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Abstract: 

The association and dissociation of protein oligomers is frequently coupled to the binding of 

ligands, facilitating the regulation of many biological processes. Equilibrium thermodynamic 

models are needed to describe the linkage between ligand binding and homo-

oligomerization. These models must be parameterized in a way that makes physical 

interpretation straightforward, and allows elaborations or simplifications to be readily 

incorporated. We propose a systematic framework for the equilibrium analysis of ligand-linked 

oligomerization, treating in detail the case of a homo-oligomer with cyclic point group 

symmetry, where each subunit binds a ligand at a single site. Exploiting the symmetry of the 

oligomer, in combination with a nearest-neighbors approximation, we derive a class of site-

specific ligand binding models involving only four parameters, irrespective of the size of the 

oligomer. The model parameters allow direct quantitative assessment of ligand binding 

cooperativity, and the influence of ligand binding on protein oligomerization, which are the key 

questions of biological interest.  These models, which incorporate multiple types of linkage, 

are practically applicable, and we show how Markov Chain Monte Carlo (MCMC)  methods 

can be used to characterize the agreement of the model with experimental data. 

Simplifications to the model emerge naturally, as its parameters take on extremal values. 

The nearest-neighbors approximation underpinning the model is transparent, and the model 

could be augmented in obvious fashion if the approximation were inadequate. The approach 

is generalizable, and could be used to treat more complex situations, involving more than a 

single kind of ligand, or a different protein symmetry. 
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Author Summary:  

The assembly and disassembly of protein complexes in response to the binding of ligands is 

a ubiquitous biological phenomenon. This is often linked, in turn, to the activation or 

deactivation of protein function. Methods are therefore needed to quantitate the linkage or 

coupling between protein assembly and effector binding, requiring the development of 

mathematical models describing the coupled binding processes. As proteins usually 

assemble in a symmetric fashion, the nature of any symmetry present has to be considered 

during model construction. We have developed a class of models than can effectively 

describe the coupling between effector binding and protein assembly into symmetric ring-like 

structures of any size. Despite the relatively complex mathematical form of the models, they 

are practically applicable. Markov Chain Monte Carlo methods, a form of Bayesian statistical 

analysis, can be used to analyze the fit of the models to experimental data, and recover the 

model parameters. This allows the direct assessment of the nature and magnitude of the 

coupling between effector binding and protein assembly, as well as other relevant 

characteristics of the system.  
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Introduction: 

Proteins function by participating in chemical processes such as ligand binding, catalysis, 

conformational switching and oligomerization. Complexity arises when a single protein 

participates in multiple processes that depend upon one another. Interdependence of this 

kind has been termed linkage [1], coupling [2], or cooperativity [3,4] in the biological literature. 

Linkage of chemical processes is of cardinal importance, as it allows for the effective 

regulation of biological systems [5] 

This paper concerns the linkage between protein homo-oligomerization and the binding of 

ions and small molecules, a ubiquitous biological phenomenon [6,7]. A prominent example is 

the zinc dependent-oligomerization of insulin. Insulin is stored as an inactive hexamer in 

pancreatic cells in the presence of elevated zinc concentrations. When released into the 

serum, insulin dissociates to form an active monomer, in response to the decrease in both 

zinc and proton concentrations [8]. Only monomeric insulin is capable of receptor binding and 

signaling pathway activation [9]. Quantitative analysis of such “assembly-binding” linkage is 

needed to advance basic biology. It is also needed when protein-protein interactions are 

targeted for therapeutic purpose [10], or when small molecules are used to manipulate the 

assembly of proteins into functional nano-materials [11-13]. 

Equilibrium studies are central to the quantitative analysis of coupled oligomerization and 

ligand binding. This approach requires an equilibrium thermodynamic model of the system, 

the collection of suitable experimental data, and a method of estimating the model 

parameters based on the data. These are the points we consider in this paper. Equilibrium 

thermodynamic models enumerate the discrete energetic states of the protein, and the 

equilibrium constants - or equivalently standard Gibbs energies - that determine the 

population of those states. When applied to ligand binding, models can be developed at 

different levels of detail (Fig. 1). Stoichiometric binding models consider states with the same 

total number of ligands bound to be equivalent. In contrast, site-specific binding models 

differentiate between the possible arrangements of bound ligand among the sites [14-16]. A 

stoichiometric model can always be derived from a site-specific model, however the converse 
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is not true. In this sense site-specific models are more fundamental than stoichiometric 

models, and they are prerequisite for explaining binding phenomena at the molecular level. 

Figure 1. Stoichiometric versus site-specific ligand binding models. The equilibrium 

thermodynamic states of  a protein that binds multiple ligands can be specified in terms of  the total 

number of  ligands bound (a stoichiometric model), or in terms of  the possible arrangements of  bound 

ligand (a site-specific model). The models developed in this paper are site-specific. 

Unfortunately, the parameters of a site-specific model are often difficult to determine from 

experimental data. This is because many physical techniques for studying ligand binding do 

not differentiate between sites, and report only on the number of ligands bound. Unique 

recovery of the parameters of a general site-specific model is impossible from such data. 

Consequently, much of the quantitative analysis of protein ligand interactions has been 

performed using stoichiometric models.  However site-specific models can be retained if they 

are suitably simplified, which can be achieved by incorporating additional information, or 

making reasonable approximations. Symmetry is one of the key features of proteins that can 

be exploited here. Homo-oligomeric proteins almost always have point group symmetry 

[17-20], the simplest form of which is cyclic symmetry. Symmetry implies energetic 

equivalence between many of the possible arrangements of bound ligand among the sites on 

the oligomer. In this paper, we demonstrate how incorporation of symmetry, combined with 
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suitable approximations, results in site-specific models that describe ligand binding to 

dissociable protein oligomers, and can be usefully fit to experimental data.  

