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 2 

Abstract 13 

 14 

Background: Species distribution models (SDMs) have an important role in predicting the range 15 

of emerging and understudied pathogens and parasites. Their use, however, is often limited by 16 

the lack of high-resolution unbiased occurrence records. Echinococcus multilocularis is a 17 

parasitic cestode of public health importance which is widely distributed throughout Eurasia 18 

and is considered an emerging threat in North America. In common with many parasite species, 19 

available data for E. multilocularis occurrence are spatially biased and often poorly geo-20 

referenced.  21 

Results: Here we produce three separate SDMs using MaxEnt for E. multilocularis using varying 22 

complexities of sampling schemes and environmental predictors, designed to make the best 23 

possible use of non-ideal occurrence data. The most realistic model utilized both derived and 24 

basic climatic predictors; an occurrence sampling scheme which relied primarily on high 25 

resolution occurrences from the literature and a bias grid to compensate for an apparently 26 

uneven research effort. All models predicted extensive regions of high suitability for E. 27 

multilocularis in North America, where the parasite is poorly studied and not currently under 28 

coordinated surveillance.  29 

Conclusions: Through a pragmatic approach to non-ideal occurrence data we were able to 30 

produce a statistically well supported SDM for an under-studied species of public health 31 

importance. Although the final model was only trained on data from Eurasia, the global model 32 

projection encompassed all known occurrences in the United States. The approach defined 33 

here may be applicable to many other such species and could provide useful information to 34 
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 3 

direct resources for future field based surveillance programs for E. multilocularis in North 35 

America. 36 

 37 

Keywords: Species Distribution Model; Echinococcus multilocularis; Alveolar echinococcosis; 38 

MaxEnt; Cestoda; Spatial ecology. 39 

 40 

Background 41 

Species distribution modeling is a correlative technique which pairs geo-referenced species 42 

occurrence records with maps of environmental conditions to produce a predicted distribution 43 

for the species in the wider geographic area [1]. Species distribution models (SDMs) have 44 

previously been used to model a range of human parasites and pathogens [2-5]. These models 45 

can prove useful tools for public health planning as they can help allocate resources to the 46 

areas at highest risk of infection and plan for potential changes in parasite range due to climate 47 

change or species introductions [6, 7]. 48 

 49 

The ideal occurrence data for constructing an accurate SDM spans the entire geographic extent 50 

of the species’ distribution, is free of spatial collection bias and is accurately geo-referenced at 51 

a high spatial resolution [8]. This situation is extremely rare, even for well-studied groups and 52 

almost unheard of when working with under-studied taxa such as parasites [9, 10], where data 53 

are still opportunistically collected and often geo-referenced to large political units rather than 54 

precisely co-ordinated. Perhaps paradoxically, this imperfect occurrence data makes the 55 
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potential utility of SDMs even greater, to help fill in gaps in our knowledge. One such under-56 

sampled parasite is Echinococcus multilocularis. 57 

 58 

E. multilocularis is a widely distributed heteroxenous cestode (Cestoda, Taeniidae), which 59 

naturally exploits a sylvatic predator-prey system, with small rodents (primarily Arvicolidae and 60 

Cricetidae) as intermediate hosts, and predominantly canids  (but occasionally felids) as 61 

definitive hosts [11]. Humans may become accidental intermediate hosts via ingestion of viable 62 

eggs by way of contaminated food or water, or by contact with contaminated surfaces or feces 63 

[11]. The pathology of the ensuing zoonosis is caused by the larval stage, and is increasingly 64 

recognized as a public health concern, not only in rural but also in urban and suburban areas 65 

[12]. Once established in a human host, E. multilocularis may cause alveolar echinococcosis 66 

(AE), which is characterized by a long-term asymptomatic onset during which time the larvae 67 

cause proliferative vesicles to form in liver tissue. If left untreated, tumors can form and 68 

infection spreads to adjacent tissues and organs [13, 14]. The advanced clinical stage of AE 69 

often corresponds to hepatic dysfunction, and the disease may be lethal, even with advanced 70 

treatment options [15]. Although 95% of an estimated 2 – 3 Million cases of human 71 

echinococcosis are caused by the closely related E. granulosus, E. multilocularis is more 72 

pathogenic, difficult to treat, and has a higher mortality rate [16].  73 

 74 

E. multilocularis is typical of many widely distributed parasites in that records of its occurrence 75 

are spatially biased, patchy and often at poor resolution. Although the parasite is known to 76 

occur throughout large parts of Europe, Asia and North America [11], its cosmopolitan 77 
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distribution is not truly reflected in the available records. Despite signs that the parasite is 78 

spreading in the United States and Canada [12], monitoring efforts in the Americas is 79 

uncoordinated, and have produced fewer than 50 georeferenced records (Figure S1). 80 

Furthermore, while high resolution records are relatively abundant in Western and Central 81 

