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Abstract5

One of the key characteristics of any genetic variant is its geographic distribution. The geographic6

distribution can shed light on where an allele first arose, what populations it has spread to, and in turn7

on how migration, genetic drift, and natural selection have acted. The distribution of a genetic variant8

can also be of great utility for medical/clinical geneticists. Collectively the geographic distribution of9

many genetic variants can reveal population structure. As a result, visual inspection of geographic maps10

for genetic variants is common practice in genetic studies. Here we develop an interactive visualization11

tool for rapidly displaying the geographic distribution of genetic variants. Through a REST API and12

dynamic front-end the Geography of Genetic Variants (GGV) browser provides maps of allele frequencies13

in populations distributed across the globe.14

Introduction15

Genetics researchers often face the problem that they have identified one or many genetic variants of interest16

using an approach such as a genome-wide association study and then would like to know the geographic17

distribution of the variant. For example, the researcher may hope to address: 1) implications for genomic18

medicine (e.g. Is a risk allele geographically localized to a certain patient population? What population19

should be studied to observe variant carriers? Rosenberg et al., 2010); or 2) the evolutionary history of the20

variant in question (e.g. does the variant correlate with a known environmental factor in a manner suggestive21

of some geographically localized selection pressure? Novembre and Di Rienzo, 2009; Coop et al., 2010). A22

simple geographic map of the distribution of a genetic variant can be incredibly insightful for these questions.23

Contemporary population genetics researchers are also faced with the challenge of large, high-dimensional24

datasets. For example, it is not uncommon for a researcher in human genetics to have a dataset comprised25

of thousands of individuals measured at hundreds of thousands or even millions of single nucleotide variants26

(SNVs). One common approach to visualizing such high-dimensional data is to compress the SNV dimensions27

down to a small number of latent factors, using a method such as principal components analysis (Price et al.,28

2006; Patterson et al., 2006), or a model-based clustering method such as STRUCTURE (Pritchard29

et al., 2000) or ADMIXTURE (Alexander et al., 2009). While these approaches are extremely valuable,30

researchers can use them too often without inspecting the underlying variant data in more detail. A natural31

approach to gaining more insight to the overall structure of a population genetic dataset is to visually inspect32

what geographic patterns arise in allele frequency maps.33

Unfortunately, generating geographic allele frequency maps is time-consuming for the average researcher34

as it requires a combination of data-wrangling methods (Kandel et al., 2011) and map-making techniques35

that are unfamiliar to most. Our aim here is to produce a tailored system for rapidly constructing informative36

geographic maps of allele frequency variation.37

Our work is inspired by past tools such as the ALFRED database (Rajeevan et al., 2012) and the maps38

available on the HGDP Selection browser (Pickrell et al., 2009). One of us (JN) developed the scripts39
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for the HGDP Selection Browser maps using The Generic Mapping Tools (GMT) (Wessel et al., 2013), a40

powerful system of geographic plotting scripts for making static plots. The plots from the HGDP Selection41

Browser have proved useful, have appeared in research articles (e.g. Pickrell et al., 2009; Coop et al.,42

2009), books (e.g. Dudley and Karczewski, 2013), and have been made available on the UCSC Genome43

Browser (available under the HGDP Allele Freq track of the browser Kent et al., 2002).44

Reference datasets for population genetic variation have greatly expanded since the release of the HGDP45

Illumina 650Y dataset (Li et al., 2008) that formed the basis of the HGDP Selection Browser maps. The46

most notable advance is the publication of the 1000 Genomes Phase 3 data (The 1000 Genomes Project47

Consortium, 2015) though additional datasets are continually coming online (e.g. Lazaridis et al., 2014).48

In addition, novel approaches for data visualization have become more widely available. In particular, web-49

based visualization tools, such as Data Driven Documents (D3.js), offer useful methods for interactivity, the50

advantages of software development in modern web-browsers, a large open-source development community,51

and ease of sharing (Bostock et al., 2011).52

Taking advantage of these recent advances, we aim to address the significant visualization challenges that53

are inherit in the production of geographic allele frequency maps, including dynamic interaction, display54

of rare genetic variation, and representation of uncertainty in estimated allele frequencies due to variable55

sample sizes.56

Fundamental Approach57

The Geography of Genetic Variants browser (GGV) uses the scalable vector graphics and mapping utilities58

of D3.js (Bostock et al., 2011) to generate interactive frequency maps, allowing for quick and dynamic59

displays of the geographic distribution of a genetic variant. The front-end provides legends for the map and60

various configuration boxes to allow users to query different datasets or choose visualization options.61