The detailed formulation of site-specific ligand binding models requires that the 

parameterization of the model be carefully considered.  While the number of parameters 

required for an exact equilibrium thermodynamic model is unambiguous, there is no unique 

way to assign equilibrium constants, nor any accepted convention for doing so. The use of 

alternative parameterizations complicates comparisons between different studies, and some 

methods of parameterizing complex binding models lead to mathematical intractability, or 

difficulties in interpretation. At least two systematic methods to parameterize equilibrium 

binding models have been proposed which explicitly account for the possible dependence 

between binding events [4,16,21,22], though these have not been widely employed in 

practice.  Both schemes are hierarchical in nature, and describe ligand binding in terms of 

basal equilibrium constants for each site, modulated by interaction parameters of increasing 

order, which account for ligand binding cooperativity. If the sites operate independently, the 

interaction parameters vanish, and the models readily simplify. The difference between 

approaches arises in the definition of the interaction between three or more sites. Adoption of 

a systematic hierarchical parameterization scheme is critical in formulating a model that can 

be readily interpreted, and suitably simplified in either the presence or absence of linkage 

effects.   

Irrespective of the exact form of the model, parameter estimation for assembly-binding 

equilibrium models requires measurement of ligand binding and/or protein oligomerization as 

a function of total ligand and protein concentration. Often ligand binding data is collected 

under conditions where one oligomeric state dominates. Alternatively oligomerization data is 

collected in the absence of ligand and in the presence of saturating amounts of ligand. This 

allows some of the component equilibria to be characterized in isolation, using simple models 

that neglect linkage. Non-linear least squares techniques are typically used to perform model 

fitting. However, when the objective is to quantitate linkage,  a more direct approach is to 

freely vary the concentration of both protein and ligand, and fit the data globally to a model 

that incorporates the linkage effect. Such models will have a relatively complex mathematical 

form, requiring more powerful parameter estimation techniques. Here we explore the use of 
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Markov Chain Monte Carlo (MCMC) methods for model fitting, which are a form of Bayesian 

inference [23-25]. MCMC methods provide the posterior probability distributions of the model 

parameters given the data, which is particularly useful for fitting complex models to limited 

experimental data. Even if reliable point estimates for the model parameters cannot be 

obtained, it is often still possible to learn something about their bounds. 

The simplest example of the phenomenon we are investigating - a monomer-dimer system 

with a single ligand binding site per subunit - has been well studied at the theoretical level 

[26-32]. Gutheil has discussed the systematic parameterization of an equilibrium 

thermodynamic model for this case [32]. Although there are many experimental studies of 

such systems (for recent examples see [33-35]), we are aware of none that have employed a 

systematic and non-redundant parameterization of the underpinning equilibrium 

thermodynamic model. Furthermore, in this simplest of cases, stoichiometric and site-specific 

ligand binding models are essentially equivalent, hiding the complexities that emerge when 

large oligomers are studied. Models for oligomerizing systems of arbitrary complexity have 

been proposed [6,36,37], however they are stoichiometric with respect to ligand binding, and 

not practically applicable due to the large number of model parameters. 

In this paper we detail a systematic quantitative method for the equilibrium analysis of 

coupled ligand binding and protein oligomerization. The specific problem treated is that of 

dissociable protein oligomers with cyclic point group symmetry, where each subunit can bind 

ligand at a single site. However the approach could be readily extended to encompass more 

complex situations. We develop the model in a stepwise fashion. Beginning with a general 

site-specific ligand binding model, appropriately parameterized, we apply cyclic symmetry 

restrictions. We then make an Ising approximation, assuming each subunit only senses the 

state of its immediate neighbors. Finally we extend the model to allow for dissociation of the 

oligomer into its constituent subunits. This results in a set of binding models governed by only 

four parameters, irrespective of the size of the oligomer. The model is exact for the monomer-

dimer case. The parameters of the model have a clear physical meaning, and quantitate 

ligand binding cooperativity and the linkage between ligand binding and oligomerization. 

When  developed mathematically, we show that the models describe literature data well, and 

that MCMC techniques can be used to estimate the parameters of such site-specific models 
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from limited binding data. Finally, we use the models for theoretical exploration of the ligand 

binding problem, and demonstrate how biologically interesting scenarios can emerge in some 

extremal cases.     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Results: 

Derivation of Equilibrium Thermodynamic Models: 

The models developed here assume that experiments are carried out at constant 

temperature and pressure on ideal associated solutions [38], in which the only departures 

from ideality arise from the chemically specific and reversible interactions between protein 

and protein, and protein and ligand. For simplicity only binding of a single type of ligand to the 

protein is considered, though the approach is readily generalizable. 

General site-specific ligand binding model 

To begin, consider a general site-specific model for a protein with n ligand binding sites, 

where the sites are not identical, and may not be independent. The model enumerates all of 

the possible configurations of bound ligand, which are taken to be the thermodynamic states 

in which the protein can exist.  The simplest cases, with two, three and four sites, are readily 

diagrammed (Fig. 2, Fig. 3A, Fig. S1A, respectively). Site-specific ligand binding models of 

this kind are of mostly theoretical interest, owing to the large number of parameters (2n - 1) 

required for their complete specification. 

The assignment of parameters governing the equilibria makes such models quantitative. The 

thermodynamic states can interconvert by binding or release of individual ligands and are 

therefore linked by a network of second-order equilibria (Fig. 2, Fig. 3A, Fig. S1A). An obvious 

way to proceed is to assign an equilibrium constant (or equivalently, a standard Gibbs energy 

of reaction) to each of these fundamental binding steps. However such a description is 

always redundant, involving more parameters then are needed to specify the equilibrium 

position of the system [15]. This parameter redundancy impedes both practical application 

and theoretical analysis. 
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Figure 2. Parameterization of  the general two-site ligand binding model. A simple approach to 

parameterizing equilibrium ligand binding models is to assign an equilibrium constant to each of  the  

fundamental binding steps (top panel). However the presence of  a thermodynamic cycle requires that 

K1K3 = K2K4, making the assignment redundant. The redundancy can be eliminated by definition of  

basal equilibrium association constants for binding to each site, as well as a pairwise linkage constant 

between the sites (bottom panel). A binary vector notation provides a systematic way to specify the 

states in which the protein can exist, and the parameters that govern the equilibria between states. See 

Fig. S2 for the equivalent parameterization in terms of  Gibbs energies of  reaction. 