Europe where sampling has been extensive, occurrences in Russia and Central Asia are often 82 

only geo-referenced at relatively large political units (Table S1). Perhaps because of this data 83 

limitation, no SDM currently exists in the literature for this species. However, with signs that 84 

the distribution of the parasite is spreading in parts of its range, the utility of a SDM which can 85 

predict the limits of that range is clear [12].  86 

 87 

In this paper we have compiled a comprehensive database of E. multilocularis occurrence from 88 

literature records and used this to produce a well-supported map showing the approximate 89 

known distribution within Eurasia. We attempt to overcome the limitations inherent in the 90 

current E. multilocularis occurrence data with a comparison of three different SDM modeling 91 

approaches, with layers of complexity being added in each model. All three models focus 92 

primarily on predicting the distribution of the egg stage of the lifecycle. E. multilocularis eggs 93 

are passed in the feces of infected definitive hosts, and constitute the only developmental stage 94 

of this tapeworm outside of a warm-blooded host. This external egg stage thus represents a 95 

crucial, and relatively vulnerable step in the tapeworm lifecycle, in which egg survival is directly 96 

dependent on abiotic factors [17]. Egg survival may, therefore, play a direct role in determining 97 

the parasite’s geographic distribution and transmission dynamics. The wide range of rodents 98 

and canids known to host E. multilocularis, and the wide distribution of those groups, means 99 
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that E. multilocularis is not likely to be limited by the distribution of its hosts. Hosts are, 100 

therefore, not a primary focus in our modeling philosophy. However, as the parasite’s 101 

transmission dynamics may be affected by host density [18] we include derived climatic 102 

variables in our final model which may affect intermediate host availability. 103 

 104 

In our first model we define the approximate distribution of E. multilocularis in Eurasia, and 105 

generate a set of random occurrence points from within that distribution to produce a global 106 

SDM based on interpolated climate data. In model 2 we use the same climatic predictors as in 107 

model 1, but apply high resolution occurrence data from the literature with a bias grid to 108 

correct the relative over-representation of West and Central European records. Finally, in 109 

model 3 we use the same approach to occurrence data as in model 2, but add biologically 110 

relevant derived climatic and habitat predictors to the model. All three models are built using 111 

Eurasian data and are projected globally. By comparing the projections of each model we aim 112 

to: 1) test whether it is possible to produce a plausible SDM for an under-sampled species such 113 

as E. multilocularis; 2) test how robust the predicted distribution is to changes in modeling 114 

protocol; 3) provide an estimate of the parasite’s distribution in North America where it is 115 

thought to be expanding but is considered neglected from a public health perspective; and 4) 116 

quantify the niche of E. multilocularis eggs to determine how its range may be limited by 117 

different climatic variables.  118 

 119 

Methods 120 

 121 
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Literature Records 122 

An exhaustive search of the peer-reviewed literature was undertaken with the search term 123 

“Echinococcus multilocularis” and/or “Alveolar Echinococcosis”, in combination with the names 124 

of all Eurasian countries, using Web of Science. Occurrence records were collated from these 125 

papers from all developmental stages (eggs, adults) and from all host categories (intermediate 126 

hosts, final hosts, accidental hosts). Host records which may have referred to the sympatric E. 127 

granulosus species were excluded. Even though our aim was to model climate suitability for the 128 

egg stage, we still included location data where only the adult life stage was documented, with 129 

the assumption that viable eggs will be released into the environment by adult tapeworms. 130 

Both point data (with associated coordinate information) and area data (often listed as geo-131 

political units) were included in our database along with the approximate spatial accuracy of 132 

the record (Table S1). The resulting dataset of 459 records, based on 120 publications was used 133 

to create a discontinuous polygon map showing the area affected by E. multilocularis to the 134 

highest spatial resolution allowed by the available data from Eurasia (Figure 1). Although 135 

distribution maps made for purely illustrative purposes (line drawings) have been previously 136 

published [11, 19, 20], our approach provides a data-driven map from rigorously vetted 137 

records. The same search process was employed to collect occurrence data for the Americas. 138 

This resulted in a database of 43 records, all of which originated from the United States and 139 

Canada (Figure S1). As records for North America are so scarce, these were not used during 140 

model building, but were reserved to provide independent data with which to test global model 141 

projections.  142 

 143 
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 144 

Fig 1. Map showing the current documented distribution of Echinococcus multilocularis in 145 

Eurasia. Gray regions indicate presence; red dots indicate occurrences from the literature 146 

accurate to within 10,000km2; blue triangles show occurrences from the literature with a 147 

resolution coarser than 10,000km2 (as such, their exact positioning is at random within the area 148 

they designate).  149 

 150 

Model 1 151 

Summary: Model 1 is the most basic of the three models and uses randomly sampled 152 

occurrence data and interpolated climate data as inputs, without the use of a bias grid. 153 

 154 

E. multilocularis occurrence data for model 1 was taken by randomly sampling points within the 155 

known area of Eurasian presence (i.e. the gray area in Figure 1) using ArcMap [21]. Point 156 

generation was constrained to allow only one point per 10,000 km2 grid cell. Five sets of 200 157 

points were made (Figure S2) and five separate MaxEnt models were constructed to allow us to 158 
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assess variability between models as a function of the exact position of the occurrence data 159 

used in the model. 160 

 161 

Bioclim variables are one of the most commonly used data sources used in SDMs. They are 162 

publicly available globally and produced at a variety of resolutions, making them easy to use for 163 

