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Compensation masks trophic cascades in complex food webs

Ashkaan K Fahimipour · Kurt E Anderson · Richard J Williams

Abstract Ecological networks, or food webs, describe
the feeding relationships between interacting species

within an ecosystem. Understanding how the com-
plexity of these networks influences their response to
changing top-down control is a central challenge in

ecology. Here, we provide a model-based investigation
of trophic cascades — an oft-studied ecological phe-
nomenon that occurs when changes in the biomass of

top predators indirectly effect changes in the biomass
of primary producers — in complex food webs that
are representative of the structure of real ecosystems.

Our results reveal that strong cascades occur primar-
ily in low richness and weakly connected food webs, a
result in agreement with some prior predictions. The

primary mechanism underlying weak or absent cas-
cades was a strong compensatory response; in most
webs predators induced large population level cas-
cades that were masked by changes in the opposite

direction by other species in the same trophic guild.
Thus, the search for a general theory of trophic cas-
cades in food webs should focus on uncovering features

of real ecosystems that promote biomass compensa-
tion within functional guilds or trophic levels.
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1 Introduction1

Trophic cascades occur when changes in an ecosys-2

tem’s top trophic level propagate down through the3

food web and drive changes in the biomass of primary4

producers (Hairston et al, 1960; Paine, 1980). Cas-5

cades have now been documented in virtually every6

type of ecosystem, but neither conceptual nor mathe-7

matical theories have been able to explain widespread8

variation in observed cascade strengths (Borer et al,9

2005; Shurin et al, 2010); in some ecosystems, strong10

cascades impact several lower trophic levels while in11

others they diminish within a single trophic level12

(Heath et al, 2014). Indeed, trophic trickles — weak13

or absent cascades in response to major changes to14

a food web’s top trophic level — abound in nature15

(McCann et al, 1998; Mikola and Setälä, 1998; Halaj16

andWise, 2001). Given that human actions are dispro-17

portionately altering biomass of top predators (Estes18

et al, 2011), there is a pressing need to understand19

under what circumstances such changes will or won’t20

cascade through complex food webs (Terborgh et al,21

2010).22

Food web structure has long been predicted to reg-23

ulate cascade strength (Strong, 1992; Pace et al, 1999;24

Polis et al, 2000; Shurin et al, 2010) and the magni-25

tudes of indirect effects in general (MacArthur, 1955;26

Yodzis, 2000). Indirect tests of this hypothesis have27

so far been accomplished by leveraging data on com-28

munity features like functional or taxonomic diversity29

(Borer et al, 2005; Frank et al, 2006), in hopes that30

these proxies for web structure could provide clues to31
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the features of ecological networks that influence the32