This problem is addressed by a systematic and non-redundant parameterization previously 

proposed by Gutheil and McKenna [21]. In this parameterization,  basal binding parameters 

quantify ligand binding to the individual sites of the unligated protein, and one or more 

additional parameters quantify the interaction between multiple sites (i.e. allow for linkage 

between sites). The “linkage parameters” constitute an additive hierarchy [21] (i.e. higher 

order linkage parameters represent the linkage additional to the the lower order linkages). 

Consider the two-site case (Fig. 2). Binding of ligand at the second site, given the first is 
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occupied, can be described using a basal binding parameter modulated by the linkage 

parameter representing the pairwise (or second-order) interaction between the first and 

second sites. This modulation is multiplicative if the model is represented in terms of 

equilibrium constants (Fig. 2) and additive if represented in terms of Gibbs energies (Fig. S2) 

due to the logarithmic relationship between equilibrium constants and standard Gibbs 

energies of reaction. Adopting this parameterization, stepwise equilibria are governed by 

compound terms involving a basal binding parameter and one or more linkage parameters. 

When there is no interaction between sites, or when there is symmetry in the system, such 

that some of the sites are equivalent, the model is readily simplified. While the 

parameterization of Gutheil and McKenna is used here, related parameterizations have been 

described which differ slightly in the definition of the higher order linkage parameters 

[4,16,22]. 

 

Figure 3. Schematic derivation of  the C3-NN model. (A) The general site-specific ligand binding 

model is shown for a protein with three sites. Equilibria involving binding of  ligand to site 1 are 
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highlighted, to illustrate how they are governed by compound terms involving a basal binding constant 

and one or more linkage constants. A color gradient illustrates the hierarchal nature of  the linkage 

constants. (B) Cyclic symmetry greatly simplifies the model reducing both the number of  states and 

parameters. Symmetry equivalent states are bracketed. Imposition of  cyclic symmetry results in the 

following formal parameter constraints: K100=K010=K001; α110=α101=α011.  (C) The assumption that only 

adjacent subunits are coupled further simplifies the model. This nearest-neighbors approximation 

eliminates a single parameter (α111=1) from the cyclic model, however with larger numbers of  sites, 

more parameters are eliminated (see Fig S1C for four-site case). For simplicity the parameters are 

relabeled (Kbasal=K100=K010=K001, αNN=α110=α101=α011). 

In addition to a systematic parameterization, treatment of multi-site ligand binding requires a 

clear and consistent notation for the states the protein can exist in, and the parameters that 

govern the equilibrium position of the system. To represent the protein states a binary 

notation is adopted. An n-dimensional vector denotes the state of a protein possessing n 

ligand binding sites ( cf [4,16,22]). Each vector element represents the ligation state of a site, 

1 indicating the site is occupied, and 0 indicating the site is unoccupied. Hence P000 

represents a three-site protein with no sites occupied, and P101 represents a three-site protein 

with the first and third sites occupied. When specifying the model in terms of equilibrium 

constants, K is used to denote basal association constants and α is used to denote linkage 

constants. When the corresponding terms are represented as standard Gibbs energies of 

reaction, they are denoted with ∆rGº and γ, respectively. Subscripts on these parameters 

indicate the sites they relate to. For example K010 denotes the basal association constant for 

binding to site two of three sites, while α011 denotes the pairwise linkage constant between 

sites two and three. 

Ligand binding to oligomers with cyclic point group symmetry 

Many protein oligomers have cyclic point group symmetry.  We treat ligand binding to cyclic 

oligomers to illustrate how symmetry can be incorporated into the model. If each subunit of 

the oligomer can bind a single ligand, then the notation introduced above can be used 

without modification. Vectors now denote the ligation state of the n subunits of the oligomer, 

rather than the n sites on a single protein. The advantage of the vector notation is that it 
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makes treatment of symmetry quite straightforward. The effects of symmetry on the model 

can be systematically analyzed using permutation matrices (see supporting information, 

Section S1).  

By applying cyclic permutation, the symmetry equivalence of ligand configurations can be 

quickly assessed. Incorporation of symmetry results in a large reduction in the number of 

states, and therefore the number of parameters, when compared to the general ligand 

binding model (Table 1), and the introduction of degeneracies associated with sets of 

symmetry-equivalent states. For example, in the three-site case, imposition of cyclic 

symmetry equivalences the states P110, P101 and P011. They are no longer physically 

discriminable, and must be represented by a single macro-state. Without loss of generality, 

we can represent this triplet of symmetry equivalent states as 3P110. The imposition of 

symmetry also requires that the appropriate “statistical correction factors” are incorporated 

when specifying the stepwise equilibria, which account for the degeneracies introduced by 

symmetry (see [21,32]). The effects of incorporating cyclic symmetry are illustrated 

schematically for a three-site trimer and a four-site tetramer (Figs. 3B & S1B).  

Table 1. Number of  parameters required for equilibrium thermodynamic models as a function of  the 
number of  ligand binding sites. 