SDM researchers. We obtained the 19 bioclim variables (Table S2) from WorldClim 164 

(http://www.worldclim.org) [22] at a 5 arc-minutes resolution and resampled to a 10,000 km2 165 

grid cell size cropped to the area of known E. multilocularis extent using the raster package [23] 166 

in R version 3.1.2 [24].  167 

 168 

Model 2 169 

Summary: Model 2 differs from model 1 in that the majority (165/200) of its occurrence data 170 

points are true high-resolution presences from the literature, rather than generated by random 171 

sampling. The same set of bioclimatic variables are used as in model 1, but this time a bias grid 172 

is employed. 173 

 174 

Records of E. multilocularis occurrence that were geo-referenced to a resolution of at least 175 

10,000km2 were collected (n=165). This 10,000 km2 cut off point was selected as it matches the 176 

chosen resolution of our final model outputs. Where these high resolution records did not 177 

specify a coordinate, the approximate centroid of the geographic area concerned was 178 

measured and the coordinate taken. Unfortunately, very few high resolution data points are 179 

available for several large countries in which E. multilocularis is known to be highly endemic 180 
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[11]. To compensate for this potential bias we made 5 sets of 35 random points within the area 181 

of known presence in Russia, Turkey, Mongolia and China. These 35 points were added to the 182 

165 high resolution points to make 5 datasets of 200 occurrences, in which 35 points were 183 

different in each set. We used these five datasets to make five separate MaxEnt models to 184 

assess variability between projections attributable to the exact locations of these random 185 

points.  186 

 187 

Even after the addition of the 35 points in Russia, Turkey, Mongolia and China, the vast majority 188 

of our occurrence points were located in Western Europe. However, as E. multilocularis is 189 

known to be highly endemic in Russia and parts of Eastern Europe [11], this implies a 190 

geographic bias in our dataset. To help correct this we employed a bias grid implementing the 191 

skew in research effort in the Cestoda in general. We chose to document the bias at this 192 

broader taxonomic level rather than focus on the skew in only E. multilocularis to help 193 

differentiate between areas of true absence and false absence. For example, we have no 194 

occurrences in our dataset from Spain, but as there is a relatively high research effort in 195 

Cestoda in Spain, we assume that our lack of records likely reflects a true absence. In Mongolia, 196 

however, we likewise have sparse records of E. multilocularis from the literature, but as the 197 

research effort into Mongolian cestodes is relatively low we might consider our lack of records 198 

as a false absence.  To accommodate potential bias, we conducted a literature search using 199 

Thompson Reuters’ Web of Science with the search term “cestoda” AND the name of each 200 

country within our Eurasian distribution and recorded the number of papers found (Table S3). 201 

We corrected this number by the area in km2 of each country to produce an approximation of 202 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2016. ; https://doi.org/10.1101/068734doi: bioRxiv preprint 

https://doi.org/10.1101/068734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

research effort per unit area. We rasterized this data, resampled it to a 10,000 km2 resolution 203 

to match our environmental variables and implemented it as a bias grid in MaxEnt. As expected, 204 

research effort was much higher in Western Europe than Central Europe, Russia and most of 205 

Asia (Figure S3).  206 

 207 

The same set of 19 bioclimatic variables as considered in model 1 were downloaded and 208 

processed.  209 

 210 

Model 3 211 

Summary: We consider model 3 to be the most complex model. It uses the same set of 212 

occurrence data and bias grid as in model 2, but it includes derived environmental variables in 213 

addition to the 19 bioclimatic variables (model 1, 2).  214 

 215 

As egg survival may be more directly affected by ground temperature than ambient 216 

temperature; land temperature data with a 1-degree resolution [25] was obtained with an 217 

expectation of a negative relationship between temperature and egg survival [17]. Cestode egg 218 

survival can be also limited by prolonged exposure to UV radiation [26, 27]. We thus 219 

downloaded data for monthly cloud cover at a 1 km2 resolution [28], with the expectation that 220 

high cloud cover may enable egg survival at higher land temperatures. Thirdly, as E. 221 

multilocularis eggs are known to be susceptible to drying out [17], their survival and viability 222 

may be related to both ambient humidity and the water holding capacity of soil [29]. Global 223 

data for both were downloaded at a 0.1 degree resolution [25, 30]. 224 
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 225 

Where models 1 and 2 solely aimed to model regions for egg survival, additional derived 226 

environmental variables were selected for inclusion in model 3 due to a likely impact on one or 227 

more E. multilocularis life stages. As such, Leaf Area Index (LAI) and Net Primary Productivity 228 

