells.

scRNA-Seq enables researchers to study heterogeneity between individual cells and define

cell types from a transcriptomic perspective. One prominent problem in scRNA-Seq data analysis

is the prevalence of dropouts, caused by failures in amplification during the reverse-transcription

step in the RNA-Seq experiment. The prevalence of dropouts manifests as an excess of zeros and

near zero counts in the dataset, which has been shown to create difficulties in scRNA-Seq data

analysis1, 2.

Several packages have recently been developed for the various aspects of scRNA-Seq data

analysis2–4, but few perform pre-processing steps such as dimensionality reduction and clustering,

which are critical steps for studying cell type heterogeneity. The state-of-the-art dimensionality

reduction package for scRNA-Seq data is ZIFA1; its use of the expectation-maximization algo-

rithm makes it computationally intensive and hence difficult to cope with the increasingly large

scRNA-Seq datasets. Another package t-SNE5 is popular among biologists, but it is not designed

specifically for scRNA-Seq data and does not address the issue of dropouts. Regarding clustering
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and cell type classification for scRNA-Seq data, there have only been two packages, SNN-Cliq6

and RaceID7, developed specifically for this purpose. Like t-SNE, neither of these algorithms

addresses the issue of dropouts.

In contrast to the use of heavy modelling and computational machinery by current state-of-

the-art methods, CIDR uses a novel yet very simple ‘implicit imputation’ approach to alleviate the

impact of dropouts in a principled manner (Supplementary Fig. 1). CIDR first performs a logarith-

mic transformation on the tag per million (TPM), after which the logTPM for each cell typically

displays a bimodal distribution. For each cell Ci, CIDR finds a sample-dependant threshold Ti that

separates the first and second modes; Supplementary Fig. 2a shows the distribution of tags for a

library in a simulated dataset, and the red vertical line indicates the threshold Ti. The entries for

cell Ci with an expression of less than Ti are dropout candidates, and the entries with an expres-

sion of at least Ti are referred to as ‘expressed’. We call this threshold Ti the ‘dropout candidate

threshold’. Note that dropout candidates include dropouts as well as real low expressions.

Let u be the unobserved real expression of a feature in a cell and let P (u) be the probability

of it being a dropout. Empirical evidence suggests that P (u) is a decreasing function1, 2. CIDR

uses non-linear least squares to fit a decreasing logistic function to the data (empirical dropout

rate versus average of expressed entries) as an estimate for P (u), illustrated by the ‘Tornado Plot’

Supplementary Fig. 2b for the simulated dataset. Using the whole dataset to estimate P (u), which

we denote as P̂ (u), makes the reasonable assumption that most dropout candidates in the dataset

are actually dropouts, and allows the sharing of information between genes and cells.

P̂ (u) is used for imputation in the calculation of the CIDR dissimilarity matrix. The dropout

candidates are treated as missing values and we will now describe CIDR’s pairwise ‘implicit’

imputation process. Consider a pair of cells Ci and Cj , and their respective observed expressions

oki and okj for a feature Fk, and let Ti and Tj be dropout candidate thresholds defined as above.

Imputation is only applied to dropout candidates, hence the case in which oki ≥ Ti and okj ≥ Tj

requires no imputation. Now consider the case in which one of the two expressions is below Ti,

say oki < Ti and okj ≥ Tj; in this case oki needs to be imputed and the imputed value ôki is defined

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2016. ; https://doi.org/10.1101/068775doi: bioRxiv preprint 

https://doi.org/10.1101/068775
http://creativecommons.org/licenses/by-nc-nd/4.0/


as the weighted mean

ôki = P̂ (okj)okj +
(
1− P̂ (okj)

)
oki. (1)

To achieve fast speed in the implementation of the above step, we replace P̂ (u) with a much

simpler step function W (u), defined as

W (u) =

0, P̂ (u) ≤ T,

1, P̂ (u) > T,

(2)

where T is by default 0.5. We refer toW (u) as the ‘imputation weighting function’ as it gives us the

weights in the weighted mean in the imputation, and we refer to the jump of W (u), i.e. P̂−1(T ),

as the ‘imputation weighting threshold’ (Supplementary Fig. 2c). Therefore, the implemented

version of Equation (1) is

õki = W (okj)okj +
(
1−W (okj)

)
oki, (3)

where õki is used as the imputed value of oki. Lastly, if oki < Ti and okj < Tj , we set both õki and

õkj to be zero.

Then, the dissimilarity between Ci and Cj is calculated as the Euclidean distance using the

imputed values. We call this imputation approach ‘implicit’, as the imputed value of a partic-

ular observed expression of a cell changes each time when it is paired up with a different cell.

The theoretical justification of this implicit imputation approach can be found in Supplementary

Materials.