magnitude of cascading top down effects. However re-33

sults have been mixed, with studies reporting both34

strong (Frank et al, 2006, 2007; Baum and Worm,35

2009) and weak or noisy (Borer et al, 2005; Fox, 2007)36

associations between diversity measures and cascade37

strengths. Whether data support assertions that food38

web structure regulates cascade strengths remains un-39

clear, and a coherent understanding of when relatively40

strong or weak trophic cascades occur is still lacking.41

One impediment to progress is that extensions of42

cascade theory toward species rich and topologically43

complex food webs are needed to guide further empir-44

ical study. To date, cascade theory has focused largely45

on understanding variation in cascade strengths in46

model food chains (Oksanen et al, 1981; McCann47

et al, 1998; Heath et al, 2014; DeLong et al, 2015)48

and although extensions of cascade theory to alter-49

nate trophic modules exist (Bascompte et al, 2005;50

Fahimipour and Anderson, 2015), the mechanisms un-51

derlying variation in cascade strength in species rich52

and complex trophic networks remain poorly under-53

stood (Holt et al, 2010; Shurin et al, 2010).54

Here we use a bioenergetic food web model to ex-55

plicitly study the emergence of trophic cascades in56

species rich webs that are representative of the struc-57

ture of real ecosystems following the invasion of a58

novel top generalist predator. We demonstrate that59

the strongest trophic cascades occur in small and60

weakly connected food webs — a result in agreement61

with some prior predictions (Pace et al, 1999; Polis62

et al, 2000; Fox, 2007; Shurin et al, 2010). Moreover,63

our results reveal that biomass compensation within64

producer and consumer functional guilds, whereby65

some species increase in biomass while others decrease66

proportionately, is the most common mechanism un-67

derlying weak or absent trophic cascades. Thus, the68

search for a general theory of trophic cascades in food69

webs should focus on uncovering the abiotic and biotic70

features of real ecosystems that promote or preclude71

biomass compensation and compensatory dynamics72

within functional guilds.73

2 Methods74

We implemented a modeling framework similar to that75

described by Yodzis and Innes (1992) and reviewed76

by Williams et al (2007). Namely, we generated mul-77

titrophic level food web topologies using an ecological78

niche model (Williams and Martinez, 2000) and simu-79

lated the dynamics of energy flows on these generated80

webs using a bioenergetic model (Yodzis and Innes,81

1992; Brown et al, 2004; Brose et al, 2006b; Williams82

et al, 2007). This modeling framework was chosen be-83

cause it is grounded in empirical knowledge about net-84

work structure, species parameters and nonlinear in-85

teraction dynamics. Previous work has shown that al-86

lometric scaling of parameters and complex functional87

responses are vital for modeling persistent, complex88

multispecies food webs (Brose et al, 2006b; Boit et al,89

2012), particularly when changes in species richness or90

web topology are imposed (e.g., Dunne and Williams,91

2009). Because it is trivial to study cascades in model92

food webs that collapse upon predator invasion, we93

take advantage of previously studied features of this94

bioenergetic model (discussed below) to design more95

persistent systems that permit the study of cascades96

in the face of major changes to model web topology.97

The niche model is discussed in detail by Williams98

and Martinez (2000), but briefly a one-dimensional99

niche axis on the interval [0, 1] is assumed and each100

species in the web is randomly assigned a “niche101

value” on this axis. Species i consumes all other102

species with niche values within a range on the axis,103

which is assigned using a beta function to randomly104

draw values from [0, 1]. This approach was used to105

generate realistic food web topologies (Williams and106

Martinez, 2000) for 1200 simulations in a factorial de-107

sign: initial species richnesses of S = 10, 15, 20 and108

25 were crossed with directed connectance C = 0.12,109

0.16 and 0.2 as niche model parameters (4 richnesses110

× 3 connectances × 100 iterations = 1200 webs to-111

tal). These values of C were chosen because they en-112

compassed a wide range of empirically observed con-113

nectance values (Vermaat et al, 2009). Webs that de-114

viated from the precise C values, contained discon-115

nected nodes, or consisted of disconnected subgraphs116

were not considered.117

Details of the energy flow model and parameters118

used herein are reviewed by Williams et al (2007).119

Namely, an allometrically scaled nonlinear bioener-120

getic model (Yodzis and Innes, 1992) was used to121

study the dynamics of species biomasses and the oc-122

currence of trophic cascades in niche model webs when123

they are subject to the invasion of a new predator. We124

report results from a single ecologically reasonable set125

of model parameters, though similar results were ob-126

tained with other model parameterizations. Biomass127

dynamics were represented using the governing equa-128

tions,129

dBi

dt′
= BiGi(B)−

∑
j=consumers

xjyjiBjFji(B)

eji
(1)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/068569doi: bioRxiv preprint 

https://doi.org/10.1101/068569
http://creativecommons.org/licenses/by-nc-nd/4.0/


Compensation masks trophic cascades in complex food webs 3

dBi

dt′
= −xiBi + xiBi

∑
j=resources

yijFij(B)

