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Abstract

Population scale studies combining genetic information with molecular phenotypes (e.g. gene
expression) become a standard to dissect the effects of genetic variants onto organismal
phenotypes. This kind of datasets requires powerful, fast and versatile methods able to discover
molecular Quantitative Trait Loci (molQTL). Here we propose such a solution, QTLtools, a modular
framework that contains multiple methods to prepare the data, to discover proximal and distal
molQTLs and to finally integrate them with GWAS variants and functional annotations of the
genome. We demonstrate its utility by performing a complete expression QTL study in a few and
easy-to-perform steps. QTLtools is open source and available at https://qgtltools.github.io/qgtltools/.

Main text

In order to increase the explanatory power of genome wide association studies (GWAS), many
genetic studies now routinely combine genetic information with one or multiple molecular
phenotypes such as gene expression [1], protein abundance [2], metabolomics [3], methylation [4]
or chromatin activity [5]. This makes possible the discovery of molecular Quantitative Trait Loci
(molQTL); a key step towards better understanding the effects of genetic variants on the cellular
machinery and eventually on organismal phenotypes. In practice, this requires analyzing datasets
comprising millions of genetic variants and thousands of molecular phenotypes measured on a
population scale; a design that aims to perform many orders of magnitude more association tests
than in a standard GWAS. To face this computational and statistical challenge, there is a clear need
of computational methods that are (i) powerful to properly face the multiple testing problem, (ii)
fast to easily process large amount of data in reasonable running times and (iii) versatile to adapt to
new datasets as they are being generated. Here, we present such an integrated framework, called
QTLtools, which allows users to go from raw sequence data to collections of molQTLs in only few
easy-to-perform steps, all based on powerful methods that either match or improve those employed
in large scale reference studies such as Geuvadis [1] or GTEx [6].

QTLtools is a modular framework designed to accommodate new analysis modules as they are being
developed by our group or the scientific community. In its current state, QTLtools performs multiple
key tasks (figure 1) such as checking the quality of the sequence data, checking that sequence and
genotype data match, quantifying and stratifying individuals using molecular phenotypes,
discovering proximal or distal molQTLs and integrating them with functional annotations or GWAS
data. To demonstrate the utility of this new tool with real data, we used it to perform a complete
expression QTL (eQTL) study for 358 European samples where genotype and expression data were
generated as part of the 1000 Genomes [7] and Geuvadis [1] projects, respectively (supplementary
material 1).
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To control the quality of the sequence data, QTLtools proposes two complementary approaches.
First, it can measure the proportions of reads (i) mapping to the reference genome and (ii) falling
within an annotation of interest (supplementary method 1), such as GENCODE for RNA-seq [8].
Second, it can also make sure that the sequence data matches the corresponding genotype data; the
opposite being an evidence of sample mislabeling [9]. To achieve this, QTLtools measures
concordance between genotypes and sequencing reads, separately for heterozygous and
homozygous genotypes (supplementary method 2). Low values in any of the two measures indicate
problems such as sample mislabeling, contamination or amplification biases (supplementary figure
1). When performed on Geuvadis, these two approaches demonstrated the high quality of the RNA-
seq data and the good match with available genotype data (supplementary figures 2-3).

To quantify gene expression, QTLtools counts the number of sequencing reads overlapping a set of
genomic features (e.g. exons) listed in a given annotation file (supplementary method 3). We
guantified both exon and gene expression levels in all 358 Geuvadis samples using this approach and
get 22,147 genes quantified in more than half of the samples (supplementary figure 4). Then, we run
principal component analysis (PCA) on these quantifications as implemented in QTLtools
(supplementary method 4) in order to capture any stratification in the sequence data or the
genotype data. In the Geuvadis data we did not observe any unexpected cluster in the expression
data, neither in the genotype data (supplementary figure 5) and used the resulting sample
coordinates on the first Principal Components as latent variables to increase discovery power of any
downstream association testing (supplementary method 5).