(NPP) layers were included. They broadly reflect the degree of habitat vegetation and are thus 229 

expected to positively correlate with rodent abundance [31].  They were included in model 3 at 230 

a 1 degree resolution, using data provided by the MODIS Land Science Team[25]. Rodent 231 

abundance (and thus E. multilocularis prevalence) may also be positively correlated with habitat 232 

heterogeneity, as rodent populations are often highest in edge habitat [32]. To that effect we 233 

downloaded landcover homogeneity data at a 12.5 arc-minute resolution [33].  234 

 235 

All layers were resampled to our model resolution of 10,000 km2. Summary layers were made 236 

for the variables which were available as monthly layers (LAI, NPP, Cloud cover, land 237 

temperature) reflecting annual minimum, mean and maximum values. All data preparation was 238 

carried out using the raster package [34] in R [24].  239 

 240 

Modeling Algorithm and Variable Selection. 241 

The spatial extent of the background training area was limited to -20°W and 180W° and 25°N 242 

and 90°N to avoid artificial inflation of the AUC score [35]. This geographic range encompasses 243 

the entire known distribution of E. multilocularis in Eurasia (Figure 1).  244 

 245 
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Pairwise correlation tests were performed on all potential environmental layers for each model 246 

(Table S4). Where groups of environmental predictors were significantly correlated with a 247 

Pearson’s r >0.7 only one predictor was allowed into the MaxEnt model. The predictor which 248 

attained the highest AUC score as a single model variable was retained in each case (Table S4). 249 

 250 

MaxEnt (version 3.3.3k) was used to create a SDM for E. multilocularis [36, 37]. MaxEnt has 251 

been shown to be among the most consistently predictive algorithms currently available for 252 

creating SDMs [38]. As MaxEnt model output can be highly sensitive to model settings [39] we 253 

used the model selection function in ENMTools version 1.4.3 [40] to find the best supported 254 

feature type, regularization value and set of predictors according to their AICc rankings. [41] 255 

(Table S5). 256 

 257 

After tuning with AICc, the best supported models were re-run in MaxEnt with five cross 258 

validations per dataset; they were projected globally and mean projections were calculated for 259 

each model. A summary of input data for each model is provided in Table 1.  260 

 261 

Table 1. Details of input data for each of the three models. Environmental predictors shown are 262 

those retained after correlation tests and AICc model selection. 263 

 Occurrence Data Bias 

grid? 

Environmental Predictors Features Regularization 

(Beta 
multiplier) 

Model 
1 

Random sampling 
of 1000 points 

within known area 
of Eurasian 
presence (Fig 1). 
The 1000 points 

were split into 5 

No Mean diurnal temperature range (Bio2) 
Temperature seasonality (Bio4) 

Minimum temperature of coldest month 
(Bio6) 
Mean temperature of wettest quarter 
(Bio8) 

Precipitation of wettest quarter (Bio16) 

Threshold 1.5 
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groupings to assess 
variability between 
groups. 

Model 
2 

165 occurrences 
throughout Eurasia 

specified in the 
literature, plus 5 
sets of 35 randomly 

selected points in 
countries of known 
high endemism 
which are poorly 

sampled in the 
literature (Russia, 
Mongolia, Turkey 
and China) 

Yes Temperature annual range (Bio7) 
Mean temperature of wettest quarter 

(Bio8) 
Mean temperature of warmest quarter 
(Bio10) 

Precipitation seasonality (Bio15) 
Precipitation of wettest quarter (Bio16) 

Threshold 1.5 

Model 

3 

Identical occurrence 

points to model 2. 

Yes Mean diurnal temperature range (Bio2) 

Temperature annual range (Bio7) 
Mean temperature of wettest quarter 
(Bio8) 

Mean temperature of warmest quarter 
(Bio10) 
Precipitation seasonality (Bio15) 
Precipitation of wettest quarter (Bio16) 

Minimum cloud cover  
Maximum Annual Leaf Area Index 
Mean land temperature 
Landcover homogeneity 

Altitude 
Soil water holding capacity 
Maximum Annual Net Primary Productivity 

Humidity 

Linear 

and 
quadratic 

1.5 

 264 

To assess variability within each model we calculated the standard deviation of each of the 5 265 

projections within each model and assessed the difference between training and test AUC 266 

scores [41]. In the global projections, Multivariate Environmental Similarity Surfaces (MESS) 267 

were assessed to locate geographic areas in which predictors were extrapolated beyond their 268 

training range. Model predictions may not be as reliable in these areas [42]. 269 

 270 

Model Analysis 271 
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The fit of the resulting model was assessed using the AUC statistic, which is the most commonly 272 

used threshold independent measure of fit for SDMs [39]. Response curves for each variable 273 

included in the model were created to show the statistical relationship between these 274 

environmental covariates and the probability of E. multilocularis occurrence. 275 

 276 

Threshold rules are used to convert the logistic output from MaxEnt into a binary grid showing 277 

presence and absence. For our threshold rule we used a version of the 10 percentile training 278 

threshold, refined to fit the data for each model. For model 1 where all occurrence points are 279 

from random sampling, we ranked the logistic values assigned to each occurrence point and 280 

used the value achieved by the lowest 10th percentile as our binary cut off (0.39). For models 2 281 

and 3 where there was a mixture of high resolution data and some random sampling of area 282 

data, we only considered the high resolution data to define our threshold. We did this to 283 

remove the risk that a low score on any of the randomly generated points could actually 284 

indicate true absence and skew the binary output. Similar to model 1, we ranked the logistic 285 

scores for each occurrence point and used the 10th percentile value as our binary threshold 286 