The problem of enumerating the non-equivalent states and their degeneracies, which is 

critical to the mathematical development of the models, is not entirely trivial. A point that only 

becomes apparent with four-fold and higher symmetry, is that states with the same number 

Number of ligand 
binding sites/subunits

Number of independent parameters

General model Cyclic (Cn) model Cyclic nearest-
neighbours (Cn-NN) 

model

2 3 2 2

3 7 3 2

4 15 5 2

5 31 7 2

10 1023 107 2
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of ligands bound can be non-equivalent. For example, a cyclic tetramer with two sites bound 

(Fig. S1B), can exist in one of two different states, with differing degeneracies. The 

enumeration of all the distinct configurations can be achieved by inspection for low-order 

symmetry, or by the group theoretic technique of double coset decomposition for high-order 

symmetry [39]. For cyclic dimer to heptamer, the non-equivalent configurations of bound 

ligand and their associated degeneracies are detailed in Table S1.  

Nearest-neighbor (NN) approximation 

Incorporation of cyclic symmetry dramatically reduces model complexity compared to the 

general case. However the number of model parameters still becomes very large as the size 

of the oligomer increases (Table 1), and some approximation is necessary for practical 

application. Models of multi-site ligand binding systems often incorporate only pairwise 

interactions between spatially adjacent subunits. This “nearest-neighbor” approximation has 

been applied in numerous contexts, one prominent example being lattice models of protein 

nucleic acid interactions [40]. Mechanistically, interaction between sites will often result from 

allosteric communication across the subunit interfaces of the oligomer. Most cyclic oligomers 

only have a single type of subunit-subunit interface due to the symmetry, and the presence of 

a central hollow pore. Hence it seems inherently reasonable to introduce a nearest-neighbor 

approximation for ring-like protein oligomers. For the cyclic dimer there is only a single 

nearest-neighbour and no approximation is involved. 

Applying this approximation sets the pairwise linkage constants between non-adjacent sites 

to unity, together with all of the higher order linkage constants. That leaves a single nearest-

neighbor (pairwise) linkage parameter and a single basal binding parameter in the model  

(Figs. 3C & S1C). The basal binding and nearest-neighbor linkage parameters are denoted 

Kbasal and αNN in terms of association equilibrium constants, or ∆rGºbasal and γNN in terms of 

Gibbs energies of reaction. The critical feature of these cyclic nearest-neighbor (Cn-NN) 

models is that they have only two parameters regardless of the number of subunits in the 

oligomer (Table 1). These parameters will be estimable from even stoichiometric ligand 

binding data. Unlike the empirical Hill model [41] which also has two parameters,  and is often 

employed to characterize binding cooperativity, Cn-NN models have a solid theoretical 

grounding and the parameters have a straightforward molecular interpretation. Their 
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application simply requires that the oligomeric state and symmetry of the protein is 

established, which is usually the case.  

The Cn-NN models are equivalent to those previously derived based on the Ising model 

[4,22,42-45]. However our derivation makes clear the relationship to the general ligand 

binding model, and the attendant assumptions and approximations involved in the derivation. 

Furthermore, the approach here is far more general, and readily adaptable to other situations 

involving different protein symmetries (cf [46]), the binding of additional ligands, or the 

presence of non-negligible higher-order interactions. One situation where the latter might 

occur is when we depart from the “small ligand” scenario. We briefly discuss this case in the 

supporting information, Section S2. 

Oligomer Dissociation 

Many protein oligomers undergo reversible dissociation into their constituent subunits at 

lower protein concentrations, which can be critical for their biological function. Oligomer 

association and dissociation can also be linked to ligand binding. We now consider how to 

elaborate the Cn-NN models to incorporate these complexities. 

We will assume that only the monomer and the cyclic oligomer are appreciably populated at 

equilibrium This model should be widely applicable, as equilibrium intermediates in the 

assembly of cyclic oligomers have seldom been detected experimentally [47-49]. Under this 

assumption only two additional protein states are introduced - the unligated and the ligated 

monomer. This is illustrated for the trimeric and tetrameric case in Figs. 4 and S3, respectively  

The presence of two additional states requires introduction of two additional model 

parameters. Again the parameterization requires careful consideration, and we adopt the 

approach of Gutheil [32]. In the dissociable case, the most convenient choice of  “reference 

state” is the unligated monomer (in contrast to the non-dissociable case, where the most 

convenient choice is the unligated oligomer). Basal parameters quantitate the ligand binding 

and oligomerization of the unligated monomer.  Ligand binding to the unligated oligomer is 

then described in terms of the basal binding to the monomer, modulated by the linkage 

between ligand binding and oligomerization (Figs. 4 and S3) [32]. This same linkage 
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parameter is then systematically propagated through the other fundamental steps in the 

binding scheme. 

In summary, when represented in terms of equilibrium constants, the four parameters 

governing  the dissociable Cn-NN models are: (1) a parameter specifying ligand binding to the 

monomer (Kligand)  (2) a parameter specifying oligomerization of the unligated monomer (Kolig), 

(3) a linkage parameter describing the coupling between oligomerization and ligand binding 

(αolig), and (4) a linkage parameter describing the coupling between ligand binding at adjacent 

sites (“nearest-neighbors") on the oligomer (αNN). There is of course a completely parallel 

representation of the model in terms of standard Gibbs energies of reaction (see Fig. S4 for 

the trimeric case). This model is exact for the monomer-dimer system. For all higher 

symmetries it is valid if the nearest neighbors approximation holds, and there are no 

equilibrium intermediates between monomer and oligomer. 

 

Figure 4. The dissociable C3-NN model. Extension of  the C3-NN model (Fig. 3C) to include 

oligomer dissociation into constituent subunits introduces two monomeric states in addition to the 

trimeric states. For clarity only one representative of  each symmetry equivalent state is shown, with a 

subscript denoting the associated degeneracy. Ligand binding equilibria are arranged horizontally and 

oligomerization equilibria are arranged vertically. Ligand binding equilibria of  the monomer and trimer, 

respectively, are grouped by dashed boxes. From the highlighted equilibria, the terms governing all 

other steps can be deduced by consideration of  the component thermodynamic cycles. See also Fig. S4, 

which shows the equivalent parameterization of  the dissociable C3-NN model using standard Gibbs 

energies of  reaction, and Fig. S3, which shows the dissociable C4-NN model. 
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If the linkage parameters of the model can be experimentally determined, then the coupling 

present in the system is immediately accessible. Considering oligomerization and ligand 

binding, the sign and magnitude of γolig (=-RTlnαolig) quantitates the coupling between the two 

process.  If  γolig < 0  (or equivalently αolig  > 1) then they are positively coupled, if γolig  > 0 (or 

equivalently αolig  < 1) then they are negatively coupled, and if  γolig  = 0 (or equivalently αolig = 

1) then the two process are independent. In analogous fashion, the sign and magnitude of 

γNN (=-RTlnαNN) quantitates ligand binding cooperativity, just as it does for the non-dissociable 

case. 