−
∑

j=consumers

xjyjiBjFji(B)

eji
,

(2)

describing the dynamics of primary producers (e.g.,130

plants; eq. 1) and consumers (e.g., herbivores, omni-131

vores and higher trophic level predators; eq. 2). Here132

Bi is the biomass of species i and we use R and N133

when referring to producers or consumers respectively.134

All producers were assumed to have the same body135

mass, MR = 1, and time t′ was scaled with producer136

growth rate (see Williams et al, 2007 for details). To137

control for effects of varying productivity on trophic138

cascade strength, we maintained constant maximum139

productivity across simulations by assuming a system-140

wide carrying capacity K that is shared amongst nR141

producer populations according to Ki = K/nR. Be-142

cause of the well-documented effects of system pro-143

ductivity and enrichment on cascade strengths (e.g.,144

Chase, 2003) we sought to constrain total potential145

productivity in all food webs, so that our results were146

not confounded by variation in the number of basal147

species generated by each niche model web.148

In order to reduce the size of the parameter space149

being explored, all species in a web were assumed to150

have a constant consumer-resource body size ratio Z151

so that the mass of species i was Mi = ZP where P152

is the length of the shortest path between species i153

and any producer at the base of the web. We report154

simulations in which Z = 42, so that for instance a lin-155

ear three-species food chain comprising a producer, in-156

termediate consumer and top predator would contain157

species with scaled body masses 1, 42 and 1764 respec-158

tively. This value of Z represents the mean predator-159

prey body mass ratio reported by Brose et al, 2006a,160

although the results presented herein were not sensi-161

tive to the choice of Z across its biologically relevant162

range.163

The function Fji(B) is the normalized multi-species164

functional response for consumer j and resource i,165

developed by Yodzis and Innes, 1992 and extended166

by others (Brose et al, 2006b; Williams et al, 2007;167

Williams, 2008). To avoid the collapse of webs follow-168

ing predator invasions and permit the study of cas-169

cades after predator invasions, we explicitly considered170

a functional response that includes processes known to171

increase food web persistence in this model. These in-172

cluded the addition of mild interspecific consumer in-173

terference and slight relaxation of resource consump-174

tion when resources are very rare (Brose et al, 2006b).175

Adding consumer interference to a multispecies non-176

linear functional can be represented as177

Fji =
ωjiB

1+q
i

B1+q
0 + diBjB

1+q
0 +

∑
k ωjkB

1+q
k

. (3)

Here di is a positive constant that sets the amount178

of interference in the system and the sum in the de-179

nominator is over all k resources consumed by j. We180

assumed that interference was weak (di = 0.5) and set181

the shape parameter q = 0.2, which slightly relaxed182

consumption rates at very low resource biomasses —183

features that are well within the range of empirically184

observed functional responses (Brose et al, 2006b;185

Williams, 2008; Boit et al, 2012). We assume passive186

resource switching, so ωij = 1/ni where ni is the num-187

ber of resources consumed by j.188

Metabolic parameters in the bioenergetic model189

(Yodzis and Innes, 1992; Brose et al, 2006b) are given190

by191

xi =
aTi

ark

MR

Mi

0.25

(4)

yij =
aji
aTi

, (5)

where Mi is the mass of an individual of species i192

and MR is the mass of primary producers used for193

normalizing the time scale. The constants aT , ar and194

aj (mass0.25 × time−1) were previously determined195

from empirical data on the allometry of metabolism,196

production and maximum consumption respectively197

(Brose et al, 2006b). We assumed that all species were198

invertebrates, and so ar = 1, aT = 0.314 and yij = 8199

(see Brose et al (2006b) for the derivation of these val-200

ues). The metabolic parameter xi is the mass specific201

metabolic rate of species i relative to the time scale202

of the system and the non-dimensional constant yij is203

the ingestion rate of resource i by consumer j relative204

to the metabolic rate of i. The function Gi(B) is the205

normalized growth rate of producer i, which follows lo-206

gistic growth, 1−Bi/Ki. The parameter B0 is the half207

saturation density. The efficiency eji is the fraction of208

the biomass of resource i consumed by consumer j,209

that is assimilated. We assumed efficiency eji = 0.45210

for consumption of producers and eji = 0.85 for con-211

sumption of non-producers (Yodzis and Innes, 1992).212

We report results for systems in which B0 = 0.25 and213

the system-wide carrying capacity K = 5. The ini-214

tial biomass of each species was uniformly drawn from215

[0.01, 0.1] for all simulations.216
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Simulations were run for 5000 model time steps at217

