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Abstract		

	

Background:	Cellular	signaling	pathways	transmit	 information	 in	the	presence	

of	 molecular	 noise	 while	 retaining	 flexibility	 to	 accommodate	 the	 needs	 of	

individual	 cells.	 A	 commonly	 observed	 strategy	 to	 enable	 such	 versatile	 signal	

transmission	 is	 pulsed	 activation	 in	 a	 digital-like	 response.	 For	 the	 tumor	

suppressor	 p53,	 single	 cell	 analysis	 has	 shown	 such	 pulsatile	 activation	 upon	

induction	of	DNA	double	strand	breaks.	While	in	general,	the	number	of	uniform	

pulses	in	a	given	time	period	correlated	to	the	amount	of	damage,	a	high	degree	

of	 heterogeneity	 was	 observed	 even	 in	 genetically	 identical	 cells	 treated	 with	

equal	 doses	 of	 damaging	 agents.	 We	 now	 aimed	 to	 understand	 the	 molecular	

mechanism	 underlying	 the	 heterogeneous	 p53	 response	 and	 explore	 how	 it	 is	

adjusted	to	the	needs	of	individual	cells.	

Results:	To	understand	design	principles	underlying	p53	signaling,	we	analyzed	

its	dose-dependent	response	to	radiomimetic	drug	application	in	individual	cells	

and	observed	a	switch	between	signaling	modes	characterized	by	isolated	pulses	

and	 sustained	 oscillations.	 Guided	 by	 dynamical	 systems	 theory	we	 show	 that	

this	 requires	 an	 excitable	 network	 comprising	 positive	 feedback	 and	 provide	

experimental	 evidence	 for	 its	 molecular	 identity.	 Our	 data-driven	 model	

reproduced	 all	 features	 of	 measured	 responses	 and	 explained	 their	

heterogeneity	in	individual	cells.	We	present	evidence	that	heterogeneity	in	the	

levels	 of	 the	 feedback	 regulator	 Wip1	 sets	 cell-specific	 thresholds	 for	 p53	

activation,	 providing	 means	 to	 modulate	 its	 response	 through	 interacting	

pathways.	

Conclusions:	Our	results	demonstrate	how	excitability	enables	high	specificity,	

sensitivity	and	robustness	while	retaining	unique	possibilities	to	adjust	signaling	

functions	to	the	physiology	of	individual	cells.	
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Background	

To	 ensure	 reliable	 information	 processing,	 cellular	 signaling	 systems	 need	 to	

faithfully	sense	inputs	in	noisy	environments	while	maintaining	the	flexibility	to	

adjust	their	function	to	different	physiologies.	A	commonly	observed	strategy	to	

enable	robust	signal	detection	is	the	pulsed	activation	of	signaling	pathways	in	a	

digital-like	 response	 [1].	 To	 understand	 how	 pulsatile	 dynamics	 can	 mediate	

robust	 yet	 versatile	 signal	 processing,	 it	 is	 necessary	 to	 identify	 the	 design	

principles	that	enable	molecular	networks	to	switch	between	different	dynamic	

states	and	the	mechanisms	that	allow	modulation	of	their	activity.	

A	well-known	example	of	a	pulsatile	signaling	pathway	in	mammalian	cells	is	the	

tumor	 suppressor	 p53.	 As	 a	 central	 hub	 of	 the	 cellular	 stress	 response,	 p53	

maintains	genomic	integrity	in	proliferating	cells	and	during	tissue	homeostasis	

[2].	 In	 healthy	 cells,	 p53	 levels	 are	 low	 due	 to	 poly-ubiquitination	 by	 the	 E3-

ligase	Mdm2	and	subsequent	proteasomal	degradation	[3,4].	Upon	stress,	p53	is	

activated	 by	 kinases	 that	 serve	 as	 primary	 damage	 sensors.	 One	 particularly	

dangerous	 insult	 is	 DNA	 damage	 in	 the	 form	 of	 double	 strand	 breaks	 (DSB),	

which	may	cause	genomic	rearrangements	such	as	translocations,	deletions	and	

chromosome	fusions.	The	primary	sensor	for	DSBs	is	the	PI3K-like	kinase	ataxia	

telangiectasia	 mutated	 (ATM)	 [5],	 which	 gets	 phosphorylated	 and	 activated	

within	minutes	after	damage	induction	[6].	Active	ATM	then	stabilizes	p53	by	at	

least	two	distinct	mechanisms:	it	phosphorylates	Mdm2,	which	induces	its	auto-

ubiquitination	 and	 subsequent	 degradation	 [7],	 and	 p53,	 lowering	 its	 affinity	

towards	Mdm2	[8,9].	As	a	consequence,	p53	accumulates	in	the	nucleus,	where	it	

acts	 as	 a	 transcription	 factor	 activating	 the	 expression	 of	 hundreds	 of	 target	

genes	[10].		

A	key	feature	of	the	signaling	network	is	that	p53	transcriptionally	activates	its	

own	suppressors	Mdm2	and	the	phosphatase	PPM1D/Wip1	[11],	which	directly	

dephosphorylates	ATM	as	well	as	many	ATM	substrates	such	as	p53	itself.	These	

interactions	constitute	negative	feedback	loops	counteracting	the	p53	response.	

Using	 fluorescent	 reporters	 and	 live-cell	 microscopy,	 it	 was	 previously	

established	that	this	network	architecture	generates,	at	the	single	level,	pulsatile	

dynamics	 of	 p53	 accumulation	 upon	 DSB	 induction	 [12,13].	 Furthermore,	 it	

became	apparent	that	 the	amount	of	damage	present	 in	the	cell	 is	not	encoded	
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by	 the	amplitude	or	width	of	p53	pulses,	but	 rather	by	 the	number	of	uniform	

pulses	in	a	given	time	period.	However,	there	was	a	high	degree	of	heterogeneity,	

manifested	in	broad	distributions	of	pulse	numbers	even	in	genetically	identical	

cells	treated	with	equal	doses	of	damaging	agents.	The	temporal	pattern	of	p53	

pulses	 showed	 substantial	 variability	 as	well:	 it	 ranged	 from	 regular	 sustained	

oscillations	 in	 heavily	 damaged	 cells	 to	 isolated	 pulses	 under	 basal	 conditions	

[14].	 Interestingly,	no	clear	 threshold	 in	 the	number	of	DSBs	needed	 to	elicit	a	

pulse	could	be	identified	[15].	Instead,	there	were	indications	that	the	sensitivity	

of	 the	 p53	 system	 was	 adjusted	 according	 to	 the	 state	 of	 an	 individual	 cells.	

These	 observations	 elicit	 the	 question	 how	 the	 same	 molecular	 network	 can	

generate	 such	 diverse	 dynamic	 responses	 and	 how	 the	 transition	 between	

isolated	p53	pulses	and	oscillatory	dynamics	 is	regulated.	Furthermore,	we	are	

challenged	 to	 understand	 how	 the	 p53	 response	 is	 affected	 by	 cellular	

heterogeneity	and	how	it	is	adjusted	to	the	needs	of	individual	cells.	

To	investigate	the	design	principles	underlying	dynamic	signal	processing	in	the	

p53	 network,	 we	 combined	 quantitative	 single	 cell	 data	 with	 an	 abstracted	

mathematical	model	of	 selected	molecular	 interactions.	Previous	p53	modeling	

approaches	 focused	on	 the	negative	 feedbacks	mediated	by	Mdm2	 [16,17]	 and	

Wip1	 [13,18].	Although	 it	 is	well	 known	 that	negative	 feedback	 loops	 can	 give	

rise	 to	 sustained	 oscillations	 [19],	 it	 is	 less	 evident	 how	 such	 a	 system	would	

generate	 isolated,	 tunable	 pulses.	 To	 address	 this	 question,	 we	 employed	

methods	 from	dynamical	 systems	 theory	and	 identified	a	network	architecture	

based	on	positive	and	negative	 feedback	 loops	 that	 reproduced	experimentally	

measured	 p53	 dynamics	 over	 a	 wide	 range	 of	 conditions.	 The	 corresponding	

mathematical	model	revealed	sources	of	cellular	heterogeneity	and	allowed	us	to	

predict	and	validate	entry	points	to	modulate	the	sensitivity	of	the	p53	response.		
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Results	

Measured	p53	dynamics	in	single	cells	provide	evidence	for	oscillatory	and	

non-oscillatory	regimes	

To	analyze	p53	dynamics	in	response	to	different	doses	of	DNA	damage,	we	used	

previously	 generated	 single	 cell	 data	 obtained	 from	 a	 breast	 cancer	 cell	 line	

expressing	a	fluorescent	reporter	system	(Fig.	1A,	[14]).	Cells	were	treated	with	

varying	doses	of	the	radiomimetic	drug	neocarzinostatin	(NCS,	[20])	to	induce	a	

burst	of	DNA	double	strand	breaks	(DSBs)	and	followed	for	48h	post	damage	by	

time-lapse	 live-cell	 microscopy.	 P53	 dynamics	 were	 extracted	 by	 computer-

aided	 image	 analysis	 to	 obtain	 time-resolved	 trajectories	 for	 hundreds	 of	

individual	 cells	 (Fig.	 1A-C).	 To	 faithfully	 analyze	 p53	 dynamics	 despite	 the	

presence	 of	 inevitable	 noise	 from	 single	 cell	 measurements,	 we	 established	 a	

peak	detection	algorithm	based	on	wavelets	(Fig.	S1).		