A core task of QTLtools is to discover proximal (i.e. cis-acting) molQTLs. To do so, it extends the QTL
mapping method introduced by FastQTL [10] and offers multiple key improvements that make this
step fast and easy-to-perform. First, it uses a permutation scheme that needs a relatively small
number of permutations to adjust nominal p-values for multiple testing (supplementary method 6,
supplementary figure 6). As a consequence, the whole Geuvadis eQTL analysis can be performed in
short running times (~32 CPU hours) which has been proved to be an order of magnitude faster than
a widely used tool, Matrix eQTL [11] and provides adjusted P-values without any lower bounds
(supplementary figure 7). The running times are actually so small that it becomes easy to repeat the
whole analysis multiple times across different sets of quantifications, covariates and QC filters in
order to determine the optimal configuration maximizing the number of discoveries (supplementary
figures 8-9). In addition, QTLtools also provides ways to easily extract subsets of data and therefore
facilitate detailed inspection of particular eQTLs (supplementary figure 10). As multiple molecular
phenotypes can belong to higher order biological entities such as exons of genes or histone
modification peaks to Variable Chromatin Modules (VCMs) [2], we also implemented two methods
to maximize the discoveries in such particular cases (supplementary method 7). Specifically,
QTLtools can either (i) aggregate multiple phenotypes in a given group into a single phenotype via
PCA or (ii) directly use all individual phenotypes in an extended permutation scheme that accounts
for their number and correlation structure. In our experiments, the permutation-based approach
seems to outperform the PCA-based approach in term of number of discoveries in the two data sets
we tested (figure 2A, supplementary figure 11). In Geuvadis, the permutation-based approach is able
to discover an additional set of ~1,056 eQTLs compared to the standard gene-level quantifications,
most of them being for genes containing many exons (supplementary figure 12).
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85 Furthermore, QTLtools can also perform conditional analysis to discover multiple proximal molQTLs
86  with independent effects on a molecular phenotype. To do so, it first uses permutations to derive a
87  nominal p-value threshold per molecular phenotype that varies and reflects the number of
88 independent tests per cis-window. Then, it uses a forward-backward stepwise regression to (i) learn
89 the number of independent signals per phenotype, (ii) determine the best candidate variant per
90 signal and (iii) assign all significant hits to the independent signal they belong to (supplementary
91 method 8). We applied this conditional analysis on Geuvadis and discovered that ~38% of the
92 significant genes have actually more than one eQTL (figure 2B); some of them having up to 6
93 independent eQTLs (supplementary figure 13). Interestingly, we also find that combining the
94  conditional analysis with the phenotype grouping approach described above could help to discover
95 even more signals (figure 2B). We confirm that the new discoveries resulting from theses analyses in
96 Geuvadis have high replication rates within an independent data set (GTEx [4]) suggesting that these
97 are genuine discoveries (supplementary method 9, supplementary figure 14).

98 Beyond mapping proximal molQTLs, QTLtools also includes methods to discover distal (i.e. trans-

99 acting) molQTLs. The first method we implemented relies on permuting all phenotypes together in
100  order to draw from the null distribution of associations while preserving the correlation structure
101  within genotype and phenotype data intact (supplementary method 10.1). By repeating this
102 permutation scheme multiple times (e.g. 100 times in our experiments), we can obtain an
103 empirically calibrated Quantile-Quantile plot that properly shows signal enrichment (supplementary
104  figure 15) and can estimate the False Discovery Rate (FDR) for all the most significant associations: in
105 Geuvadis, we could find 52 genes with at least one significant signal in trans at 5% FDR. Given that
106 this full permutation scheme is computationally intensive (~450 CPU hours for 100 permutations),
107  we also designed an approximation of this process that gives reasonably close FDR estimates while
108 being multiple orders of magnitude faster (~7 CPU hours; supplementary method 10.2). Given that
109 the whole genome is effectively tested for each phenotype, we quickly build a null distribution of
110  associations for a single phenotype by permutations. We then use this null distribution to adjust
111 each nominal P-value for the number of variants being tested and then standard FDR methods [12]
112 on the resulting set of adjusted P-values to correct for the multiple phenotypes being tested. In
113 practice, this approach can be seen as an extension in trans of the mapping strategy we use in cis
114  and gives FDR estimates that are close to those obtained with the full permutation pass
115 (supplementary figure 16) while being way faster to obtain (~64 times faster in our experiments).

116 Finally, we also implemented multiple methods to integrate collections of molQTLs with two types of
117 external data: functional genome annotations and GWAS results. First, QTLtools can estimate if a
118 molQTL and a variant of interest (typically a GWAS hit) pinpoint the same underlying functional
119  variant. To do so, it uses Regulatory Trait Concordance (RTC; supplementary method 11) [13]; a
120  sophisticated conditional analysis scheme designed to account for Linkage Disequilibrium (LD) as a
121  confounding factor when co-localizing molQTLs and GWAS hits. This can be used, for instance, to
122 determine the subset of GWAS hits that are likely mediated by molQTLs; a useful piece of
123  information to understand the function of GWAS hits. When applied on Geuvadis and the NHGRI-EBI
124  GWAS catalog [14], we estimated to which extend the disease associated variants reported in this
125  catalog overlap with eQTLs (supplementary figure 17). Alternatively, QTLtools can also look at the
126 overlap between sets of molQTLs and functional annotations as those provided by ENCODE [8].
127  Specifically, it can compute the density of annotations around molQTL locations (supplementary
128 method 12.1) and, when they do overlap, estimate if it is more often than what is expected by
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129  chance (supplementary method 12.2). This basically allows inspecting visually and statistically the
130  distribution of functional annotations around molQTLs. When using this on the various sets of eQTLs
131  we discovered so far, we find that they tend to fall within transcription factor binding sites and open
132  chromatin regions (supplementary figure 18), in line with previous knowledge on eQTLs [1].