(0.32 for model 2 and 0.28 for model 3). Maps showing the logistic output of each map were 287 

created using the rasterVis package in R [43]. Using binary versions of the three final models, 288 

we created a composite map showing areas of agreement and variability between the models. 289 

 290 

Projecting an SDM outside of the geographic range of its training data adds some uncertainty to 291 

its output and its validity should be checked using an independent dataset [44]. To that end, we 292 

used validated occurrence data of E. multilocularis records in the U.S. and Canada (Figure S1) 293 
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and recorded the percentage of those points encompassed in our global projections for each 294 

model. 295 

 296 

Results 297 

 298 

Model 1  299 

While model 1 predicted an extensive area of E. multilocularis egg climatic suitability in Eurasia, 300 

encompassing much of Russia and North Central Asia (Figure 2), the model failed to predict 301 

occurrence in large parts of Western and Central Europe which are known to be infected with E. 302 

multilocularis (Figure 1). In North America, the model predicted E. multilocularis occurrence 303 

across a large part of the continent from Alaska to New Foundland and spreading as far south 304 

as Utah. Under model 1, the predicted North American distribution encompassed 91% of 305 

known records in the continent.  306 

 307 

 308 

Fig 2. Logistic output from model 1, showing the global climate suitability for E. multilocularis 309 

eggs. Heatmap shows the probability of presence (between 0 and 1) with warmer colors  310 
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indicating high probability of occurrence. Regions below the statistical threshold for occurrence 311 

(0.39 – see model analysis) are shown in shades of blue. Black points show known records of E. 312 

multilocularis in North America.  313 

 314 

The model fit was confirmed statistically across five replicate models each with five cross-315 

validations (mean AUCtraining = 0.758, mean AUCtesting = 0.697), indicating a moderately good 316 

model fit [45]. However, the drop between the training and test AUC scores could imply that 317 

the model lacks some generality and may be overfit to the training points [41]. 318 

 319 

The standard deviation between model replicates was generally relatively low (below 0.1) but 320 

was higher around the limits of the distribution including the Southern range boundary in the 321 

United States and the endemic area of Western Europe which was excluded by the averaged 322 

model (Figure S4a). However, the relatively low average standard deviation implied there was 323 

only a small difference in model output dependent on the exact location of the randomly 324 

sampled occurrence points. Analysis of MESS grids highlighted that parts of the model 325 

projection in Greenland and a long latitudinal band around the equator are outside of the 326 

model training range and may be less reliable (Figure S5a). 327 

 328 

The projection was based on the response of E. multilocularis to the five statistically relevant 329 

bioclimatic variables (Table 1), three of which contributed over 80% to model fit – minimum 330 

temperature of the coldest month; mean diurnal temperature range and precipitation of the 331 

wettest quarter (Table S6). Response curves indicate the highest probability of occurrence in 332 
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regions with a very low temperature in the coldest month of the year (< -20 C); with a 333 

moderate diurnal temperature range (10 – 15 C ) and moderate monthly precipitation (up to 334 

500 mm in the wettest quarter) (Figure S6). 335 

 336 

Model 2  337 

The predicted distribution from model 2 covered most of Europe, with the exception of the 338 

extremes of Western and Southern Europe. It also encompassed a large latitudinal band of 339 

Northern Asia, with the exception of a part of North-western Siberia. In North America, almost 340 

all of Greenland is included within the predicted range, as well as most of Canada and the 341 

Northern United States, only excluding a narrow band along the Western coast of the continent 342 

(Figure 3). Model 2 shows a good concordance with known Eurasian records, but the predicted 343 

North American distribution encompassed just 57% of known records in the continent (Table 2) 344 

(with many of the North American points being just outside the southern boundary of predicted 345 

occurrence). 346 

 347 

 348 
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Fig 3. Logistic output from model 2, showing the global climate suitability for E. multilocularis 349 

eggs. Heatmap shows the probability of presence (between 0 and 1) with warmer colors 350 

indicating high probability of occurrence. Regions below the statistical threshold for occurrence 351 

(0.32 – see model analysis) are shown in shades of blue. Black points show known records of E. 352 

multilocularis in North America.  353 

 354 

The model fit was confirmed statistically across five replicate models each with five cross-355 

validations (mean AUCtraining = 0.802, mean AUCtesting = 0.740), indicating a good model fit [45] 356 

and the highest AUC score of the three models.  357 

 358 

The standard deviation between model replicates was generally relatively low (below 0.1) but 359 

was higher in both Greenland and the extremes of Northern Canada, and around the perimeter 360 

of the predicted area of absence in North-eastern Siberia (Figure S4b). Analysis of MESS grids 361 

highlighted that parts of the model projection in Greenland and a long, but patchy, latitudinal 362 

band around the equator are outside of the model training range and may be less reliable 363 