As	previously	reported	[12-14,17],	we	observed	that	 the	number	of	p53	pulses	

increased	with	the	damage	dose,	whereas	the	pulse	amplitudes	and	widths	were	

on	average	independent	of	the	stimulation	strength	(Fig.	1	D,	E	and	F).	However,	

all	 features	analyzed	showed	a	high	degree	of	cell-to-cell	variability.	To	 further	

characterize	 variability	 of	 the	 pulsatile	 p53	 dynamics	 we	 analyzed	 the	

distribution	 of	 inter-pulse-intervals	 (IPIs)	 (Fig.	 1G).	 The	 spread	 of	 an	 IPI	

distribution	 gives	 a	measure	 for	 the	 coherence	 of	 a	 pulsing	 signal.	 Oscillatory	

signals	with	 low	 noise	 result	 in	 a	 sharp	 distribution	 centered	 at	 the	mean	 IPI	

corresponding	 to	 the	 period	 of	 the	 oscillations.	 This	 approach	 has	 been	

previously	 applied	 in	 biology,	 for	 example	 to	 classify	 intra-cellular	 calcium	

signaling	[21,22].		

When	we	 compared	 IPI	 distributions	 in	 cells	 treated	with	 no,	 intermediate	 or	

high	 levels	 of	 NCS,	 we	 observed	 increasing	 coherence	 of	 the	 p53	 pulse	 trains	

with	increasing	stimuli	(Fig.	1G).	To	gain	a	better	understanding	of	the	evolution	

of	p53	dynamics,	we	analyzed	the	intervals	of	the	first	and	last	measured	pulse	

separately	 for	each	 condition	 (Fig.	1H).	 In	untreated	 cells,	 the	distributions	 for	

the	 first	 and	 last	 IPIs	 were	 similar,	 indicating	 that	 basal	 p53	 dynamics	 are	

stationary	 under	 our	 experimental	 conditions	 as	 expected.	Upon	high	 levels	 of	

DNA	damage,	we	observed	narrower	distributions	centered	at	the	characteristic	

period	of	5h	for	first	and	last	IPIs,	indicating	oscillatory	dynamics	over	the	entire	
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time	period.	However,	when	we	analyzed	IPIs	at	medium	damage	 levels,	which	

initially	showed	the	same	narrow	IPI	distribution	around	5h,	we	noticed	that	the	

distribution	 of	 last	 IPI	was	 indistinguishable	 from	 control	 cells,	 indicating	 that	

most	 cells	 already	 returned	 to	 basal	 dynamics	 by	 that	 time.	 We	 used	 the	

Kullback-Leibler	 divergence,	 a	 measure	 of	 the	 distance	 between	 probability	

densities,	 to	 support	 these	 observations	 in	 a	 quantitative	manner.	 To	 this	 end,	

we	defined	the	distribution	of	 the	first	 IPIs	of	 the	control	cells	as	the	reference	

distribution	 and	 calculated	 the	 divergence	 between	 it	 and	 the	 last	 IPI	

distributions	for	all	three	experimental	conditions.	The	divergence	of	the	control	

and	medium	stimulated	cells	 is	practically	 identical,	whereas	 the	divergence	of	

the	last	IPIs	of	the	highly	stimulated	cells	from	the	first	IPIs	of	the	control	cells	is	

considerably	larger	(Fig.	1I).		

Our	analysis	indicates	that	there	are	two	possible	modes	of	function	for	the	p53	

system:	 Highly	 stimulated	 cells	 show	 a	 coherent	 pulse	 train	 resembling	

oscillations	(Fig.	1B)	with	a	sharp	IPI	distribution	centered	at	a	period	of	about	

five	 hours.	 In	 contrast,	 basal	 dynamics	 (Fig.	 1C)	 are	 characterized	 by	 isolated	

pulses	 without	 a	 detectable	 period,	 resulting	 in	 an	 IPI	 distribution	 consistent	

with	 a	 stochastic	 process.	 Cells	 with	 intermediate	 damage	 alternate	 between	

both	modes.	Importantly,	amplitude	and	width	of	p53	pulses	remain	unaffected	

by	 these	 transitions	 (Fig.	 1G-H).	 These	 observed	 p53	 dynamics	 were	

representative	 for	all	 cells	analyzed,	as	we	did	not	detect	 cell	death	during	 the	

time	of	the	experiment.	

How	 can	 the	 same	 molecular	 network	 give	 rise	 to	 oscillations	 and	 stochastic	

pulses	while	preserving	pulse	amplitude	and	width?	To	address	this	question	we	

turned	 to	 dynamical	 systems	 theory	 [23,24],	 whose	 mathematical	 analysis	

allows	 for	 the	 understanding	 of	 complex	 nonlinear	 phenomena.	 	 In	 the	 next	

section	we	outline	and	illustrate	some	key	results	in	the	context	of	the	stimulus	

response	of	biological	regulatory	networks.				

	

Constraining	regulatory	network	topologies	by	dynamical	systems	theory		

The	 negative	 feedback	 loops	 by	 Mdm2	 and	 Wip1	 are	 prominent	 regulatory	

elements	of	 the	p53	network.	 It	 is	well	 known	 that	negative	 feedback	 can	give	

rise	 to	 limit	 cycle	 oscillations	 [19],	 and	 most	 published	 p53	 models	 take	
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advantage	 of	 this	 to	 implement	 pulsatile	 p53	 dynamics	 [13,16,17].	 To	 explore	

whether	such	negative	feedback	oscillators	are	also	capable	of	showing	isolated	

pulses	 and	 to	 examine	 their	 behavior	when	 switching	 between	 oscillation	 and	

steady	state,	we	generated	a	mathematical	model	of	a	simple	negative	feedback	

(NF)	system	(Fig.	2	A	and	SM	section	1).	We	initialized	the	system	at	steady	state,	

mimicking	 a	 signal	 transduction	 system	waiting	 for	 input,	 and	 applied	 varying	

transient	 stimuli.	 The	 system	 responded	 with	 damped	 oscillations	 whose	

maximal	 amplitudes	 were	 dependent	 on	 the	 input	 strengths	 (Fig.	 2	 C).	 When	

challenged	 with	 a	 sustained	 signal,	 the	 system	 showed	 limit	 cycle	 oscillations	

with	 fixed	 amplitude	 and	 period	 (Fig.	 2	 E,	 G),	 resembling	 the	 p53	 dynamics	

observed	 in	 highly	 stimulated	 cells.	We	 again	 observed	 a	 series	 of	 pulses	with	

gradually	decreasing	amplitudes	upon	decay	of	the	signal.		

To	 gain	 a	 deeper	 understanding	 of	 the	 dynamic	 regimes	 covered	 by	 the	

mathematical	negative	feedback	model,	we	systematically	analyzed	its	behavior	

for	a	range	of	parameter	values.	This	procedure	is	known	as	bifurcation	analysis	

in	 dynamical	 systems	 theory.	 At	 low	 input	 strength,	 the	 system	 is	 at	 a	 stable	

steady	 state.	When	 the	 signal	 strength	 is	 increased	beyond	a	 critical	 value,	 the	

system	oscillates.	At	the	critical	value,	the	amplitudes	of	the	oscillations	are	zero	

and	they	increase	with	increasing	signaling	strength.	This	behavior	is	a	generic1	

feature	 of	 NF	 systems.	 As	 a	 consequence,	 NF	 systems	 generally	 show	 varying	

amplitudes	when	switching	in	and	out	of	the	oscillatory	regime.	However,	this	is	

inconsistent	with	the	uniform	amplitude	distributions	observed	for	p53	pulses	in	

undamaged	and	damaged	cells.	