Dimensionality reduction is achieved by performing principal coordinates analysis on the

CIDR dissimilarity matrix. It has been known that high dimensionality has adverse effects on clus-

tering results, and clustering performed on the reduced dimensions improves the results8. CIDR

performs hierarchical clustering on the first few (by default 4) principal coordinates, and decides

the number of clusters based on the Calinski-Harabasz Index9.

For evaluation, we have created a realistic simulated scRNA-Seq dataset. We set the number

of markers for each cell type low to make it a difficult dataset to analyse. Supplementary Fig. 2a
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shows the distribution of tags for one randomly chosen library in this simulated dataset. The spike

on the left is typical for scRNA-Seq datasets and the tags in this spike are dropout candidates.

We have compared CIDR with the standard principal component analysis implemented by the R

function prcomp, two state-of-the-art dimensionality reduction algorithms – t-SNE and ZIFA, and

the recently published scRNA-Seq clustering package RaceID. Since prcomp, ZIFA and t-SNE

don’t perform clustering, for the purpose of comparison, we apply the same hierarchical clustering

procedure used by CIDR to the first four principal components output by each of the algorithms.

We use the Adjusted Rand Index10 to measure the accuracy of clustering.

As shown in Fig. 1, the only algorithm that displays three clearly recognisable clusters in the

first two dimensions is CIDR; it is also the only algorithm that correctly identifies the number of

clusters. CIDR’s accuracy in cluster membership assignment is reflected by an Adjusted Rand In-

dex much higher than the other four compared algorithms (Fig. 1f). CIDR outputs all the principal

coordinates as well as a plot showing the proportion of variation explained by each of the principal

coordinates (Supplementary Fig. 2d). Supplementary Fig. 2f shows the result when the number

of principal coordinates used in clustering is altered from the default value of 4 to 2, based on an

inspection of the proportion of variation plot.

We have applied CIDR and the four compared algorithms on two biological datasets where

the cell types are known. In these studies, cell types were determined through a multi-stage pro-

cess involving additional information such as cell type molecular signatures. For the purpose of

evaluation and comparison, we have applied each of the compared algorithms only once in an un-

supervised manner to test how well each algorithm can recover the cell type assignments in the

two studies.

Fig. 2 shows the comparison results for the human brain scRNA-Seq dataset11. In this dataset

there are 420 cells in 8 cell types after we exclude hybrid cells. Determining the number of clusters

is known to be a difficult issue in clustering; CIDR has managed to identify 7 clusters in the brain

dataset, which is very close to 8, the number of annotated cell types in this dataset. CIDR has also

identified the members of each cell type largely correctly, as reflected by an Adjusted Rand Index
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close to 0.9, which is a greater than 50% improvement over the second best algorithm (Fig. 2f).

In the two dimensional visualization by CIDR (Fig. 2e), the first principal coordinate separates

neurons from other cells, while the second principal coordinate separates adult and fetal neurons.

Note that t-SNE is nondeterministic and it outputs dramatically different plots after repeated runs

with the same input and the same parameters (Supplementary Fig. 4).

The human pancreatic islet scRNA-Seq dataset12 has a smaller number of cells – 60 cells

in 6 cell types after we exclude undefined cells and bulk RNA-Seq samples. CIDR is the only

algorithm that displays clear and correct clusters in the first two dimensions (Supplementary Fig.

6). Regarding clustering accuracy, CIDR outperforms the second best algorithm by more than 80%

in terms of Adjusted Rand Index (Supplementary Fig. 6f).

CIDR has ultrafast runtime, which is vital given the rapid growth in the size of scRNA-Seq

datasets. The runtime comparison between CIDR and the other four algorithms is shown in Table

1. Across three datasets, CIDR takes only seconds to run on a standard laptop. It is faster than

prcomp for two of the three datasets, and it is faster than all other compared algorithms for all three

datasets; in particular, it’s more than 400-fold faster than ZIFA.

Data pre-processing steps such as dimensionality reduction and clustering are important in

scRNA-Seq data analysis because detecting clusters can greatly benefit subsequent analyses. For

example, clusters can be used as covariates in differential expression analysis3, or co-expression

analysis can be conducted within each of the clusters separately13. Certain normalization proce-

dures should be performed within each of the clusters14. Therefore, the vast improvement CIDR

has over existing tools will be of interest to both users and developers of scRNA-Seq technology.

Methods

Dropout Candidates To determine the dropout candidate threshold that separates the first two

modes in the distribution of tags (logTPM) of a library, CIDR finds the minimum point between

the two modes in the density curve of the distribution. The Epanechnikov kernel is used in the
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kernel density estimation. For robustness, after calculating all the dropout candidate thresholds,

the top and bottom 10 percentiles of the thresholds are assigned the 90th percentile and the 10th

percentile threshold values respectively. CIDR also gives the user the option of calculating the

dropout candidate thresholds for only some of the libraries and in this option the median of the

calculated thresholds is taken as the dropout candidate threshold for all the libraries.