Mathematical development of the dissociable Cn-NN models 

Specification of the binding polynomial. 

Development of the dissociable Cn-NN model has proceeded schematically to make the 

basic form of the model clear, and to highlight the role of symmetry and the nearest 

neighbors approximation. However for practical or theoretical application, the model must be 

developed mathematically. 

An equilibrium thermodynamic model of a binding process may be conveniently summarized 

via a “binding polynomial” (or partition function), from which useful expressions for many 

equilibrium properties of the system may be derived [1]. The key feature of the binding 

polynomial is that it represents the concentrations of all states, generally expressed relative to 

the concentration of some reference state. When modeling homo-oligomerization, it’s most 

convenient to neglect the normalization, and define the binding polynomial (Q) as a simple 

summation of the species concentrations [1]. For example, in the monomer-trimer case 

( dissociable C3-NN model, Figs. 4 and S4)  it is given by: 

(1) 

Using the definition of the equilibrium constant, we can re-write the concentration of each 

state in terms of the thermodynamic model parameters (Kligand, Kolig, αolig, αNN), the free 

Q = [P0] + [P1] + [P000] + 3[P100] + 3[P110] + [P111]
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(unbound) ligand concentration ([Lfree]), and the concentration of a protein reference state, 

which we have taken to be the unligated monomer ([P0]).   

Again, using the dissociable C3-NN case to illustrate, we have by inspection of Fig. 4 

$ 	 	 	 	 	 	 	 	 (2) 

Using these equations we can rewrite  the dissociable C3-NN binding polynomial (Eq. 1) as 

$ 		 (3) 

This approach can be straightforwardly extended to dissociable Cn-NN models of any order,   

though it becomes quite laborious for large n. However, an alternative technique exists - the 

transfer-matrix method - that can be utilized to quickly determine the binding polynomial of 

even very large cyclic oligomers (supporting information, Section S3). The binding 

polynomials for some dissociable Cn-NN models (n = 2,3,4,5) are given in Table S2. It is 

critical to appreciate that while the dissociable Cn-NN models have only four parameters 

irrespective of oligomer size, the binding polynomials differ markedly with n.   

With the binding polynomial specified, almost all of the mathematical tasks needed for model 

fitting and analysis can be readily handled. Most fundamentally, we need to be able to predict 

the concentrations of all states, given the thermodynamic model parameters, as well as the 

total ligand concentration ([LTotal]) and total protein subunit concentration ([PTotal]), which are 

generally the compositional variables under experimental control.  The route to achieve this 

involves the mass balance equations for the protein subunits (Eq. 4) and for the ligand 
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molecules (Eq. 5), both of which can be written concisely in terms of the (unnormalized) 

binding polynomial [1]. 

  	 	 	 	 	 	 	 	 	 	 	 (4) 

 	 (5) 

When the appropriate binding polynomial is inserted the mass balance equations readily 

simplify, using differential calculus, into polynomial equations. For example, for the dissociable 

C3-NN model these expressions have the explicit form:  

   (6) 

 	 (7) 

These constitute a pair of simultaneous equations written in terms of two unknowns (the free 

ligand [Lfree] and unligated monomer [P0] concentrations). While a solution for these quantities 

must exist, it cannot be expressed in closed form in even the simplest case (the dissociable 

C2-NN model). Hence the mass balance equations must be solved numerically, as we 

discuss below. With [Lfree] and [P0] determined (given estimates for the model parameters and 

the total protein and ligand concentrations) the concentrations of the remaining states are 

specified by the individual terms in the relevant binding polynomial. We note that when the 

ligand can be effectively buffered, and [Lfree] is under experimental control, only the mass 

balance equation for the protein subunits need be considered. In this special case, analytic 

solutions for [P0] can be obtained for n < 5. 

  

The binding polynomial can be used to recover other properties useful for model fitting or 

analysis. For example, with an oligomerizing system, knowledge of the number-average, 

mass-average or Z-average molar mass of the protein is often required to interpret 
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experimental measurements.  These mean quantities can be straightforwardly computed 

from the molar mass of each state, and the corresponding terms in the binding polynomial. 

Practical application of the dissociable Cn-NN models: General Aspects  

The experimental study of coupled oligomerization and ligand binding will generally involve 

measuring one or more equilibrium properties as the total protein and ligand concentrations 

are varied. For example, the concentration of free ligand might be directly determined, or 

some physical observable measured that is responsive to ligand binding and/or protein 

oligomerization. Common examples of the latter are intrinsic protein or ligand fluorescence, 

heat change, or protein hydrodynamic properties. To assess the applicability of the 

dissociable Cn-NN model and reliably determine all of its 4 parameters, measurements of 

several different types will be needed, which collectively monitor both ligand binding and 

protein oligomerization. 