We	 therefore	 extended	 the	 range	 of	 possible	 p53	 network	 topologies	 by	

including	a	positive	 feedback	(negative-positive	feedback	(NPF)	systems	(Fig.	2	

B)	and	supplementary	material	section	1).	 In	a	simple	model	 including	positive	

autoregulation,	 we	 observed	 either	 no	 response	 to	 a	 transient	 stimulation	 or	

pulses	 with	 amplitudes	 independent	 of	 the	 stimulation	 strength	 for	 larger	

stimuli	 (Fig.	 2	D).	 The	 existence	 of	 such	 a	 stimulation	 threshold	 separating	 no	

response	 from	 full	 response	 identifies	 the	 type	 of	 dynamics	 of	 our	 model	 as	

excitable	 [25].	 At	 stimulation	 levels	 below	 the	 threshold,	 negative	 feedback	 is	

																																																								
1	Systems	comprising	only	negative	feedbacks	exhibit	Hopf	bifurcations	as	the	only	bifurcation	
towards	an	oscillatory	dynamic	regime	(Mallet-Paret	and	Smith	1990,		Pigolotti	2007).	
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stronger	than	the	positive	one.	Above	the	threshold	value	the	positive	feedback	

prevails	and	causes	the	full	response.	Importantly,	positive	feedback	is	necessary	

for	the	existence	of	this	type	of	excitability	[26].	

The	 NPF	 system	 should	 also	 exhibit	 an	 oscillatory	 regime	 to	 fully	 capture	 the	

behavior	 of	 the	 p53	 system.	 Indeed,	 the	 proximity	 of	 excitable	 and	 oscillatory	

regimes	with	respect	to	parameter	variation	is	a	hallmark	of	excitable	systems.	

Accordingly,	we	find	for	our	NPF	system	that	sustained	input	results	in	sustained	

oscillations	 (Fig.	2F).	 Importantly,	 the	amplitudes	of	pulses	remain	high	during	

signal	 decay	 until	 the	 oscillations	 suddenly	 terminate	 with	 only	 a	 small	

subthreshold	response	detectable	(Fig.	2	H).	

To	 better	 understand	 the	 onset	 of	 oscillatory	 dynamics	 in	 the	NPF	 system,	we	

again	analyzed	its	behavior	upon	stimulus	variation.	There	are	various	types	of	

transitions	 to	 oscillations	 possible	 for	 NPF	 systems,	 many	 of	 which	 have	 in	

common	 the	 onset	 of	 oscillations	 with	 large	 amplitude	 [25].	 As	 shown	 in	 the	

bifurcation	 diagram	 (Fig.	 2J),	 oscillations	 appear	 with	 full	 strength	 explaining	

how	 high	 amplitude	 pulses	 are	 maintained	 during	 signal	 decay.	 This	 abrupt	

appearance	of	an	oscillatory	regime	is	generic	for	NPF	systems	and	is	unfeasible	

for	NF	systems	[23-25].	

Based	 on	 these	 considerations	 we	 suggest	 that	 the	 p53	 system	 exhibits	 two	

different	dynamic	regimes	controlled	by	stimulation	strength:	In	basal	state	the	

system	 is	 excitable	 and	 DSB	 noise	 causes	 irregular	 appearance	 of	 pulses	 by	

random	 occurrence	 of	 stimulations	 above	 threshold.	 These	 pulses	 occur	

repeatedly	in	the	oscillatory	regime	at	stronger	and	sustained	stimulation,	as	the	

input	signal	is	constantly	supercritical,	explaining	the	onset	of	oscillatory	pulses	

with	large	amplitude.	

The	 dynamics	 of	 our	 abstract	 NPF	 model	 closely	 resembles	 p53	 behavior	

observed	 in	basal	 state,	upon	 intermediate	and	upon	strong	stimulation	(Fig.	1	

H).	 Excitability	 at	 low	 stimulation	 and	 control	 and	 the	 conservation	 of	 pulse	

amplitudes	 during	 transitions	 between	 dynamic	 regimes	 strongly	 suggest	 that	

the	p53	network	comprises	at	least	one	positive	feedback.		

	

ATM	kinase	is	involved	in	a	positive	feedback	driving	the	p53	system	
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As	dynamical	systems	theory	suggested	the	existence	of	positive	feedback	in	the	

p53	 pathway,	 we	 aimed	 to	 generate	 a	 plausible	 model	 of	 the	 underlying	

molecular	 network.	 There	 are	 numerous	 positive	 and	 negative	 feedback	 loops	

reported	 for	 p53,	 mostly	 based	 on	 the	 transcriptional	 activity	 of	 the	 tumor	

suppressor[27,28].	We	monitored	RNA	levels	of	candidate	feedbacks	using	qPCR	

during	the	first	hours	post	damage	(Fig.	S2)	to	determine	if	these	interactions	are	

active	in	the	cell	line	used	to	measure	p53	dynamics	and	to	test	whether	they	act	

at	a	time	scale	relevant	for	the	pulse	formation	upon	DSB	induction.	As	expected,	

we	 did	 not	 observe	 changes	 in	 p53	 mRNA	 levels,	 ruling	 out	 positive	

autoregulation	(Fig.	S2	A,	[29]).	PTEN	expression	has	been	reported	to	be	part	of	

a	 positive	 feedback	 loop	 involving	 the	 kinase	 Akt	 [30,31].	 Strikingly,	we	 could	

not	 detect	 transcriptional	 activation	 of	 PTEN	 in	 MCF7	 cells	 even	 on	 longer	

timescales	 (Fig.	 S2	B).	We	 also	measured	 expression	 levels	 of	 the	 target	 genes	

PIDD,	reported	to	induce	a	positive	feedback	loop	via	Caspase-2	mediated	Mdm2	

cleavage	[32],	and	14-3-3s,	which	may	stabilize	p53	by	preventing	its	interaction	

with	Mdm2	[33].	However,	we	only	observed	mild	up-regulation	of	these	genes	

compared	to	the	negative	regulator	Wip1	or	the	effector	gene	p21.	Moreover,	the	

expression	kinetics	of	PIDD	and	14-3-3s	did	not	match	the	pulsatile	dynamics	of	

p53	accumulation.	

As	we	 found	no	 convincing	 evidence	 for	positive	 transcriptional	 feedbacks,	we	

extended	our	analysis	to	the	upstream	kinases	that	act	as	initial	damage	sensors	

and	 mediators	 of	 the	 DDR	 and	 other	 feedbacks	 by	 phosphorylation	 and	

dephosphorylation	 (Fig.	 3A).	 A	 central	 player	 of	 DDR	 initiation	 is	 ATM	 [5].	 In	

unstressed	conditions,	ATM	forms	an	inactive	homodimer.	After	the	induction	of	

DSBs,	 ATM	 gets	 rapidly	 activated	 by	 a	 complex	 formed	 of	 Mre11,	 Rad50	 and	

Nbs1	 (MRN),	 and	dissociates	 into	 its	 catalytically	 active	monomeric	 form	upon	

autophosphorylation	 [6].	 Activated	 ATM	 (ATM*)	 phosphorylates	 the	 histone	

variant	H2AX,	which	serves	as	a	scaffold	for	the	recruitment	of	further	proteins	

involved	 in	 DDR	 and	 damage	 repair.	 These	 regions	 of	 phosphorylated	 H2AX	

(γH2AX)	may	spread	over	several	thousand	basepairs	around	damage	loci	[34].	

Subsequently,	 more	 MRN	 is	 recruited	 and	 in	 turn	 enhances	 H2AX	

phosphorylation	 and	 ATM	 activation	 [35].	 Although	 the	 molecular	

characterization	 of	 the	 early	 stages	 of	 DDR	 initiation	 remains	 incomplete,	 it	 is	
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assumed	 that	 this	 positive	 feedback	 enables	 rapid	 activation	 of	 ATM	 [5]	

(phosphorylation	 1	 in	 Fig.	 3A).	 	 ATM*	 subsequently	 stabilizes	 p53	 by	

phosphorylating	Mdm2	on	serine	395	and	p53	on	serine	15	(phosphorylation	2	

and	3	in	Fig.	3A,	respectively).		