which point a top generalist predator invaded the food218

web. We assumed that the predator was an efficient219

generalist, with a fixed body mass consistent with a220

large secondary consumer (Mpredator = Z2.5) and a221

scaled attack rate twice that of other species in the222

system. We note that the augmented predator attack223

rate is still within the range of empirically observed224

values (Peters, 1983). We used a simple rule for es-225

tablishing the invading predator’s feeding links upon226

invasion, where for each simulation the predator had227

a probability of 0.5 of establishing a feeding link with228

any consumer already present in the web. Consumers229

were explicitly defined as species whose shortest path230

along the network to any producer P = 1; the invader231

can consume herbivores or omnivores that are already232

present in the web, but not producers or other top233

predators. Following the invasion, each system was run234

for a further 5000 time steps. Cascade strengths were235

measured as log10 response ratios log10Bpost/Bpre,236

where Bpost and Bpre are aggregate producer com-237

munity biomasses summed over all nR producers and238

averaged over the final 100 time steps after and before239

predator invasions respectively. Biomasses were aver-240

aged in order to measure cascades for systems with os-241

cillatory behavior in the steady state, which occurred242

in some of our simulations. Likewise, consumer level243

effects were calculated as log10 response ratios of ag-244

gregate consumer biomass. To ensure predators were245

not entering webs in which many species had gone246

extinct prior to their arrival, we set a limit on the247

maximum allowable number of extinctions prior to in-248

vasions at two, using Bi < 1× 10−15 as the extinction249

threshold. In the event of an extinction before preda-250

tor arrival, we allowed the extinct taxa to reinvade251

the system at an initial biomass equal to the extinc-252

tion threshold. Numerical integration of ordinary dif-253

ferential equations was accomplished using the deSolve254

package in R (R Core Team, 2015).255

To study whether features of the initial network256

structure were related to the response of systems to in-257

vading predators, we calculated associations between258

the cascade strengths and a suite of common network259

properties (Vermaat et al, 2009) using ANOVA. The260

properties we considered were connectance, species261

richness, characteristic path length, the fraction of262

species that are basal, intermediate and omnivorous,263

clustering coefficient, mean maximum trophic similar-264

ity and Clauset-Newman-Moore modularity (Clauset265

et al, 2004). We note that the frequentist statistical266

tests employed here were not used to assess signifi-267

cance since p-values are determined by the number268

of simulations. Instead, we follow the suggestion of269

White et al (2014) and use ANOVA as a framework for270

partitioning effect sizes and variance in these simula-271

tions and comparing effect sizes among covariates. We272

refer to these effects below using the notation βvariable273

where for instance βC is the connectance effect, which274

reflects the per unit impact of scaled C on the strength275

of cascades. Covariates were rescaled according to Gel-276

man (2008) prior to analyses, to facilitate comparisons277

of estimated effects between different predictors that278

are necessarily on different scales.279

Finally, we sought to understand the mechanisms280

underlying weak trophic cascades, as these cascades281

would be least likely detected in empirical studies.282

We operationally defined weak cascades as a less than283

twofold change in aggregate producer biomass after284

predator invasions. Under this definition, the mean285

cascade strength observed in terrestrial systems re-286

ported by Shurin et al (2002) would be considered287

weak (mean non-significant change by a factor of 1.1)288

whereas the average cascade strength reported for289

aquatic systems would be considered strong (mean290

change by a factor of 4.6). One possibility is that291

weak cascades are caused by diffuse predator effects292

(sensu Yodzis, 2000), whereby predator consumption293

is spread over multiple resources leading to overall294

weak population responses. In this scenario, species295

in each lower trophic level change only slightly in the296

same direction, and large community level biomass re-297

sponses fail to emerge. Alternatively, weak cascades298

could occur in the presence of major changes to pop-299

ulation biomasses if changes in strongly depressed300

species are offset by compensatory changes in the op-301

posite direction by others (i.e., biomass compensation;302

Gonzalez and Loreau, 2009) in the producer or con-303

sumer guilds. To quantitatively assess these possibil-304

ities, we present a measure µ that quantifies the de-305

gree of biomass compensation among populations i in306

a trophic guild as307

µ = 1−
|
∑

i∈n Bi,post −Bi,pre|∑
i∈n |Bi,post −Bi,pre|

(6)

where the sum is over all n species in a trophic guild308

(e.g., all producers). This metric µ varies from 0 to309

1, with 0 indicating that all species within a guild310

changed in the same direction (the biomass of all pop-311

ulations increased or decreased) and 1 indicating per-312

fect compensation. If weak trophic cascades are typ-313

ically accompanied by small µ values, then we con-314

clude that weak cascades usually occur because top315

down effects are too diffuse to effect strong changes in316

individual producer populations and therefore aggre-317

gate producer biomass. Conversely, if weak cascades318
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are typically accompanied by large µ, then we con-319