In order to allow for easy access to commonly used public genomic datasets, such as the 1000 Genomes62

project (The 1000 Genomes Project Consortium, 2015) or Human Genome Diversity project (Li et al.,63

2008), we have developed a REST API (Grinberg, 2014) for accessing data. The API allows querying of64

allele frequencies by chromosome and position, by reference SNP identifier (Sherry et al., 2001), or randomly65

sampled SNPs. While many applications require inspection of the distribution of a specific variant, from our66

experience, it can be very helpful to view the geographic distribution of several randomly chosen variants to67

quickly gain a sense of structure in a dataset. We find this to be especially useful in teaching contexts, as it68

provides a highly visual way for learners to understand human genetic variation.69

After a query, the GGV displays the allele frequencies for a set of populations as a collection of pie charts70

where each represents the minor and major allele frequency in a single population. Pie charts are displayed71

as points at a latitude and longitude assoicated with a population and the map boundaries are chosen based72

off of the geographic configuration of populations in a given dataset [Figure 1].73

Representing uncertainty in frequency data74

One under-appreciated problem with allele frequency maps is that not all data points have equal levels of75

certainty. For some locations, sample sizes are small, and the reported allele frequency may be quite far from76

the true population frequency due to sampling error. To address this issue, we use varying transparency in77

a population’s pie chart: estimated frequencies with higher levels of sampling error (e.g. those from samples78

with n < 30) are made more transparent, and hence less visible, on the map [Figure 2].79

Representing rare variants in frequency data80

An additional challenge is that allele frequencies between variants often differ greatly, sometimes by orders81

of magnitude in a single dataset. This has not been a pervasive problem until recently, as most population82

genetic samples were genotyped on SNP arrays, which have been biased towards variants that are common in83
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Figure 1: Example screenshot from the Geography of Genetic Variants browser using The 1000 Genomes
Project Consortium (2015) data. Each pie chart represents a population with the blue slice of the pie
displaying the frequency of the global minor allele and the yellow slice of the pie displaying the frequency of
the global major allele in each population.

human populations (5-50 % in minor allele frequency). With the combination of next generation sequencing84

technologies, new array designs focusing on rarer variants, and studies with thousands of individuals or more,85

it is now routine for the majority of variants to be rare (e.g. The 1000 Genomes Project Consortium,86

2015; Nelson et al., 2012; Tennessen et al., 2012). In visualization schemes using proportional area to87

represent frequency (such as standard pie charts), rare variants would be represented as narrow slivers,88

nearly invisible to the naked eye.89

To address this challenge we re-scale frequencies for rare variants, so that small frequencies become visible.90

Specifically, we use a frequency scale that is indicated in a legend below the map and represented by varying91

color in the pie charts [Figure 3]. Much like scientific notation, this allows a wide range of frequencies to be92

displayed (Table 1).93
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Figure 2: Example map from the Geography of Genetic Variants browser displaying the use of varying
transparency of population pie charts to represent uncertainty in allele frequencies. The transparency is
scaled in proportion to the number of observed chromosomes in each population for a particular variant.
The frequency data and population identifiers are from Novembre et al. (2008).

Sample Frequency Display Frequency Scale Displayed Image

0.25 1

0.025 0.1

0.0025 0.01

0.00025 0.001

Table 1: Rare variants present a challenge for display. To address this challenge, the GGV browser changes
the displayed image and the frequency scale of the map depending on the input sample frequency. As an
example, a variant with a frequency 0.0025 is shown as a pie-chart that is 25% full and a frequency scale of
0.01 is marked in the legend of the map.