However,	 even	 if	 ATM	 activation	 is	 facilitated	 by	 a	 positive	 feedback,	 it	 is	 not	

clear	a	priori	that	this	contributes	to	the	excitable	p53	response.	ATM	may	only	

act	 as	 an	 intermediate	 signal	 activating	 an	 independent	 excitatory	 circuit.	 To	

distinguish	 between	 these	 possibilities,	 we	 again	 employed	 the	 abstract	 NPF	

model	(Fig.	2)	and	either	 inhibited	the	activating	signal	or	 the	species	X.	Signal	

inhibition	did	not	affect	the	observed	‘all	or	none’	response	of	the	system:	either	

a	full	pulse	or	a	subthreshold	response	were	generated.	In	contrast,	inhibition	of	

species	X	severely	 affected	 the	 excitation	 loop,	 as	 it	 is	 an	 essential	 part	 of	 the	

excitatory	 circuit.	 As	 a	 consequence,	 response	 amplitudes	 were	 reduced	

depending	on	the	time	of	inhibition	(Fig.	S2E).		

To	 test	 whether	 ATM	 acts	 as	 an	 activating	 signal	 or	 an	 essential	 part	 of	 the	

excitatory	 circuit,	 we	 modulated	 the	 activity	 of	 the	 kinase	 with	 the	 inhibitor	

Wortmannin	 at	 different	 times	 after	 damage	 induction	 (Fig.	 S2F	 and	 G).	 We	

observed	 a	 decrease	 of	 p53	 pulse	 amplitudes	 with	 earlier	 addition	 of	 the	

inhibitor,	 indicating	 an	 essential	 role	 of	 ATM	 in	 generating	 the	 excitable	 p53	

response.	 Our	 conclusions	 are	 further	 supported	 by	 previous	 experiments	 in	

which	 p53	 accumulation	 was	 uncoupled	 from	 ATM	 activation	 [36].	 In	 this	

scenario,	 only	 damped	oscillations	were	 observed,	 indicating	 a	 lack	 of	 positive	

feedback	downstream	of	ATM.	

To	explore	the	effect	of	an	ATM	mediated	positive	feedback	on	the	p53	system,	

we	constructed	a	mathematical	model	of	the	network	using	ordinary	differential	

equations	 (ODEs,	 Fig.	 3A).	 In	 addition	 to	 positive	 regulation	 through	ATM	 and	

negative	 regulation	 through	 Mdm2,	 the	 activity	 of	 the	 oncogenic	 phosphatase	

Wip1	was	critical	for	the	performance	of	the	p53	system.	It	antagonizes	ATM	not	

only	by	dephosphorylating	and	inactivating	it	(dephosphorylation	4	 in	Fig.	3A),	

but	 also	 by	 reverting	 the	modification	 of	 its	 substrates	 including	 γH2AX,	Nbs1	

and	 Mre11	 [37]	 (dephosphorylation	 5	 in	 Fig.	 3A).	 Albeit	 the	 introduction	 of	

positive	 regulation	 on	 ATM	 may	 at	 first	 appear	 as	 a	 minor	 modification	

compared	 to	 existing	 p53	models	 [38],	 it	 effectively	 converts	 a	 NF	 into	 a	 NPF	
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system	and	therefore	greatly	expands	the	possible	range	of	dynamical	responses	

(Fig.	2).		

Due	to	the	prominent	role	of	positive	feedback	on	ATM,	we	decided	to	explicitly	

consider	the	generation	and	repair	of	DSBs	in	our	model.	Recently,	we	measured	

DSB	dynamics	in	single	cells	over	time	and	observed	considerable	variability	in	

their	 number	 and	 half-life,	 highlighting	 the	 stochastic	 nature	 of	 DSB	 repair	

[15,39].	We	represent	DSB	kinetics	by	a	data	based	modeling	approach	involving	

stochastic	 birth-death	 processes	 [40].	 Birth	 of	 a	 DSB	 is	 described	 by	 a	 simple	

zero	order	reaction	with	a	variable	break	rate	b,	allowing	us	to	mimic	the	action	

of	 the	radiomimetic	drug	NCS	used	 in	 live-cell	measurements	of	DSB	dynamics	

(see	also	supplement).	DSB	repair	was	modeled	as	a	 first	order	reaction	with	a	

constant	repair	rate	r.	The	population	mean	number	of	DSBs	is	<DBS(t)>	=	(Ns	 -	

Nb)	exp(-rt)	+	Nb,	 where	 t	 is	 the	 time	 since	 stimulation,	Ns		 the	 dose	 dependent	

maximal	number	of	 inflicted	DSBs	and	Nb	=	b/r		is	 the	background	damage	level.	

This	 allows	 us	 to	 estimate	 the	 basal	 break	 (0.7	 DSB/h)	 and	 repair	 rates	 (0.35	

DSB/h)	 from	measured	data	 (Fig.	S4	and	supplementary	material).	These	rates	

suggest	 cells	 to	 have	 on	 average	 two	 DSBs	 as	 background	 damage	 level	 even	

without	any	external	stimulation,	which	is	consistent	with	previous	reports	[14].	

The	average	repair	time	is	given	by	<trepair>	~	ln(Ns)/r.	Hence,	even	high	numbers	

of	 induced	DSBs	would	be	repaired	after	20	hours	with	these	values	of	r.	Since	

measurements	showed	the	persistence	of	DSBs	beyond	this	 time,	we	expanded	

our	 model	 to	 include	 DSBs	 of	 variable	 complexity.	 It	 has	 been	 suggested	 that	

complex	 breaks	 (cDSBs)	 occur	 when	 several	 clustered	 DSBs	 are	 generated	

within	a	 chromatin	 loop	 [41].	 In	 this	 case,	 a	 substantially	 longer	 repair	 time	 is	

assumed	 compared	 to	 isolated	 DSB	 (iDSB),	 leading	 to	 biphasic	 DSB	 kinetics	

[42,43].	The	amount	of	cDSBs	was	estimated	to	be	10%	of	the	overall	number	of	

DSBs	[42].	We	modified	our	model	accordingly	to	represent	the	total	number	of	

DSBs	 as	 the	 sum	 of	 stochastic	 processes	 defined	 for	 iDSBs	 and	 cDSBs.	 We	

assigned	 a	 half-life	 of	 20	 hours	 to	 cDSBs,	 which	 is	 in	 accordance	 with	

experimental	 measurements	 [44].	 This	 approach	 allowed	 us	 to	 reproduce	 the	

dynamics	and	variability	of	DSB	induction	and	repair	with	reasonable	precision	

(Fig.	3	B	and	C).	

To	test	whether	the	combination	of	an	excitable	p53	model	and	stochastic	DSB	
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kinetics	 are	 sufficient	 to	 describe	 single	 cell	 dynamics	 of	 p53	 in	 different	

conditions,	we	simulated	three	varying	levels	of	DNA	damage.	Without	externally	

induced	DSBs,	average	background	damage	did	not	elicit	a	p53	response	and	the	

system	resided	mainly	at	steady	state	with	subthreshold	fluctuations	(Fig.	3	D).	

However,	small	bursts	of	DSBs	occurred	due	to	the	stochastic	nature	of	the	DSB	

process	 and	 excited	 single	 isolated	 p53	 pulses	 when	 crossing	 the	 activation	

threshold	(Fig.	3	D).	When	we	simulated	an	ensemble	of	cells,	we	observed	wide	

IPI	 distributions	 corresponding	 to	 non-oscillatory	 dynamics	 (Fig3	 H	 and	 I).	

Hence,	the	experimentally	observed	basal	dynamics	of	p53	were	well	explained	

by	the	excitable	regime	of	our	model	(Fig.	1E	and	F,	[14]).		

Next,	we	simulated	a	medium	damage	dose	 through	a	higher	 initial	break	rate,	

leading	to	a	substantial	increase	in	DSBs	(Fig.	3E).	The	system	responded	with	an	

initial	 period	 of	 oscillations.	When	 repair	 was	 completed,	 the	 network	 passed	

from	 the	 oscillatory	 to	 the	 excitable	 regime	 with	 essentially	 unaltered	 pulse	

shapes	 (Fig.	 3	 E).	 This	 transition	was	 also	 reflected	 by	 the	 IPI	 distributions	 of	

simulated	ensembles:	the	first	IPIs	displayed	a	very	coherent	response,	whereas	

the	 distribution	 of	 the	 last	 IPIs	 was	 indistinguishable	 from	 unstimulated	 cells	

(Fig.	3	I).	This	behavior	was	comparable	to	the	behavior	of	cells	challenged	with	

intermediate	levels	of	DNA	damage	(Fig.	1	F).	