133 All the functionalities described above have been implemented in C++ for high performance, in a
134 modular way to facilitate future implementation of additional functionalities by the community. In
135 addition, QTLtools has been designed so that the computational load can be easily distributed across
136  the multiple CPU cores typically available on a compute cluster. The set of tasks that require to be
137 run on a per individual basis (e.g. QC the sequence data) are straightforward to parallelize: a
138 compute job per individual. For population-based tasks, such as QTL mapping for example, the input
139 data is split into small genomic chunks that can be run conveniently and independently on distinct
140  CPU cores. In practice, this allows running all the experiments described above in relatively short
141 running times (table 1), so that the full set of analyses described above can be performed in ~1,327
142 CPU hours (=~55 CPU days).

143 QTLtools is the first software package that integrates all functionalities required to easily and rapidly
144  go from the raw sequence and genotype data to reliable collections of proximal and distal molecular
145 QTLs. It includes multiple new and powerful statistical methods to prepare and control the quality of
146  the data, to map proximal and distal QTLs and to finally integrate those with GWAS results and
147  functional annotations. It also offers a unique framework for the community to develop further
148 additional methods or alternative to the ones already included, so that molecular QTL analysis can
149 be more seamless among laboratories. By its integrative design and efficient implementation,
150 QTLtools decreases drastically the time needed to set up and run the various analysis pipelines
151  traditionally needed by molecular QTL studies, therefore allowing researchers to spend more efforts
152  onthe interpretation and validation of their results.
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Figurel: Flow chart of the main QTLtools functionalities. This represents how the various
functionalities of QTLtools can be combined in order to go from the raw sequence and genotype
data to collections of molecular QTLs which can then be integrated with both GWAS data and
functional annotations. Data is represented with ovals and tasks with boxes in which the name of
the mode is shown in bold black with a short description of what it does.

165

A. Permutation analysis B. Conditional analysis C. Functional analysis

2 8
- ..,g, _ Open chromatin regions (DNAse) 369
§ 4 Transcription Factor Binding Sites
- Transcribed regions
g w0 9,04
27 - |4
s @ 139 i
2 4 _ S ] an
S ] o !
o — . = —a E { H
3 g8l _a-cmromee-a | %,
T 5 2 » P
[0} [ ’ o !
2 o 4 =] '
= g & ? e !
A — —e= S
8 I - balint e R Y : B
g4 - 1
& ’, w o *2'
o B
g i 258
2 B Gene level quantification 4 . %
B Group phenotypes - PERM o =1eQTL ¥ Primary eQTL
B Group phenotypes - PGA >1eQTL o - - Secondary eQTL
T T T T T T T T T T T T i T T
0 20 40 80 80 100 0 20 40 60 B0 100 1.0 1.5 20
Odd ratio

#Principal Components #Principal Components

Figure2: Outcome of the permutation, conditional and functional analyses on Geuvadis. Panel (A)
shows the number of eGenes discovered (y-axis) as a function of the number of Principal
Components (x-axis) used to correct for technical variance for three different ways of aggregating
signal at multiple exons: at the quantification level (in red) or at the QTL mapping level
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(supplementary method 7) by using either the extended permutation scheme (in blue) or Principal
Component Analysis (in green). Panel (B) shows the numbers of eGenes (y-axis) with a unique eQTL
(solid lines) or multiple eQTLs (dotted lines) as a function of the number of Principal Components (x-
axis) used to correct for technical variance. This is shown for two approaches for aggregating the
signal at multiple exons: at the quantification level (in red) or at the QTL mapping level by using the
extended permutation scheme (in blue). Panel (C) shows the enrichments of the 4 types of eQTLs
resulting from the analysis performed for panel (B) (primary versus secondary eQTLs and gene
quantification versus phenotype grouping) within 3 types of functional annotations (supplementary
method 12.2). The odd ratios and the —log10 of the enrichment P-values are shown on the x-axis and
y-axis, respectively. The percentages of eQTLs falling within these annotations are shown next to the
corresponding points.
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