(Figure S5b). 364 

 365 

The projection was based on the response of E. multilocularis to the five statistically relevant 366 

bioclimatic variables (Table 1), three of which contributed over 80% to model fit – mean 367 

temperature of the warmest quarter, temperature annual range and precipitation seasonality 368 

(Table S6). Response curves indicate the highest probability of occurrence in regions  with a cool 369 
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temperature in the warmest quarter (around 15 C); with a high temperature seasonality (> 20 370 

C) and low to moderate precipitation seasonality (< 100 mm) (Figure S7). 371 

 372 

Model 3  373 

The predicted distribution in Europe from model 3 was very similar to that of model 2 in that it 374 

encompassed most of Europe, excluding the extremes of Western and Southern Europe, in 375 

qualitative agreement with what is known of the distribution (Figure 4). Model 3’s prediction 376 

for Asia is again very similar to that of model 2, with large areas of predicted high suitability, 377 

with the exception of parts of Western Siberia. In North America, almost all of Canada and the 378 

United States are included within the predicted range, only excluding of the far West coast and 379 

Florida (Figure 4). 100% of the known E. multilocularis occurrences in North America fall within 380 

the predicted distribution for model 3 (Table 2). Unfortunately, due to missing data in the cloud 381 

cover dataset, model 3 is not able to make predictions for suitability for inland Greenland, parts 382 

of sub-Saharan Africa, and areas of Brazil and Bolivia (Figure 4). 383 

 384 

 385 
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Fig 4. Logistic output from model 3, showing the global suitability for E. multilocularis. Heatmap 386 

shows the probability of presence (between 0 and 1) with warmer colors indicating high 387 

probability of occurrence. Regions below the statistical threshold for occurrence (0.28 – see 388 

model analysis) are shown in shades of blue. Black points show known records of E. 389 

multilocularis in North America.  390 

 391 

The model fit was confirmed statistically across five replicate models each with five cross-392 

validations (mean AUCtraining = 0.736, mean AUCtesting = 0.698), indicating a moderate model fit 393 

[45]. 394 

 395 

The standard deviation between model replicates was generally relatively low (below 0.1) but 396 

was significantly higher (up to 0.3) in a geographically limited region in Western Russia (Figure 397 

S4c), meaning that there is too much uncertainty in the projection to analyze this part of the 398 

projection. Analysis of MESS grids highlighted that parts of the model projection in a long 399 

latitudinal band around the equator are outside of the model training range and may be less 400 

reliable (Figure S5c). 401 

 402 

The projection was based on the response of E. multilocularis to the 15 statistically relevant 403 

bioclimatic variables (Table 1), three of which contributed over 70% to model fit – minimum 404 

annual cloud cover, landcover homogeneity and mean annual land temperature (Table S7). 405 

Response curves indicate the highest probability of occurrence in regions with moderate to 406 
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high cloud cover, high landcover heterogeneity and low to moderate mean land temperature 407 

(Figure 5). 408 

 409 

 410 

Fig 5. Response of E. multilocularis eggs to the most predictive climate variables in model 3. A. 411 

Minimum monthly cloud cover. B. Landcover homogeneity. C. Mean monthly land temperature. 412 

Blue curves show the results of each of five model cross validations, the red curve shows the 413 

average values across the cross validations. The red dashed line shows the occurrence 414 

threshold value, below which conditions are predicted unsuitable for E. multilocularis. 415 

 416 

A

C

B
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Table 2. Comparative metrics for the three models. AUC scores are shown as the mean value 417 

across the five cross validations of the five replicate models. Minimum and maximum AUC 418 

values are also indicated. 419 

 Model 1 Model 2 Model 3 

Training AUC 0.758 (min=0.748, 
max=0.771) 

0.802 (min=0.7947, 
max=0.8078) 
 

 

0.736 (min=0.731, 
max=0.744) 
 

Test AUC 0.697 (min=0.681, 
max=0.711) 

0.740 (min=0.734, 
max=0.746) 
 

0.698 (min=0.689, 
max=0.713) 
 
 

Percentage of North 

American points 
encompassed in 
distribution 

91 57 100 

 420 

Model Comparison 421 

The map showing regions of agreement and conflict between the models (Figure 6) highlighted 422 

some core areas in which all models predicted E. multilocularis occurrence. These regions 423 

included large parts of North America, as far North as Hudson Bay, as far South as the Great 424 

Lakes in a wide latitudinal band across the continent, only excluding the West Coast. All models 425 

also predicted occurrence throughout central Russia, the extremes of North-East Russia and in 426 

parts of Northern China and Mongolia. Some parts of the northern hemisphere were not 427 

included in the projection of any of the three models . These areas include the far West of 428 

Norway, Ireland and the Western United Kingdom, Southern Europe below the Alps and the 429 

Western Coast of North America. 430 

 431 

The summary map shows a high degree of agreement between models 2 and 3 but poorer 432 

concordance with model 1.  433 
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  434 

 435 

Fig 6. Summary map showing the areas of agreement and conflict between the three models. 436 