Finally,	we	 simulated	 a	 strong	 damage	 dose	 resulting	 in	 high	 amount	 of	 DSBs	

including	many	cDSBs.	As	a	result,	DNA	damage	was	not	entirely	repaired	within	

the	 simulated	 time;	 the	 p53	 system	 received	 sustained	 input	 throughout	 the	

simulation	 and	 showed	 oscillatory	 dynamics	 (Fig.	 3	 D	 and	 I).	 In	 simulated	

ensembles,	we	 observed	 coherent	 IPI	 distributions	 for	 the	 first	 and	 last	 pulse.	

The	pulse	number,	however,	was	still	variable,	as	observed	in	living	cells	(Fig.	3	G	

and	Fig.	1	D).	

In	 summary,	 our	 model	 with	 excitable	 and	 oscillatory	 dynamics	 was	 able	 to	

reproduce	 the	 main	 characteristics	 of	 p53	 behavior	 in	 single	 cells:	 a	 smooth	

transition	between	 steady	 state,	 irregular	pulses	 and	 regular	oscillations	while	

preserving	pulse	amplitudes	and	durations.	This	is	based	on	the	combination	of	

negative	and	positive	 feedbacks,	which	 lead	to	a	bifurcation	scheme	(Fig.	S3	A)	

similar	to	the	one	obtained	for	the	simple	NPF	model	(Fig.	2	J).	Fig.		
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Sensitivity	of	the	p53	response	is	modulated	by	Wip1	levels		

So	far,	the	only	source	of	variability	was	given	by	the	stochastic	DSB	process	as	

the	deterministic	 core	model	was	 identical	 for	 all	 cells.	Hence,	 the	 same	 initial	

DSB	 time	 course	would	 lead	 to	 a	 collective	 first	 response,	 either	 a	pulse	or	no	

pulse,	within	 the	 population.	However,	 it	was	 previously	 demonstrated	 that	 in	

clonal	cell	populations	 the	number	of	 responsive	cells	gradually	 increases	with	

the	 amount	 of	 induced	 DSBs	 [15],	 suggesting	 that	 each	 individual	 cell	 has	 a	

different	 sensitivity	 for	 DNA	 damage.	 As	we	 can	 directly	 correlate	 the	 cellular	

responsiveness	to	the	stimulation	threshold	in	our	simulations,	we	employed	our	

excitable	p53	model	to	understand	this	heterogeneity.	We	first	investigated	how	

random	 short-lived	 fluctuations	 in	 protein	 concentrations	 influence	 the	

stimulation	 threshold	 in	 the	 excitable	 regime.	 To	 this	 end,	 we	 perturbed	 the	

system	 from	 steady	 state	 and	 observed	 whether	 it	 generated	 a	 full	 pulse	 or	

decayed	 back	 with	 subthreshold	 dynamics.	 Combining	 numerous	 random	

perturbations,	 we	 could	 identify	 the	 position	 and	 orientation	 of	 the	 excitation	

threshold	 in	 phase	 space	 (Fig.	 4	 A).	 While	 the	 position	 of	 the	 threshold	 was	

hardly	affected	by	p53	and	Mdm2	concentrations,	higher	levels	of	Wip1	strongly	

increased	 the	 amount	 of	 active	ATM	needed	 to	 trigger	 an	 excitation	 loop.	 This	

striking	dependence	of	the	threshold	position	on	Wip1	levels	suggested	that	the	

phosphatase	might	be	a	major	determinant	for	a	cells	individual	responsiveness	

towards	DSBs.		

Our	 qPCR	 analysis	 (Fig.	 S2)	 suggests	 that	Wip1	 is	 predominantly	 regulated	 on	

the	transcriptional	level.	We	therefore	measured	the	distribution	of	Wip1	mRNA	

in	 single	 cells	 and	 indeed	 found	 strong	 variability	 (CV	 =	 0.63)	 in	Wip1	mRNA	

abundance	(Fig.	4	B).	 	To	 introduce	variable	Wip1	expression	 in	 the	model,	we	

assumed	 a	 lognormal	 distribution	 of	 Wip1	 mRNA	 production	 rates,	 which	

translates	to	log-normally	distributed	Wip1	mRNA	and	protein	concentrations	at	

steady	 state	 (Fig.	 S5	 A,	 see	 Supplementary	 Information)	 (Feinermann	 2008,	

Sorger	2009).	The	simulated	distribution	(CV	=	0.52)	corresponded	well	 to	 the	

measured	distribution	of	Wip1	mRNAs	in	single	cells	(Fig.	4	C).	 In	addition,	the	

weakly	bimodal	shape	of	the	measured	distribution	could	be	naturally	recovered	

in	the	model	due	to	cells	exhibiting	a	spontaneous	p53	pulse	at	the	moment	the	

population	snapshot	was	taken.		
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We	 next	 simulated	 thousands	 of	 trajectories,	 each	 with	 its	 individual	 Wip1	

production	rate	according	to	the	distribution	described	above	and	DNA	damage	

represented	by	the	stochastic	DSB	process.	We	binned	the	ensemble	according	to	

the	maximal	number	of	inflicted	DSBs	and	tested	for	a	pulse	within	the	first	six	

hours.	This	defines	two	regions	in	the	DSB-Wip1	production	rate	plane	(Fig	4	D)	

corresponding	 to	either	 responsive	or	unresponsive	cells.	Our	analysis	 showed	

that	with	increasing	Wip1	levels,	more	DSBs	were	needed	to	trigger	a	p53	pulse.	

In	addition	to	the	contribution	by	varying	Wip1	levels,	we	observed	uncertainty	

introduced	 by	 stochastic	 repair,	 as	 some	 cells	 repaired	 DSBs	 before	 the	

excitation	 threshold	was	crossed.	This	 led	 to	a	graded	boundary	along	 the	 two	

regions,	where	cells	only	trigger	pulses	with	a	certain	probability.							

We	next	simulated	an	experiment	with	a	given	dose	of	a	damaging	agent	by	first	

sampling	 individual	Wip1	productions	 rates	 and	 then	 simulated	DSB	dynamics	

with	a	 fixed	 initial	break	rate.	This	results	 in	a	 two	dimensional	distribution	of	

cells	within	the	DSB-Wip1	production	rate	plane	(Fig.	4	D,	histograms	and	blue	

contours).	The	proportion	of	cells	residing	in	the	pulsing	and	non-pulsing	region	

determines	 the	 population	 response.	 This	 is	 exemplified	 by	 two	 individual	

simulations	with	a	similar	number	of	DSB,	where	only	one	shows	a	full	p53	pulse	

due	to	differences	in	Wip1	levels		(Fig.	4	E	and	F,	red	and	black	star	in	Fig.	4	D).		

Taken	together,	our	model	simulations	suggest	that	Wip1	levels	set	a	cell-specific	

activation	 threshold	 for	 the	p53	 system.	To	 test	 the	model	hypothesis	 that	 the	

responsiveness	 of	 the	 p53	 system	 is	 determined	 by	 Wip1	 steady	 state	

concentrations,	we	established	a	cell	line	overexpressing	Wip1	fused	to	the	red-

fluorescent	protein	mCherry.	Upon	inducing	a	low	dose	of	damage,	we	observed	

that	cells	with	higher	levels	of	Wip1	showed	less	frequent	p53	responses	(Fig.	4	

G).	 Strikingly,	we	 did	 not	 detect	 substantial	 changes	 in	 pulse	 amplitudes	 upon	

Wip1	 induction	 (Fig.	4	H).	Taken	 together,	 this	 strongly	 supports	 the	 idea	 that	

the	p53	 system	 functions	 as	 an	all-or-none	 pulse	 generator	 and	 that	Wip1	 is	 a	

major	regulator	of	its	cell-specific	excitation	threshold	towards	DSBs.	
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Discussion		

	

In	 this	 study,	 we	 combined	 insights	 from	 dynamical	 systems	 theory	 with	

experimental	measurements	to	identify	design	principles	that	enable	robust	yet	

versatile	 signal	processing	by	 the	 tumor	suppressor	p53.	We	showed	 that	only	

an	 excitable	 network	 structure	 comprised	 of	 both	 negative	 and	 positive	

feedbacks	 is	 capable	 of	 reproducing	 the	 p53	 response	 in	 healthy	 and	 stressed	

cells.	 While	 pure	 negative	 feedback	 systems	 generate	 limit	 cycle	 oscillations	

corresponding	to	highly	damaged	cells,	they	fail	to	reproduce	two	key	features	of	

p53	dynamics	 observed	 in	 single	 cells:	 pulses	with	 uniform	 amplitudes	 during	

entry	and	exit	from	the	oscillatory	regime	and	the	occurrence	of	isolated	pulses	

triggered	 by	 spurious	 endogenous	 DNA	 damage.	 However,	 our	 theoretical	

considerations	only	pointed	towards	the	existence	of	positive	feedback	without	

constraining	 its	 molecular	 manifestation.	 We	 therefore	 investigated	 various	

postulated	 transcriptional	 feedbacks	 including	 autoregulation	 of	 p53	 RNA.	