Additional features of the interface94

In many datasets where populations are sampled densely in geographic space, one problem is that allele95

frequency plots begin to overlap each other and obscure information. To address this issue, we use force-96

directed layouts of the populations such that no two points are overlapping each other, and yet the points97

will be pulled towards their true origins [Figure 5]. Also, by hovering the mouse cursor over any population,98

a user can see the population labels and precise frequency information.99

Access to the underlying frequency data100

To provide an interface to the population minor allele frequency data, we use a REST API implemented101

in the python library Flask-RESTful (Grinberg, 2014). The front-end D3.js visualization uses the API to102

obtain the data, though users can also interface with it directly. For the front-end, HTTP GET requests103
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Figure 3: Example maps from the Geography of Genetic Variants browser displaying the use of frequency
scales for more expressive representations of rare variation on geographic maps. The blue pie charts convey
a given minor allele frequency out of 100 percent, the green out of 1 percent, and the red out of 0.01 percent.
The data are from The 1000 Genomes Project Consortium (2015).

return json formatted allele frequency data and the meta-data associated with each population and genetic104

variant (e.g. latitude, longitude, population label, sample size, and frequency scale). Genetic variants can be105

queried by chromosome position, rsid, or randomly. Example HTTP requests and json response can be seen106

in the Appendix.107

Discussion108

By allowing rapid generation of allele frequency maps, we hope to facilitate the interpretation of variant109

function and history by practicing geneticists. We also hope the ability to query random variants from major110

human population genetic samples will allow students to appreciate the structure of human genetic diversity111

in a more approachable and intuitive form than alternative visualizations.112

A major challenge of using a geographic representation of genetic variation in humans is that the samples113

must be associated with a geographic location. While doing so is generally immensely helpful, it has inherent114

complexity and limitations. For example, practitioners must make choices regarding representing where an115

individual was sampled for the study (e.g. the city of a major research center) or choosing a location that116

is more representative of an individual’s ancestral origins (e.g. based on the birthplaces of recent ancestors,117

such as grandparents). We do not proscribe a general solution to this problem, and for the current defaults we118

use locations based on the approach taken in the source publications. A future feature will allow alternative119

location schemas to be used for the populations in a dataset.120

We also envision a variety of future extensions to the GGV that would allow for further dissection of121

geographic structure in large-scale population genomic datasets. Providing an interactive means of browsing122

neighboring variant sites near a SNP of interest would offer a unique view into patterns of linkage dise-123

quilibrium around that focal SNP. This feature would be relevant to both medical geneticists conducting124

genome-wide association studies with interests in fine mapping as well as population geneticists interested in125

scanning the genome to detect signatures of positive selection. We imagine that incorporating a chromosomal126
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Figure 4: Example maps from the Geography of Genetic Variants browser displaying the use of a force
directed layout to limit visual clutter when many populations overlap in geographic position. The left map
shows the original population locations while the right shows the application of the force directed layout.

browser such as jbrowse (Skinner et al., 2009) within the GGV would be greatly utilized by researchers127

and educators alike.128
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Appendix188

Example 1: Query by rsid189

http://popgen.uchicago.edu/ggv_api/freq_table?data="1000genomes_phase3_table"&rsID=rs1834640190

[191

{192

"alleles": ["A", "G"],193

"pos": ["-15.310139", "13.443182"],194

"pop": "GWD",195

"nobs": "226",196

"xobs": "17",197

"freqscale": 1,198

"freq": [0.0752212389381, 0.9247787610619],199

"chrom_pos": "15:48392165",200

"rawfreq": 0.0752212389381201

}, ...202

]203

Example 2: Query by chromosome position204

http://popgen.uchicago.edu/ggv_api/freq_table?data="1000genomes_phase3_table"&chr=14&pos=37690093205

[206

{207

"alleles": ["G", "A"],208

"pos": ["-15.310139", "13.443182"],209

"pop": "GWD",210

"nobs": "226",211

"xobs": "0",212

"freqscale": 0.01,213

"freq": [0.0, 1.0],214

"chrom_pos": "14:37690093",215

"rawfreq": 0.0216

}, ...217

]218

Example 3: Random query219

http://popgen.uchicago.edu/ggv_api/freq_table?data="1000genomes_phase3_table"&random_snp=True220

[221

{222

"alleles": ["T", "C"],223

"pos": ["-15.310139", "13.443182"],224

"pop": "GWD",225

"nobs": "226",226

"xobs": "0",227

"freqscale": 0.01,228

"freq": [0.0, 1.0],229

"chrom_pos": "5:42452893",230

"rawfreq": 0.0231

}, ...232

]233
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