There are two aspects to mathematically modeling the resulting experimental data. The first 

problem is to describe the equilibrium thermodynamic behavior of the system. This is 

resolved using the dissociable Cn-NN model. This model can describe the population of the 

protein states as a function of its 4 parameters (which are unknown, and of fundamental 

interest) and the total ligand and protein concentrations (which are known, and under 

experimental control). The second problem is to describe the relationship between the 

population of protein states and the experimental observables. Modeling of the experimental 

observables will involve additional physical parameters that are specific to the measurements 

being made. These parameters are also usually unknown, but of subsidiary interest. For 

clarity we term the parameters of the dissociable Cn-NN model the thermodynamic 

parameters, and the parameters required to model the experimental observables the signal 

parameters. While the modeling of the experimental signal is important, and critical to 

successful practical application of any thermodynamic model, it is also entirely case-

dependent, and not our primary concern in this paper. 

With a complete model formulated, the problem of fitting it to the experimental data needs 

consideration. While non-linear least squares procedures are used extensively in simple ligand 
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binding studies [50], and could be employed here, the reliability of the resulting point 

estimates for the model parameters is very difficult to assess. At present, Markov Chain 

Monte Carlo (MCMC) analysis [23-25] appears to be the best general method to overcome 

this problem, and analyze the fit of these relatively complex models. This form of Bayesian 

statistical analysis generates the posterior probability distributions for the model parameters, 

given the data, allowing straightforward identification of well-determined and ill-determined 

parameters. Posterior distributions for simple functions of the model parameters can also be 

determined using this method. For example, the equilibrium association constant for ligand 

binding to the “empty” oligomer might be of interest, which is proportional to the product of 

two parameters (αoligKligand) of the dissociable Cn-NN model (Figs. 4 and S3). Useful tutorials 

on the application of MCMC methods with biophysical examples can be found in [23,24] and 

many handbooks have been written (e.g. [25]). 

We implemented an iterative MCMC algorithm for fitting dissociable Cn-NN models to 

experimental data in Mathematica (Wolfram Research). At each iterate the mass balance 

equations (4 and 5) are solved numerically to yield the concentrations of all species, given the 

relevant total concentration of protein and ligand, and the current thermodynamic model 

parameters. Subsequently, the complete model for the experimental observables is 

evaluated, using the current signal model parameters. All model parameters were then 

updated using the Metropolis-Hastings algorithm [51,52], and the procedure iterated until the 

parameter distributions converged, as fully described in the supporting information, Section 

S5. 
  

Practical application of the dissociable Cn-NN models: Specific Examples 

To establish the practical utility of the dissociable Cn-NN models, we re-analyzed 

experimental data from two previously published studies reporting ligand binding to 

dissociable protein oligomers. In re-analyzing the data we have used the dissociable Cn-NN 

model to describe the equilibrium thermodynamic behavior of each system. The authors 

original model for the relationship between the experimental observables and the system 

composition was retained, facilitating comparison of the results. 
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In the first paper, binding of the dye rhodamine 6G to the dissociable cyclic trimer glucagon 

was studied [53]. In this case, ligand fluorescence and absorbance reported on the ligand 

binding process over different ligand concentration ranges (Fig. 2 and 3 in [53]). The 

fundamental assumption made in modeling the spectroscopic signals is that absorbance and 

fluorescence of a bound ligand is independent of both protein oligomerization and the 

occupancy of other sites on the oligomer (supporting information, Section S4). The signal 

models, in concert with the dissociable C3-NN model, were fitted to the combined 

experimental data. 

 

Figure 5. Global fit of  the dissociable C3-NN model to glucagon data. (A) The blue spheres show 

the experimental data. Binding of  rhodamine 6G was monitored using both fluorescence spectroscopy 
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(data in top left panel) and absorbance spectroscopy (data in top right panel). The orange surfaces show 

a representative fit of  the C3-NN model to the data. MCMC analysis was used to fit the model. (B) 

Posterior distributions of  the four parameters of  the equilibrium thermodynamic model. Although a 

wide range of  values are consistent with the data, there are sharp cut-offs that effectively indicate upper 

or lower bounds for the parameter estimates. See also the posterior distribution of  the basal ligand 

association constant of  the trimer (Fig S5). 

The global fit of the model to the data was good (Fig. 5A). As expected, in the absence of any 

direct data on glucagon oligomerization only one of the equilibrium thermodynamic model 

parameters (Kolig ) was fully determinable (Fig. 5B). However, from the lower bound on the 

linkage parameter αolig it is apparent that oligomerization and ligand binding are positively 

coupled (αolig > 1), and hence the trimer binds ligand more strongly than the monomer. 

Similarly, from the upper bound on the linkage parameter αNN it is apparent that ligand 

binding to the oligomer is negatively cooperative (αNN < 1). Interestingly, while αolig is not 

precisely determined by the data, the product 3αoligKligand  is (Fig. S5).  This is the basal ligand 

binding affinity of the trimer (refer Fig. 4). 

In the original study the authors fitted an equilibrium thermodynamic model that assumed 

only trimer could bind rhodamine 6G, with a single site per trimer. Fitting of a more general 

model shows that such restrictive assumptions do not need to be made prior to model fitting, 

as these linkages are suggested by the data themselves. The revised analysis also better 

reflects the real uncertainty that exists about the magnitude of the linkage effects. 

In the second paper, glucose binding and oligomerization of the dissociable cyclic dimer 

hexokinase were studied [54]. In this case, intrinsic tryptophan fluorescence and 

sedimentation equilibria reported on the ligand binding process and the oligomerization 

process, respectively (Table 4 and Fig. 6 in [54]). The fundamental assumption made in 

modeling the ligand binding data was that the perturbation of tryptophan fluorescence upon 

ligand binding to a subunit was independent of both protein oligomerization and the 

occupancy of the other subunit in the dimer (see supporting information, Section S4). In the 

case of the oligomerization data, the original analytical centrifugation data were unavailable, 

so we fit in its place a directly derived quantity - the apparent association constant for the 
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monomer-dimer equilibrium (see supporting information, Section S4).  The signal models, in 

concert with the dissociable C2-NN model, were fitted to the combined experimental data. 