However,	 we	 did	 not	 observe	 expression	 changes	 at	 the	 level	 and	 timescale	

expected	 for	 regulators	 of	 pulse	 formation	 (Fig.	 S2).	While	we	 cannot	 formally	

exclude	 contributions	 from	 additional	 transcriptional	 feedbacks,	 we	 provide	

evidence	 that	 the	 switch-like	 activation	 of	 ATM	 upon	 damage	 induction	 [6]	

followed	 by	 rapid	 degradation	 of	 Mdm2	 [38]	 provide	 sufficient	 feedback	

upstream	 of	 p53.	 As	 details	 of	 the	molecular	 interactions	mediating	 the	 initial	

DNA	damage	response	are	still	emerging,	we	decided	to	capture	its	structure	in	

an	 phenomenological	 model	 condensing	 molecular	 details	 such	 as	 ATM	

autophosphorylation	 and	 its	 interaction	 with	 the	 MRN	 complex,	 MDC1	 and	

phosphorylated	 H2AX	 at	 break	 sites	 into	 a	 single	 autoregulatory	 interaction	

[5,35].	Importantly,	there	are	reports	of	other	molecular	species	like	USP10	[45]	

or	 micro	 RNAs	 like	 miRNA29	 [46]	 which	 support	 p53	 activation,	 and	 further	

experimental	 and	 theoretical	 studies	 will	 be	 needed	 to	 decipher	 the	 role	 of	

individual	molecular	interactions.		

	

Combining	 positive	 feedback	 around	 ATM	with	 a	 regulatory	module	 based	 on	

negative	 feedback	 regulation	 resulted	 in	 stable	p53	 levels	 in	healthy	 cells	with	

few	 DSBs.	 Only	 when	 a	 threshold	 for	 ATM	 activity	 was	 reached,	 the	 system	
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responded	 with	 a	 single	 full	 amplitude	 pulse.	 This	 all-or-nothing	 response	 is	

characteristic	 for	 excitable	 systems	 such	 as	 the	well-known	 FitzHugh-Nagumo	

model	 [47].	Excitable	systems	can	be	classified	 into	 two	categories	 [25],	where	

type	 I	 excitability	 has	 the	 distinct	 feature	 of	 a	 direction	 dependent	 threshold.	

Such	 systems	 are	 insensitive	 to	 perturbations	 not	 associated	with	 the	 primary	

input.	In	our	p53	model,	a	pulse	can	only	be	triggered	by	changes	in	the	activity	

of	ATM,	the	primary	sensor	for	DSBs,	while	the	system	is	inert	to	fluctuations	in	

other	species.	This	direction	dependent	 threshold	 leads	 to	a	strong	coupling	of	

pathway	 activation	 to	 a	 specific	 input.	 In	 addition,	 the	 all-or-nothing	response	

characteristic	 of	 excitable	 systems	 allows	 for	 high	 sensitivity	 as	 the	 positive	

feedback	 essentially	 serves	 as	 a	 signal	 amplifier.	 Therefore,	 type	 I	 excitable	

systems	 naturally	 provide	 specificity	 and	 sensitivity	 to	 enable	 robust	 signal	

processing.	 The	 information	 content	 of	 a	 single	 pulse	 of	 defined	 amplitude	 is	

necessarily	 binary,	 suggesting	 that	 type	 I	 excitable	 systems	 are	 well	 suited	 to	

transmit	decisive	signals.	Accordingly,	 it	has	been	described	that	 the	stochastic	

entry	into	and	exit	from	the	competent	state	of	the	bacterium	Bacillus	subtilis	is	

regulated	by	such	a	system	[48].		

The	p53	system,	however,	does	not	only	signal	the	presence	or	absence	of	DSBs,	

but	 also	 encodes	 the	 extent	 of	 DNA	 damage	 through	 the	 number	 of	 uniform	

pulses	 in	 a	 given	 time	 period	 [12-14,17].	 This	 is	 achieved	 by	 a	 seamless	

transition	 between	 incoherent	 pulsing	 and	 sustained	 oscillations.	 Sustained	

input	above	the	activation	threshold	shifts	the	system	in	parameter	space	from	

the	excitable	to	the	neighboring	oscillatory	regime.	The	time	spend	in	this	regime	

effectively	determines	 the	number	of	pulses	generated	 in	a	given	time	 interval.	

To	analyze	signal	encoding,	we	coupled	our	excitable	p53	model	to	a	stochastic	

process	 describing	 the	 induction	 and	 repair	 of	 DNA	 damage,	 which	 was	

parameterized	using	single-cell	measurements	of	DSB	kinetics.	This	allowed	us	

to	 reproduce	 single	 cell	 trajectories	 resembling	 cells	 with	 varying	 degrees	 of	

DNA	 damage.	 Stochasticity	 introduced	 through	 DSB	 kinetics	 was	 sufficient	 to	

also	 reflect	 experimentally	 observed	 heterogeneity	 in	 pulse	 numbers	 and	

allowed	 us	 to	 reproduce	 corresponding	 distributions	 in	 population	 of	 cells.	

Variable	 initial	 numbers	 and	 half-lives	 of	 DSBs	 kept	 each	 cell	 an	 individual	

amount	of	 time	within	 the	oscillatory	 regime.	The	 sooner	 cells	 returned	 to	 the	
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excitable	 regime,	 the	 broader	 the	 distribution	 of	 inter-pulse	 intervals	 became,	

resulting	 in	 increasing	 heterogeneity	 in	 pulse	 numbers.	 Taken	 together,	

observed	 cell-to-cell	 variability	 in	 pulse	 numbers	 and	 inter-pulse-intervals	 can	

mainly	be	attributed	 to	a	highly	 stochastic	DNA	double	 strand	break	 induction	

and	repair	coupled	to	a	type	I	excitable	systems.	

In	 addition	 to	 heterogeneity	 in	 pulse	 numbers,	 single	 cell	 measurement	 also	

revealed	 cell-specific	 activation	 thresholds	 for	 the	 p53	 response	 [15].	 We	

therefore	 analyzed	 the	 influence	 of	 all	 model	 species	 on	 the	 stimulation	

threshold	 and	 found	 that	 its	 value	was	mainly	determined	by	 the	phosphatase	

Wip1.	 This	 is	 can	 be	 mechanistically	 understood	 by	 taking	 into	 account	 that	

Wip1	not	only	directly	dephosphorylates	ATM,	but	also	interferes	with	ATM	self-

activation,	 e.g.	 by	 dephosphorylating	 γH2AX	 and	 the	 MRN	 complex	 [37].	 Our	

analysis	 predicted	 that	 cell-to-cell	 variability	 in	 Wip1	 protein	 abundances	

strongly	modulates	the	cellular	responsiveness	towards	DSBs.	This	is	supported	

by	pronounced	heterogeneity	in	Wip1	mRNA	levels	measured	in	individual	cells.	

Moreover,	we	were	able	to	modulate	p53	responsiveness	on	the	single	cell	level	

by	 over-expressing	Wip1.	 Our	 results	 highlight	 that	 excitable	 systems	 provide	

unique	 possibilities	 to	 combine	 robust	 all-or-nothing	 responses	 with	 versatile	

regulation	of	pathway	sensitivity	by	threshold	repositioning.		

As	a	prominent	modulator	of	the	p53	system,	Wip1	provides	an	entry	point	for	

crosstalk	 between	 the	 DNA	 damage	 response	 and	 other	 major	 signaling	

pathways.	 It	has	been	reported	that	 its	expression	 levels	are	regulated	by	MAP	

kinase	signaling	[49],	NF-κB	activity	[50]	and	the	tumor	suppressor	HIPK2	[51].	

This	allows	to	efficiently	sensitize	or	attenuate	p53	responsiveness	depending	on	

the	 state	 of	 the	 cell	 or	 information	 from	 the	 surrounding	 tissue	 and	 may	 be	

important	when	cells	rapidly	proliferate	during	development	and	regeneration.	