clude that compensatory changes by species in the320

same guild lead to a small net changes in aggregate321

biomass. Herein, we refer to compensation in producer322

and consumer guilds as µR and µN .323

3 Results324

Predator invasions had moderate effects on aggregate325

producer biomass in most food webs (Fig. 1). Produc-326

ers changed by a factor of 1.7 on average across all327

simulations, and twofold changes in producer biomass328

occurred in only 31% of webs. Predator facilitation of329

producers was strongest in low richness and low con-330

nectance webs (Fig. 2; βS = −0.111, βC = −0.012).331

Cascade strengths were also associated with other332

topological properties used to describe web structure333

(Vermaat et al, 2009). The strongest associations were334

observed between producer response ratios and species335

richness S, the fraction of basal species, the fraction336

of intermediate species and mean maximum trophic337

similarity (Table 1).338

The magnitudes of consumer response ratios were339

more strongly correlated with most food web prop-340

erties (Table 1), suggesting that the sensitivity of a341

guild’s log response ratio to initial network condi-342

tions may depend on trophic position; topology ap-343

pears to exhibit relatively strong associations with344

changes in consumer level biomass following predator345

invasions compared to lower trophic levels. Depression346

of consumer biomass by the predator was strongest347

in low richness and weakly connected webs (Fig. 2;348

βS = 0.741, βC = 0.156) with fewer basal species and349

less modular, more clustered network configurations350

(Table 1).351

Producer compensation µR was negatively corre-352

lated with cascade strengths across all simulations353

(Fig. 3a; Pearson’s r = −0.34), suggesting that com-354

pensation among producers was in part responsible355

for masking cascades at the producer community scale356

(e.g., compare Figs. 3b & 3c). This result is recapit-357

ulated by the high frequency of simulations charac-358

terized by stronger trophic cascades and almost no359

producer compensation (Fig. 3a, dark shaded area).360

Indeed, of the webs that exhibited weak producer361

cascades (i.e., aggregate producer biomass increased362

by less than a factor of 2), 90% contained at least363

one producer population that more than doubled de-364

spite a weak community scale cascade. Taken together365

this suggests that weak cascades were in large part366

caused by producer compensation, leading to a small367

net changes in aggregate biomass. However, the mag-368

nitude of compensation was weakly correlated with369

other topological food web properties (Supplementary370

Materials), suggesting that predicting compensation371

at the scale of the trophic guild will require more de-372

tailed information than simple topological descriptors373

of ecological network structure.374

Compensation in the consumer guild increased with375

species richness S and connectance C (Fig. 4), ex-376

plaining the shift in consumer effect size distributions377

toward zero visible in Figs. 1e-h. This suggests that378

two separate compensation mechanisms could explain379

weak cascades in webs. The first occurred more fre-380