Regions in bright blue and predicted as suitable for E. multilocularis in all models. Regions in 437 

beige are never included in the predicted distribution. 438 

 439 

Discussion 440 

Here we presented a test of three modeling protocols to produce a global Echinococcus 441 

multilocularis SDM using a challenging occurrence dataset with a strong spatial bias and patchy 442 

recording. All three models performed acceptably well according to the most frequently used 443 

statistical test of SDM fit, the AUC test [39]. However, while models 2 and 3 produced quite 444 

similar models, model 1 largely failed to predict E. multilocularis occurrence in Europe (Figure 445 

2), despite strong empirical evidence for its occurrence. This large region of omission within the 446 

training region is most likely an artefact of an over-simplistic occurrence data sampling scheme, 447 

whereby points were randomly selected throughout the known range of the parasite (Figure 1, 448 

Figure S2). The random points not only likely introduced false positives into the dataset but 449 
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appear to have driven the predicted distribution to predict only the most widespread climatic 450 

conditions encountered. 451 

 452 

Models 2 and 3 made better use of confirmed occurrence points from the li terature, 453 

compensating for their patchy spatial distribution with a bias grid. Their resulting projections 454 

are very similar at a coarse scale. Importantly, however, model 2 failed to encompass many of 455 

the known regions of North American E. multilocularis occurrence within its projection (Figure 456 

3), and closer comparison of the models reveals a much more extensive potential occurrence 457 

area in North America in model 3 and a more gradated predicted response (Figure 4). It is 458 

possible that model 3 produces a better fit for North America as its derived climate and habitat 459 

predictors begin to incorporate multiple life stages of E. multilocularis into the model (see 460 

Material and Methods). As E. multilocularis is capable of infecting a wide range of common and 461 

widespread host species, overlaying host distributions on top of our projection is unlikely to 462 

exclude many regions from the prediction; but using climatic predictors to infer potential peaks 463 

of host abundance, and the effect of that on E. multilocularis, may have served to refine model 464 

3 compared to model 2. 465 

 466 

The modeling protocols we have tested here are likely applicable to many other widespread 467 

species for which occurrence data is spatially biased and patchy. Our tests imply that the most 468 

realistic models come from using true presence data with a taxonomically relevant bias grid 469 

(rather than random sampling of area data) even where there is a very strong spatial bias in 470 

data collection. Furthermore, for coarse resolution models aimed at describing the maximum 471 
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possible range of a species a relatively simple model of basic climate predictors is acceptable 472 

[46]. This is in line with classic macroecological theory which dictates that climate controls 473 

species distributions at the broadest scale, with habitat structural effects impacting the regional 474 

scale and biotic effects determining local scale distributions [47]. 475 

 476 

Focusing primarily on the most informative environmental variables from models two and 477 

three, we can also infer some specifics of the climatic niche of E. multilocularis eggs. Their 478 

temperature distribution is best characterized as relatively cool, with a decreasing probability of 479 

occurrence with warmer summer temperatures (Figure S5a); and a peak probability of 480 

occurrence at annual mean land temperatures around 0 - 5°C (Figure 5c). This result is in 481 

general agreement with a recent study modeling human AE prevalence in China, which found 482 

peak prevalence occurred in regions of a -5°C annual mean temperature [48]. That egg survival 483 

may be negatively affected by warmer summer conditions is also supported by a previous 484 

laboratory analysis of E. multilocularis survival along a temperature gradient [49]. We also 485 

expected that egg viability may be limited by UV radiation [26]. Accordingly, we found that E. 486 

multilocularis appears limited by low minimum annual cloud cover (Figure 5a).  487 

 488 

Model 3 also highlighted a relationship with seasonality, whereby E. multilocularis is more often 489 

found in regions with a large variation in their annual mean temperature (Figure S5b). This 490 

relationship may actually have more to do with intermediate host population cycles affecting E. 491 

multilocularis metacestode abundance than with egg survival per se. A highly seasonal 492 

environment may be prone to cyclic population explosions of rodents, leading to periods of 493 
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increased E. multilocularis transmission when rodent population densities are high [50]. The 494 

negative relationship we found in model 3 between E. multilocularis occurrence probability and 495 

landcover homogeneity (Figure 5b) may also be explained by rodent population densities. 496 

Rodents are most abundant in edge habitat  [32], so areas with a high landcover heterogeneity 497 

support more rodents and may increase E. multilocularis transmission risk. Finally, our analysis 498 

found a negative relationship between precipitation seasonality and E. multilocularis 499 

occurrence (Figure S5c). This apparent avoidance of a tropical/monsoon type rainfall regime 500 

may reflect a need for the eggs to both avoid desiccation in the dry season and becoming 501 

waterlogged in the wet season.  502 

 503 

Of course, consideration of our changing climate may alter the geographic distribution of this 504 

parasite in coming years [50]. In very general terms, the E. multilocularis distribution may be 505 

expected to contract northwards under contemporary climate change models [50], perhaps 506 

relieving the warmest reaches of the distribution from the threat of infection. However, as 507 

relatively wide ranges of temperature and precipitation values are predicted to be above the 508 

threshold of parasite occurrence (Figures 5, S6, S7), we do not necessarily expect large range 509 

changes for this species unless the changing climate interacts with other factors affecting its 510 

distribution. 511 

 512 

Echinococcus multilocularis in North America has previously been described as the “great 513 

unknown” due to a lack of an effective monitoring system and subsequent knowledge about its 514 

potential impact and distribution [12]. One of the objectives of this study was to help fill this 515 
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knowledge gap by modeling global climate suitability for E. multilocularis eggs (including North 516 