It	also	provides	a	mechanism	for	inactivating	p53	function	during	tumorigenesis,	

which	 is	 often	 initiated	 by	 aberrant	 signaling.	 The	 oncogenic	 role	 of	

Wip1/PPM1D	is	highlighted	by	the	frequent	observation	of	gene	amplification	or	

activating	mutations	in	human	cancers	[52-55].		
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Conclusions	

There	is	growing	evidence	that	pulsatile	intracellular	dynamics	play	an	essential	

role	in	different	cellular	contexts	[56].	They	can	be	observed	in	distinct	biological	

processes	such	as	signaling	 through	calcium	[22],	MAPK	[57]	or	NF-κb	[58,59],	

the	circadian	clock	[60]	or	embryonic	patterning	[61].	Are	there	general	design	

principles	 for	 the	 structure	 of	 cellular	 pulse	 generators?	 In	 this	 study,	we	 use	

abstract	mathematical	modeling	and	experimental	measurements	to	emphasize	

the	importance	of	the	feedback	and	bifurcation	structure	for	understanding	the	

dynamics	 and	 function	 of	 a	 regulatory	 circuit	 [62].	 We	 have	 found	 positive	

feedback	and	excitability	 to	provide	robustness	towards	cell	variability	 for	p53	

signaling	 and	 previously	 for	 Ca2+	 spiking	 [22].	 In	 this	 scenario,	 noise	 and	

fluctuations	 play	 central	 roles,	 as	 they	 elicit	 pulses	 and	 spikes	 in	 the	 excitable	

regime.	 In	 the	 future,	 similar	 approaches	 may	 enable	 identification	 of	 other	

common	principles	underlying	biological	oscillators	and	may	open	new	avenues	

to	modulate	critical	cellular	processes	in	the	context	of	human	diseases.	
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Material	and	Methods	

Live-cell	Imaging	

The MCF7 p53 reporter cell line has been described before [14]. To generate cells 

with increased PPM1D/Wip1 levels, a pRRL-based lentiviral construct expressing a 

fusion between Wip1 and mCherry under the control of the constitutive EF1alpha 

promoter was cloned using the MultiSite Gateway Three-fragment system 

(LifeTechnologies). Stable clonal cell lines were established following viral infection 

and selection with puromycin. Cells were maintained at 37 °C / 5% CO2 in RPMI 

1640 containing 10% FCS, penicillin / streptomycin and appropriate selective 

antibiotics (400 µg/ml G418, 50µg/ml hygromycin and 0.5µg/ml puromycin) to 

maintain transgene expression. 

For imaging, we seeded cells in poly-D-lysine-coated glass-bottom plates (MatTek 

Corporation) two days before experiments. The day of the experiment, media was 

replaced with fresh one lacking phenol red and riboflavin. Cells were imaged on a 

Nikon Ti inverted fluorescence microscope with a Hamamatsu Orca R2 camera and a 

20x plan apo objective (NA 0.75) using appropriate filter sets (Venus: 500/20 nm 

excitation (EX), 515 nm dichroic beam splitter (BS), 535/30 nm emission (EM); CFP: 

436/20 nm EM, 455 nm BS, 480/40 nm EX ; mCherry: 560/40 nm EM; 585 nm BS; 

630/75 nm EM, Chroma). The microscope was enclosed with an incubation chamber 

to maintain constant temperature (37°C), CO2 concentration (5%), and humidity. Cells 

were imaged every 15-20 minutes for the duration of the experiment using Nikon 

Elements software. 

We used custom-written Matlab (MathWorks) scripts based on code developed by the 

Alon lab [63] and the CellProfiler project [64] to track cells throughout the duration 

of the experiment. Briefly, we applied flat field correction and background subtraction 

to raw images and segmented individual nuclei from nuclear marker images using 

adaptive thresholding and seeded watershed algorithms. We then assigned segmented 

cells to corresponding cells in following images using a greedy match algorithm. 

	

Time	series	analysis	

The	single	cell	p53	trajectories	were	analyzed	using	wavelet	transformations	and	

smoothing	 splines	 (Fig	 S1B).	 Peak	 detection	 was	 done	 by	 identification	 and	

subsequent	 filtering	 of	 ridge-lines	 in	 the	 wavelet	 transform,	 a	 strategy	 first	
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devised	for	mass	spectra	analysis	[65].	After	p53	pulse	times	were	determined,	

localized	 smoothing	 splines	were	 fitted	 to	a	 trajectory	around	every	 individual	

pulse	(Fig	S1A)	to	reliably	obtain	pulse	amplitudes	and	widths.	All	analysis	steps	

were	 compiled	 into	 a	 custom	 written	 Python	 program	 using	 the	 open	 source	

scientific	tools	package	SciPy	[66].	

	

Simulations	

The	 deterministic	 p53	model	was	 formulated	 as	 a	 system	 of	 coupled	 ordinary	

differential	 equations	 (ODEs);	 the	 equations	 are	 given	 explicitly	 in	 the	

Supplement.	 Bifurcation	 analysis	 and	 numerical	 solutions	 were	 obtained	 with	

the	PyDSTool	framework		(Clewly	R	2007),	an	open	source	analysis	environment	

for	 dynamical	 systems.	 The	 stochastic	 DSB	 process	 was	 simulated	 based	 on	

Gillespie’s	stochastic	simulation	algorithm	(SSA,	Gillespie	2002)	.	To	address	the	

non-stationary	 damage	 kinetics	 of	 the	 NCS	 stimulation,	 the	 break	 rate	 was	

approximated	as	a	step	function	defined	by:	

! " = 	!%	&'	" ≤ 	)%
	!*	&'	" > )% 	,	

where	bs	 is	 the	break	rate	during	stimulation	and	bb	 the	basal	break	rate	 .	The	
switching	time	between	these	two	rates	is	given	by	Ts,	which	corresponds	to	the	
time	 span	 of	 active	 NCS.	 This	 approach	 towards	 time	 inhomogeneous	Markov	

processes	via	step	functions	still	yields	analytically	tractable	expressions	for	the	

next-jump	densities	needed	for	the	SSA	algorithm.	Details	of	the	implementation	

and	parameter	values	used	can	be	 found	 in	 the	supplement.	Simulations	of	 the	

stochastically	driven	p53	system	were	carried	out	by	pre-computing	realizations	

of	 the	 DSB	 process	 and	 augmenting	 the	 r.h.s.	 of	 the	 ODE	 system	 by	 a	

corresponding	forcing	term.	

	

qPCR	of	potential	feedback	candidates	

We	extracted	mRNA	using	High	Pure	RNA	Isolation	kits	(Roche)	and	generated	

complementary	DNA	M-MuLV	reverse	transcriptase	(NEB)	and	oligo-dT	primers.	

Quantitative	PCR	was	performed	in	triplicates	using	SYBR	Green	reagent	(Roche)	

on	 a	 StepOnePlus	 PCR	 machine	 (Applied	 Biosystems).	 Primers	 sequences:	 β-

actin	forward,	GGC	ACC	CAG	CAC	AAT	GAA	GAT	CAA;	β-actin	reverse,	TAG	AAG	

CAT	TTG	CGG	TGG	ACG	ATG;	Wip1	 forward,	ATA	AGC	CAG	AAC	TTC	CCA	AGG;	
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Wip1	 reverse,	TGG	TCA	ATA	ACT	GTG	CTC	CTT	C;	p21	 forward,	TGG	ACC	TGT	

CAC	TGT	CTT	GT;	p21	reverse,	TCC	TGT	GGG	CGG	ATT	AG;	p53	forward,	TGA	CTG	

TAC	CAC	CAT	CCA	CTA;	p53	reverse,	AAA	CAC	GCA	CCT	CAA	AGC;	PIDD	forward,	

GAT	GTT	CGA	GGG	CGA	AGA	G;	PIDD	reverse,	CAG	GTG	CGA	GTA	GAA	GAC	AAA	G;	

PTEN	 forward,	AAG	GGA	CGA	ACT	GGT	GTA	ATG;	PTEN	reverse,	GCC	TCT	GAC	

TGG	GAA	 TAG	 TTA	 C;	 TIGAR	 forward,	 CCT	 TAC	 CAG	 CCA	 CTC	 TGA	GC;	 TIGAR	

reverse,	 CCA	TGT	GCA	ATC	CAG	AGA	TG;	 14-3-3σ	 forward,	 CCC	TGA	ACT	TTT	

CCG	TCT	TCC;	14-3-3σ	reverse,	GGT	GCT	GTC	TTT	GTA	GGA	GTC	

		

smFISH	

MCF7	cells	were	cultured	 for	24h	on	uncoated	coverslips	 (thickness:	#1).	Cells	

were	 washed	 and	 fixed	 with	 2%	 Paraformaldehyde	 for	 10	 min	 at	 room	

temperature,	washed	again	and	permeabilized	over	night	with	70%	Ethanol	 at	

4°C.	Custom	probe	sets	for	single	molecule	FISH	[67]	labeled	with	CalFluor-610	

were	designed	using	Stellaris	RNA	FISH	probe	designer	(Biosearch	Technologies)	

on	the	reference	sequence	NM_003620.3	(PPM1D).	Hybridization	was	performed	

at	 a	 final	 concentration	 of	 0.1	 µM	 probe	 following	manufacturers	 instructions	

(Stellaris	 RNA	 FISH	 Protocols	 -	 adherent	 cells).	 Coverslips	 were	 mounted	 on	

Prolong	 Gold	 Antifade	 (Life	 technologies).	 For	 single	 molecule	 RNA	

quantification,	 11	 z-stacks	of	 each	 cell	were	 acquired	with	300	nm	step-width.	