quently in low richness webs, when strong depression381

of consumers cascaded to producer populations but382

failed to manifest at the guild scale because changes383

in some populations were offset by others in the op-384

posite direction (i.e., producer compensation). The385

second occurred primarily in species rich webs (Fig.386

4), when top-down predator effects immediately di-387

minished within the consumer guild due to consumer388

compensation. The strongest cascades occurred when389

both producer and consumer compensation was weak,390

which was most likely in low richness (lower S) and391

weakly connected (lower C) webs.392

4 Discussion393

Our modeling study found that strong trophic cas-394

cades at the scale of the producer community are395

more likely to occur in weakly connected ecological396

communities with fewer species, a result that is in397

agreement with some previous interpretations of in-398

direct effects and trophic cascades (MacArthur, 1955;399

Pace et al, 1999; Frank et al, 2006; Shurin et al,400

2010). In most webs (90% of all simulations), at least401

one producer species doubled or more in biomass, yet402

strong guild scale cascades occurred in only thirty per-403

cent of simulations. Strong population level cascades404

were often offset by an opposite biomass change in405

other species so that the overall producer community406

biomass wasn’t strongly affected. Thus, restricting at-407

tention to trophic cascades as measured by changes in408

the overall biomass of a trophic guild makes it much409

less likely that the effects of an invading species will be410

detected. Strong top-down effects still occur in large411

and complex ecological networks, but observing them412

requires finer-grained observations than simply mea-413

suring total producer biomass (Polis et al, 2000). This414

is exemplified in high richness webs in particular (Figs.415

1d, 1h and 2), where changes in producer biomass oc-416

curred despite near-zero or slightly positive changes in417

aggregate consumer biomass on average. In almost all418

communities, the introduced top species had a strong419

effect on both the relative biomass of species and the420
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Fig. 1 Stacked histograms of producer cascade strength frequency distributions for webs of different richness (panel columns)
and connectance (green shading) values. The green dotted lines mark mean cascade strengths for reference. (e—h) Consumer
cascade strength frequency distributions for webs of different richness (panel columns) and connectance (purple shading) values.
The purple dotted lines mark mean consumer cascade strengths for reference. Density estimation was accomplished using a
Gaussian kernel.
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Fig. 2 Relationships between species richness S, con-
nectance C and cascade strengths in the producer (green
circles) and consumer (purple squares) guilds. Points and
error bars represent mean cascade strength ± 2 SEM and
lines show results of loess regression to raw simulated data.
Colors are the same as in Fig. 1. Dotted, short and long
dashed lines correspond to webs with connectance values of
0.12, 0.16 and 0.2 respectively.