 

Figure 6. Global fit of  the dissociable C2-NN model to hexokinase data. (A) The blue spheres/

circles show the experimental data. Binding of  glucose was monitored using intrinsic protein 

fluorescence (data in top left panel). Protein oligomerization was monitored using equilibrium 

sedimentation analytical ultracentrifugation (derived data in top right panel)  The orange surface/line 

show a representative fit of  the C2-NN model to the data. MCMC analysis was used to fit the model. 

(B) Posterior distributions of  the four parameters of  the equilibrium thermodynamic model. Unlike the 

fit of  the dissociable C3-NN model to the glucagon data (Fig. 5), effective point estimates are obtained 

for each model parameter. 
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The overall fit of model and data was again good (Fig. 6A). In this case reliable point 

estimates could be obtained for all parameters of the equilibrium thermodynamic model using 

the combined ligand binding and oligomerization data (Fig. 6B). Ligand binding appears to 

exhibit weak negative cooperativity (αNN < 1). Similarly ligand binding and oligomerization are 

weakly negatively coupled (i.e. binding of glucose promotes dissociation of the hexokinase 

dimer), a conclusion that was drawn in the original study.   

Collectively these results demonstrate the potential of the dissociable Cn-NN models to 

determine site-specific thermodynamic information, and quantitate linkage effects, using 

readily obtained  experimental data. 

Theoretical application of the dissociable Cn-NN models 

The dissociable Cn-NN model parameters explicitly quantitate the thermodynamic couplings 

that can exist when ligands bind to dissociable ring-like oligomers.  When the parameters of 

the dissociable Cn-NN models take on extremal values, some interesting and biologically 

relevant special cases emerge. This idea can be explored  using the dissociable C3-NN model 

as an example. The fractional population (f) of protein subunits in each state is given by the 

individual terms in the binding polynomial, normalized by the total protein subunit 

concentration: 

        (8) 

f
0

=
[P

0

]

[P
Total

]

f
1

=
K

ligand

[L
free

][P
0

]

[P
Total

]

f
000

=
K

olig

[P
0

]3

[P
Total

]

f
100

=
3↵

olig

K
ligand

K
olig

[L
free

][P
0

]3

[P
Total

]

f
110

=
3↵

NN

↵2

olig

K2

ligand

K
olig

[L
free

]2[P
0

]3

[P
Total

]

f
111

=
↵3

NN

↵3

olig

K3

ligand

K
olig

[L
free

]3[P
0

]3

[P
Total

]

�25

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 9, 2016. ; https://doi.org/10.1101/068577doi: bioRxiv preprint 

https://doi.org/10.1101/068577
http://creativecommons.org/licenses/by/4.0/


where [PTotal] is given by Equation 6. The limits of these equations can be evaluated as one or 

more of the association constants or linkage constants goes to zero or infinity, representing 

extremely unfavorable or extremely favorable binding and linkage, respectively.  With limiting 

values of the model parameters, some of the thermodynamic states become negligibly 

populated, simplifying the model. We highlight four of the more interesting and commonly 

encountered special cases that emerge from this analysis. The underpinning mathematics is 

detailed in the supporting information, Section S6. 

 

Figure 7 Biologically relevant special cases of  the dissociable C3-NN model, generated at 

extremal values of  its parameters. (A) Ligand binding and oligomerization become mutually 

exclusive when the oligomerization linkage constant becomes very unfavorable (αolig ➝ 0). This might 

occur if  the ligand binding site and subunit-subunit interface overlap, as depicted. (B) Ligand binding 

becomes obligate for oligomerization when the oligomerization association constant becomes very 

unfavorable (Kolig ➝0) and the oligomerization linkage constant becomes very favorable (αolig ➝ ∞). 

This might occur if  the ligand helps form a major part of  the subunit-subunit interface, as depicted. 

(C) Oligomerization becomes obligate for ligand binding if  the ligand association constant becomes 

very unfavorable (Kligand ➝0) and the oligomerization linkage constant becomes very favorable  (αolig 

➝∞). This might occur if  the monomer is unstructured and incompetent for ligand binding, as 

depicted. 
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Firstly, ligand binding and oligomerization become mutually exclusive (Fig. 7A) when the 

oligomerization linkage constant  becomes very unfavorable (αolig ➝ 0) (Eq. S6.1). This might 

occur if the ligand binding site and subunit-subunit interface overlap, and the ligand sterically 

occludes protein association. Secondly, ligand binding becomes obligate for oligomerization 

(Fig. 7B), when the oligomerization association constant becomes very unfavorable (Kolig ➝0) 

and the oligomerization linkage constant becomes very favorable (αolig ➝ ∞) (Eq. S6.3b). This 

might occur if the ligand helps form a major part of the subunit-subunit interface. Thirdly, 

oligomerization becomes obligate for ligand binding (Fig. 7C), if the ligand association 

constant becomes very unfavorable (Kligand ➝0) and the oligomerization linkage constant 

becomes very favorable  (αolig ➝∞) (Eq. S6.4b). This might occur if the ligand binding site is 

created at the subunit-subunit interface, or if the monomer is unstructured and incompetent 

for ligand binding. Finally, the non-dissociable C3-NN model is recovered if the oligomerization 

association constant is very favorable (Kolig ➝  ∞) (Eq. S6.2). 
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Discussion: 

We have developed and analyzed equilibrium thermodynamic models that describe ligand 

binding to dissociable protein oligomers with cyclic symmetry. These “dissociable Cn-NN 

models” (Figs.4 & S3) are site-specific in nature and can account for both linkage between 

ligand binding events, and linkage between ligand binding and protein oligomerization. We 

have shown that these models have practical utility, and can be fit to experimental data (Figs. 

5 & 6) allowing the linkage effects to be quantified. Furthermore, because of their non-

redundant and physically meaningful parameterization, the models are amenable to 

theoretical analysis. Various biologically relevant special cases arise, when the parameters of 

the dissociable Cn-NN models take on extremal values (Fig. 7) 

The Nature and Applicability of the Models 

For cyclic protein dimers, which are probably the most ubiquitous system to which the 

models can be applied, the thermodynamic model is exact, and involves no approximations. 