America). Our models all predict the potential for parasite egg occurrence across a large 517 

latitudinal band of North America (Figure 6). This prediction not only encompasses locations 518 

where transmission has already been recorded, but also predicts well beyond those boundaries. 519 

This implies that either these regions are already infected with E. multilocularis, but a lack of 520 

surveys have failed to identify it; or that these areas are not currently infected with E. 521 

multilocularis, but would be climatically suitable for its expansion. Either scenario could pose a 522 

risk for public health. 523 

 524 

Although there are no known records of E. multilocularis in the Southern Hemisphere, our 525 

model highlighted several geographically limited regions that may be climatically suitable for 526 

survival of its eggs – the Andes Mountain region of South America; the Southern tip of South 527 

Africa; South-Eastern Australia and Southern New Zealand. While New Zealand’s lack of a wild 528 

canid population and relatively stringent requirements for anthelmintic treatment for imported 529 

pets [51] may prevent E. multilocularis from ever taking hold there, South America; Australia 530 

and South Africa may be more vulnerable. The Andes region is home to not only rodent species 531 

(Cricetidae) to serve as intermediate hosts, but also possible definitive hosts (e.g., culpeo - 532 

Lycalopex culpaeus) that could maintain a sylvatic transmission cycle. Australia and South 533 

Africa, likewise, both host the rodents and canids (e.g. Dingo (Canis familiaris dingo) and red fox 534 

(Vulpes vulpes) in Australia and black-backed jackal (Canis mesomelas) bat-eared fox (Otocyon 535 

megalotis) and Cape Fox (Vulpes chama) in South Africa) needed to support the E. multilocularis 536 
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lifecycle. These areas should therefore be considered at risk, as tapeworm infections can spread 537 

quickly and jump areas of unsuitable habitat via pet and livestock trade [52]. 538 

 539 

Our model focused primarily on the climatic requirements of E. multilocularis eggs to produce a 540 

distribution model at the global scale. In this respect our projections could be considered a 541 

‘worst case scenario’ of the potential distribution of the parasite, because limitations on the 542 

intermediate and final hosts may eventually contract this estimate. Field validation of the 543 

model projections would add certainty to these findings, and areas at the edge of our predicted 544 

distribution may yield useful data on egg tolerance limits. Future studies could also take a 545 

landscape scale approach to incorporate other factors that may limit E. multilocularis at a finer 546 

spatial scale. Likely limits may include land cover, proximity to water, canid population density 547 

and rodent species assemblages and density [29, 48]. Public health models may also consider 548 

how human behavior interacts with ecological factors to determine which sectors of the 549 

population are most at risk. For example, dog ownership; farming, and hunting have all been 550 

linked to increased infection risk [11, 53]. 551 

 552 

Even without these refinements, our model may already serve as a guide to show in which 553 

North American regions surveillance for E. multilocularis needs to be increased. It is highly 554 

recommended that suitable areas begin surveillance as soon as possible in order to provide a 555 

more accurate picture of where the parasite currently exists, as well as the directions and speed 556 

at which it could be spreading. The public in climatically suitable regions should also be made 557 

more aware of the risks posed by this disease. Information should be distributed on the risk 558 
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factors associated with infection (e.g. farming, hunting, pet ownership), as well as personal 559 

preventative methods (e.g. washing hands and vegetables, avoiding contact with wild canids, 560 

deworming pets). Suburbia could be an especially vulnerable area, as an interface between 561 

wildlife and people [54], and extra efforts should be focussed in these areas. 562 

 563 

Conclusions 564 

The ideal resource for building a species distribution model will always be comprehensively 565 

sampled data, free from spatial bias and accurately geo-referenced. However, given the rarity 566 

of such data sets in parasitology and disease ecology, and the high potential utility of SDMs to 567 

assist those allocating surveillance resources in these fields it may be incumbent on researchers 568 

to do the best they can with the data that is available. In this paper, a pragmatic use of non-569 

ideal occurrence data was used to produce a statistically and empirically supported SDM for E. 570 

multilocularis at a coarse resolution, in which the model projections were relatively robust to 571 

minor changes in modeling framework. While data limitations may prevent high resolution 572 

SDMs for many such widespread parasites, a coarse scale climate-based model can still be a 573 

useful tool for public health planning where infection shows signs of spreading to new 574 

locations. The predicted E. multilocularis distribution in North America produced here may be 575 

used to direct monitoring efforts for the continent as the parasite continues to expand its 576 

range. 577 
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