Dimensionality Reduction A modified version of the pcoa function in the R package ape is used

to perform principal coordinates analysis on the CIDR dissimilarity matrix. Because the CIDR

dissimilarity matrix does not in general satisfy the triangle inequality, the eigenvalues can possibly

be negative. This doesn’t matter as only the first few principal coordinates are used in both visu-

alization and clustering, and their corresponding eigenvalues are positive. Negative eigenvalues

are discarded in the calculation of the proportion of variation explained by each of the principal

coordinates. Some clustering methods require the input dissimilarity matrix to satisfy the trian-

gle inequality. To allow integration with these methods, CIDR gives the user the option of Cailliez

correction15, implemented by the R package ade4. The corrected CIDR dissimilarity matrix doesn’t

have any negative eigenvalues.

Clustering By default, the first four principal coordinates are used to generate a distance matrix

for clustering. CIDR outputs a plot that shows the proportion of variation explained by each of

the principal coordinates, and the user is encouraged to inspect this plot and possibly alter the

number of principal coordinates used in clustering. Supplementary Fig. 2d is the proportion of

variation plot for the simulated dataset, and in this case an obvious good choice for the number of

principal coordinates to be used in clustering is 2; Supplementary Fig. 2f shows the result when

the number of principal coordinates used in clustering is altered from the default value of 4 to

2. Hierarchical clustering is performed using the R package NbClust. CIDR’s default clustering

method for hierarchical clustering is ‘ward.D2’16, and the number of clusters is decided according

to the Calinski-Harabasz Index9. Upon user request, CIDR can output a Calinski-Harabasz Index

versus the number of clusters plot (Supplementary Fig. 2e); if needed, the user can overwrite the

number of clusters.
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Simulation Study Simulated log tags are generated from a log-normal distribution. For each

cell type, an expected library, i.e. the true distribution of log tags, is first generated, and then

dropouts and noise are simulated. For each cell type, the expected library includes a small number

of differentially expressed features (e.g. genes, transcripts) and markers; by markers we mean

features that are expressed in one cell type and zeros in all the other cell types.

A probability function π(x), where x is an entry in the expected library, is used to simulate

dropouts. π(x) specifies how likely an entry becomes a dropout, so intuitively it should be a

decreasing function. In our simulation, we use a decreasing logistic function. The parameters of

the logistic function can be altered to adjust the level of dropouts. After the simulation of dropouts,

Poisson noise is added to generate the final distribution for each library.

Biological Datasets Tag tables from two recent scRNA-Seq studies (human brain11 and human

pancreatic islet12) were downloaded from the data repository NCBI Gene Expression Omnibus

(GSE67835, GSE73727). The raw tag tables were used as the inputs for CIDR. For other dimen-

sionality reduction and clustering algorithms, rows with tag sums less than or equal to 10 were

deleted. Log tags, with base 2 and prior count 1, were used as the inputs for ZIFA, as suggested

by the ZIFA documentation. Datasets transformed by logTPM were used as inputs for prcomp and

t-SNE.

Implementation CIDR can be downloaded at http://github.org/VCCRI/CIDR.
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Figure 1: Performance evaluation with simulated data. Simulated scRNA-Seq dataset param-
eters: 3 cell types, 50 cells in each cell type, 20,000 non-differentially expressed features, 150
differentially expressed features and 10 markers for each cell type. The three colors denote the
three true cell types; while the different plotting symbols denote the clusters output by each algo-
rithm. (a) - (e) Clustering output by each of the five compared algorithms; (f) Adjusted Rand Index
is used to compare the accuracy of the clustering output by each of the compared algorithms.

Figure 2: Performance evaluation with the human brain scRNA-Seq dataset. In this dataset
there are 420 cells in 8 cell types after the exclusion of hybrid cells. The different colors denote
the cell types annotated by the study11; while the different plotting symbols denote the clusters
output by each algorithm. (a) - (e) Clustering output by each of the five compared algorithms;
(f) Adjusted Rand Index is used to measure the accuracy of the clustering output by each of the
compared algorithms.

Table 1: Runtime comparison between CIDR and four other algorithms (standard laptop: 2.8 GHz
Intel Core i5 (I5-4308U), 8GB DDR3 RAM).

Dataset Number of Cells CIDR prcomp t-SNE RaceID ZIFA
Pancreatic Islet 60 5.5s 2.8s 8.5s 48.6s 40.1mins

Simulation 150 2.5s 2.6s 16.0s 20.7s 31.1mins
Brain 420 8.1s 13.2s 77.2s 89.0s 68.7mins
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