For cyclic oligomers of higher order, two key assumptions underpin the models. Firstly, it is 

assumed that only the monomer and completed cyclic oligomer are significantly populated at 

equilibrium. The trivial population of intermediates in the assembly and disassembly of cyclic 

oligomers has been suggested on theoretical grounds [55,56], and a number of experimental 

studies exist in support [47-49]. Hence this approximation is expected to hold well in most 

circumstances. Secondly, the models invoke a nearest neighbors approximation, which 

posits that the energetic consequences of ligand binding are only propagated to the 

immediate neighbors of each subunit in the ring. This is the central approximation of the Ising 

model, commonly applied to treat lattice-like systems [44,57], and simply represents a useful 

and physically reasonable default for the modeling process. If sufficient experimental data 

were available, and the nearest-neighbors approximation found to be inadequate, additional 

binary or even ternary interaction parameters could be retained in the model. 

By their equilibrium thermodynamic nature, the dissociable Cn-NN models are blind to the 

mechanism by which linkage is achieved. Their purpose is simply to detect and quantitate the 

magnitude of any linkage effects. In this sense they are different to the widely invoked 

Monod-Wyman-Changeux (MWC) and Koshland-Nemethy-Filmer  (KNF) models, which are 
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explicitly mechanistic, and treat cooperative ligand binding effects to protein oligomers as an 

allosteric phenomenon associated with conformational switching of the protein [Monod:

1965tb; Marzen:2013ir; 58,59]. Because the dissociable Cn-NN models do not posit a 

mechanism of linkage, they can be sensibly applied even when the mechanism is unknown. 

In this way, they are more general than the MWC and KNF models. Subsequently an 

equilibrium thermodynamic model might be used as the framework on which a fully 

mechanistic model is developed.  

Model Fitting 

The investigation of coupled ligand binding and oligomerization is a relatively complex 

undertaking, compared to the investigation of simple ligand binding. Not all of the 

experimental and numerical procedures routinely employed in the simpler case can be used 

without adaption when studying coupled systems. 

Although not our focus in this paper, the model for the experimental signals being measured 

needs careful consideration. Unlike simple ligand binding systems it is possible that an 

experimental signal may be perturbed both by ligand binding and by oligomerization. The 

obvious example is isothermal titration calorimetry, in which the heat released will be 

dependent on both the change in ligation state and oligomeric state. Spectroscopic signals 

may be similarly complex. Intrinsic tryptophan fluorescence is frequently used to study both 

ligand binding and oligomerization in isolation [60]. However when the two processes are 

coupled, the total fluorescence from the protein may reflect progression of both processes. In 

such cases the signal model must be correctly constructed, with parameters that account for 

the perturbation due to each process. 

To reliably estimate all parameters of the dissociable Cn-NN model, several types of 

experimental data are needed, irrespective of their exact nature. Ideally these would report on 

ligand binding and oligomerization separately, as a function of both total ligand and protein 

concentration. The experimental conditions (e.g. buffer composition & temperature) need to 

be the same for all measurements, as the data must be fit globally to the model. When these 

conditions are satisfied we have shown that all parameters of the dissociable Cn-NN model 

can be determined uniquely (Fig. 6). However useful information regarding the model 
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parameters can still be obtained from incomplete datasets (Fig. 5) when MCMC methods are 

employed for parameter estimation. 

The use of MCMC methods is suggested because the dissociable Cn-NN models are very 

non-linear and are fit to multivariate data. Because of these complexities, attempts to 

minimize the difference between the model and data must account for the many local minima 

that will be encountered. Related to this, multiple vastly different values of the model 

parameters may be consistent with the experimental data (Fig. 5). MCMC methods can 

overcome these problems. In particular the Metropolis-Hastings algorithm can be used to fit 

an arbitrarily complex model by maximum likelihood and determine the posterior probability 

distribution of each parameter given the experimental data. This method is preferable to the 

determination of asymptotic standard errors of parameters via non-linear least squares, which 

does not generally yield realistic error estimates [50]. Hines has recently provided a useful 

tutorial in the application of MCMC methods to biophysical problems [24]. 

Finally, we note that there is generally no closed-form expression for the species 

concentrations (and hence for the experimental signal) in terms of the dissociable Cn-NN 

model parameters and the total ligand and protein concentration. This problem can be 

bypassed by numerical solution of the mass balance equations (Eqns. 4 and 5), with 

specified values for the thermodynamic model parameters and total concentrations. In 

practice, the mass balance equations must be numerically solved for each experimental 

datapoint (i.e. each paired value of total ligand and protein concentration) at each iteration of 

the algorithm. However the physically relevant solution for the free ligand concentration is 

bounded by zero and the total ligand concentration, restricting the range for numerical 

solution. Similar bounds apply to the solution for the unligated protein concentration.  

Only in special circumstances can the need for numerical solution of the mass balance 

equations be bypassed. As noted above, some ligands can be buffered (e.g protons and 

metal ions), allowing the free ligand concentration to be experimentally controlled. This means 

that only the protein subunit mass balance equation (Eqn. 4) needs to be solved. For small 

oligomers (n < 5) this allows derivation of closed-form expressions for all species (although 

the expressions may be very lengthy). The other circumstance in which closed form 
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expressions might occasionally be obtained is when a limiting case of the dissociable Cn-NN 

model is considered, simplifying the equilibrium thermodynamic model itself. 

Conclusions 

The dissociable Cn-NN models developed here should be of utility for quantitative 

characterization of many proteins. In addition, the systematic derivation of the models and 

methodology for model fitting and analysis should act as a template for the study of other 

types of coupled equilibria. Although the computational burden for fitting these models is 

quite large, with modern computing power and optimized algorithms it is manageable even 

on personal computers. 
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