Quantification	 of	 RNA	 counts	 per	 cell	 was	 performed	 using	 the	 Star	 Search	

analysis	 tool	 for	 spot	 detection	

(http://rajlab.seas.upenn.edu/StarSearch/launch.html).		
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Figure	1	–	Analysis	of	p53	single	cell	trajectories	

A	Time-lapse	microscopy	images	of	MCF7	cells	expressing	p53-Venus	after	

stimulation	with	400ng/ml	or	25ng/ml	NCS.	

B-C	Trajectories	of	p53	protein	levels	in	individual	cells	showing	sustained	

oscillations	(B,	upper	row	in	A)	or	isolated	pulses	(C,	lower	row	in	A).	

D	Pulse	counting	statistics	for	three	different	experimental	conditions	as	

indicated	in	the	legend	below	panels	E,	F.	Cells	were	observed	for	48h.	

E-F	Median	amplitudes	(E)	and	pulse	width	(F)	of	the	first	four	p53	pulses,	

error	bars	indicate	the	1st	and	3rd	quartile	respectively.	

G	Inter-pulse-interval	(IPI)	distributions	for	all	three	experimental	conditions	

with	samples	taken	over	the	entire	observation	time.	Narrower	distributions	

indicate	more	coherent	pulsatile	dynamics.	

H	IPI	distributions	of	the	first	and	last	recorded	IPI	respectively.	The	medium		

stimulated	cells	(yellow)	already	returned	to	irregular	pulsatile	dynamics	at	

the	end	of	the	experiments,	while	the	highly	stimulated	cells	(brown)	still	

show	very	coherent	pulse	trains.	

I	Kullback-Leibler	divergence	(KLD)	of	the	first	control	IPIs	from	the	last	IPIs	

for	all	three	conditions.	Dynamics	of	the	medium	stimulated	cells	are	

indistinguishable	from	the	basal	dynamics	at	later	time	points.	
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Figure	2	-	Regulatory	network	topology	constrains	dynamic	stimulus	

responses	

A-B	Interaction	graphs	of	hypothetical	systems	comprising	only	negative	

feedback	(NF,	A)	or	combined	negative	and	positive	feedbacks	(NPF,	B).	The	

positive	feedback	is	realized	by	a	positive	self-interaction.		

C-D	Time-resolved	response	of	the	NF	(C)	and	NPF	(D)	systems	to	transient	

signals	of	increasing	strengths.		

E-H	Time	courses	demonstrating	the	termination	of	oscillations	during	

dynamic	switching	after	sustained	stimulation	for	the	NF	(E)	and	NPF	(F)	

system.	The	corresponding	amplitudes	of	the	oscillation	were	quantified	for	

individual	peaks	(G	and	H).	Subthreshold	responses	were	excluded.		

I	Bifurcation	diagram	of	the	NF	system	for	varying	signal	strengths.	The	

oscillatory	regime	is	confined	by	two	supercritical	Hopf	bifurcations	(H1	and	

H2).	The	amplitudes	of	the	limit	cycle	oscillations	are	indicated	by	the	blue	

line.		

J	Bifurcation	diagram	of	the	NPF	system	for	varying	signal	strengths.	The	

system	is	excitable	for	low	input	signals.	For	higher	signal	strengths	a	limit	

cycle	is	born	with	large	amplitudes	around	the	subcritical	Hopf	bifurcation	

(H1).	The	stable	rest	state	disappears	via	a	saddle-node	bifurcation	(LP).	
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Figure	3	–	A	p53	model	driven	by	stochastic	DSB	processes	recovers	

experimentally	measured	dynamical	properties		

A	Interaction	graph	of	the	modeled	p53	network	in	response	to	DSBs.	

Modelled	molecular	interactions	include	phosphorylation	(P),	

dephosphorylation	(dP)	and	ubiquitination	(Ub);	mRNA	species	(mdm2	and	

wip1)	are	shown	in	purple,	all	other	species	describe	proteins.	The	numbers	

refer	to	the	explanations	in	the	text.		

B	A	single	exemplary	realization	of	the	stochastic	DSB	process.	Shown	are	the	

dynamics	of	the	two	damage	types	(isolated	and	complex)	and	the	total	

effective	number	of	DSBs	over	time.	For	comparison,	the	measured	number	

of	DSBs	over	time	post	damage	is	shown	for	an	individual	cell	(yellow).	

C	Statistics	of	measured	and	simulated	foci	for	populations	of	cells.	Shown	

are	the	median	and	1st	and	3rd	quartiles.	N=120	for	simulations,	N=52	for	

measurements	

D-F	Exemplary	DSB	process	realizations	and	the	corresponding	p53	model	

responses.	Shown	are	three	different	stimulus	intensities:	control	condition	

(D),	medium	stimulation	(E)	and	high	stimulation	(F).		

G	Pulse	counting	statistics	for	three	simulated	ensembles	with	stimulation	

strengths	as	indicated.		

H	Inter-pulse-interval	(IPI)	distributions	corresponding	to	the	ensembles	

shown	in	G.	The	overall	coherence	of	the	pulsatile	response	increases	with	

stimulation	strengths.		

I	First	and	last	IPI	distributions	for	the	three	different	stimulation	strengths	

corresponding	to	the	simulated	ensembles	shown	in	G	and	H.	The	medium	

stimulated	cells	have	mostly	returned	to	unstimulated	dynamics,	whereas	the	

highly	stimulated	cells	still	predominantly	show	coherent	oscillations	on	the	

single	cell	level.		
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Figure	4	–	The	responsiveness	of	individual	cells	towards	damage	is	

modulated	by	Wip1	levels	

A	Sensitivity	of	the	excitation	threshold	for	fluctuations	of	the	three	regulated	

proteins	p53,	Mdm2	and	Wip1.	The	steady	state	is	depicted	as	(�)	for	basal	

activated	ATM	levels	on	the	left	respectively.	The	p53	system	is	particularly	

sensitive	to	Wip1	fluctuations,	as	it	influences	the	threshold	the	most.	

B	Measured	single	cell	Wip1	mRNA	counts	for	an	unstimulated	cell	

population	(N	=	106).	

C	Modeled	in	silico		Wip1	mRNA	concentration	variability.	The	single	cell	

expression	levels	were	drawn	from	a	log-normal	distribution	and	the	system	

was	driven	by	basal	DSB	dynamics.	

D-F	The	dependency	of	p53	responsiveness	on	damage	levels	(maximal	

number	of	inflicted	DSBs)	and	Wip1	expression	rate	is	shown	in	D.	Cells	

responding	with	a	p53	pulse	lie	inside	the	beige	area.	A	typical	fixed	dose	

experiment	will	induce	a	distribution	of	cells	inside	this	plane	(blue	

contours),	as	both	the	number	of	DSBs	and	the	Wip1	expression	levels	are	

variable	on	the	single	cell	level.	The	fraction	of	cells	within	the	beige	area	

determines	the	population	response.	Exemplary	simulations	of	cells	with	

high	(E,	black	star)	or	low	(F,	red	star)	Wip1	are	shown.	Although	both	cells	

suffered	comparable	numbers	of	DSBs,	only	the	cell	with	low	Wip1	level	was	

responsive.		

G	Measured	fraction	of	cells	showing	a	pulse	in	the	first	six	hours	for	two	

different	damage	doses	and	three	different	levels	of	Wip1	overexpression	as	

indicated.	Higher	Wip1	levels	reduced	responsiveness	in	vivo.		

H	Pulse	amplitude	distributions	of	the	responding	cells	shown	in	G.		
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