dynamics of the community. Shifts in species compo-421

sition due to compensation within a guild are more422

common than changes in overall community biomass,423

and may be a potentially potent indicator for species424

invasions (Schmitz, 2006).425

Weaker cascades in large highly connected webs426

have been attributed to diffuse interactions among427

trophic levels in these systems (Leibold et al, 1997;428

Pace et al, 1999; Shurin et al, 2010). However, the429

observation that compensation frequently operated in430

multiple trophic guilds suggests a new hypothesis for431

the emergence of trophic cascades in complex food432

webs. Namely, changes at the top of webs have some433

chance of diminishing due to compensation within434

each trophic guild, as they cascade down to produc-435

ers. If the network is structured in a way that pre-436

cludes compensation from occurring in any of these437

guilds, then a strong cascade will emerge. Alterna-438

tively, top-down regulation has the capacity to dimin-439

ish within a single trophic level if the propensity for440

compensation is high in that particular system, which441

can result from particular network architectures or ex-442

ogenous abiotic forcing in real ecosystems (Gonzalez443

and Loreau, 2009). Notably, compensation was only444

weakly correlated with a suite of common topological445

food web descriptors, and thus additional research is446

needed to uncover the more nuanced features of food447

web architecture that drive compensatory responses448

at the scale of producer and consumer guilds. Ex-449

perimental tests of the hypothesis discussed herein450

could be accomplished by adding conspecific generalist451

predators to replicate food webs with known topolo-452

gies (e.g., experimentally assembled microcosms) and453

measuring them repeatedly through time. However,454

replicated food web experiments with repeated mea-455

sures are scant and to our knowledge no such data456

exist to test the results presented here.457

The present study looks at the role of increasing web458

richness and structural complexity on trophic cascades459

and the detection of the effects of species introduc-460

tions. The model used, while more complex than those461

typically used in trophic cascade studies, is still highly462

idealized. The dynamics of real ecosystems often in-463

clude many other non-trophic processes (Kéfi et al,464

2015) which might dampen (or magnify) the cascading465
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Fig. 3 (a) Scatterplot showing the negative relationship
between the producer cascade strengths and producer com-
pensation, µR. Points represent individual simulations. The
background is shaded according to a 2D Gaussian kernel
used for density estimation, where darker shades represent
denser regions. A high density of stronger cascades with
near-zero producer compensation is visible. (b) Example of
a relatively strong cascade where compensation is weak. Col-
ored green lines represent individual producer populations
and the thick black line is aggregate producer biomass. A
dashed line marks the predator invasion. (c) Example of a
weak cascade arising from producer compensation.
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Fig. 4 Relationships between species richness S, con-
nectance C and compensation µ in the producer (green cir-
cles) and consumer (purple squares) guilds. Points and error
bars represent mean compensation ± 2 SEM and lines show
results of loess regression to raw simulated data. Colors are
the same as in Fig. 1. Dotted, short and long dashed lines
correspond to webs with connectance values of 0.12, 0.16
and 0.2 respectively.

influence of top predators (Polis et al, 2000). One such466

example is that our study was restricted to models of467

closed systems. Evidence of cross-ecosystem cascades468

(Knight et al, 2005) and the effect of resource coloniza-469

tion rates on cascade strengths (Fahimipour and An-470

derson, 2015) suggest that extensions of our model to471

open systems will be a promising enterprise for further472

theoretical study. Future studies could build upon our473

model by exploring alternate assumptions and struc-474

tures — for instance, other representations of primary475

production like fixed species-level K (e.g., Brose et al,476

2006b), heterogeneity in resource productivity and ed-477

ibility, different consumer functional responses, alter-478

nate assumptions about consumer metabolism and re-479

alistic ecosystem features such as detrital loops (e.g.,480

Boit et al, 2012).481

Identifying the abiotic and biotic features of ecosys-482

tems that regulate trophic cascades is a fundamental483

issue in ecology (Polis et al, 2000; Terborgh et al, 2010)484

and a practical problem for the management of inva-485

sive species, agricultural pests and zoonotic disease486

(Estes et al, 2011). While the present study identi-487

fies features of model food web architecture that in-488

fluence cascades, the potential for compensation (Gon-489

zalez and Loreau, 2009) which appears to be poorly490

predicted by ecological network structure, complex in-491

direct interactions in real world ecosystems (Yodzis,492

2000) together with insufficient data (Shurin et al,493

2010) and issues of scale (Polis et al, 2000) combine to494
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Table 1 Results of ANOVA. β indicates the estimated re-
gression coefficient.

Guild Food Web Property β
Producers

Species Richness -0.111
Connectance -0.012
Char. Path Len. 0.08
Frac. B 0.21
Frac. I -0.116
Frac. Om 0.001
Modularity 0.014
Clustering Coef. 0.009
Mean Max. Similarity -0.095

Consumers
Species Richness 0.741
Connectance 0.156
Char. Path Len. 0.002
Frac. B 0.218
Frac. I -0.084
Frac. Om 0.014
Modularity 0.077
Clustering Coef. -0.084
Mean Max. Similarity 0.038

make the development of a predictive cascade theory495

of food webs a difficult problem.496
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