
 1 

 1 

 2 

Fitness costs of noise in biochemical reaction networks and the evolutionary limits of 3 

cellular robustness 4 

 5 

J. David Van Dyken 6 
 7 
 8 
Department of Biology, Institute of Theoretical and Mathematical Ecology, University of 9 
Miami, Coral Gables, FL 33146 10 
 11 
vandyken@bio.miami.edu 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

Keywords: gene expression noise; drift barrier hypothesis; robustness; noise propagation; 20 

allometric scaling; coarse-grained cell model; linear noise approximation; Michaelis-21 

Menten reaction; non-linear stochastic model  22 

 23 

 24 

 25 

 26 

 27 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2016. ; https://doi.org/10.1101/068510doi: bioRxiv preprint 

https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/068510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

ABSTRACT 28 

Gene expression is inherently noisy, but little is known about whether noise affects cell 29 

function or, if so, how and by how much. Here I present a theoretical framework to 30 

quantify the fitness costs of gene expression noise and identify the evolutionary and 31 

synthetic targets of noise control. I find that gene expression noise reduces fitness by 32 

slowing the average rate of nutrient uptake and protein synthesis. This is a direct 33 

consequence of the hyperbolic (Michaelis-Menten) kinetics of most biological reactions, 34 

which I show cause “hyperbolic filtering”, a process that diminishes both the average rate 35 

and noise propagation of stochastic reactions. Interestingly, I find that transcriptional 36 

noise directly slows growth by slowing the average translation rate. Perhaps surprisingly, 37 

this is the largest fitness cost of transcriptional noise since translation strongly filters 38 

mRNA noise, making protein noise largely independent of transcriptional noise, 39 

consistent with empirical data. Translation, not transcription, then, is the primary target of 40 

protein noise control. Paradoxically, selection for protein-noise control favors increased 41 

ribosome-mRNA binding affinity, even though this increases translational bursting. 42 

However, I find that the efficacy of selection to suppress noise decays faster than linearly 43 

with increasing cell size. This predicts a stark, cell-size-mediated taxonomic divide in 44 

selection pressures for noise control: small unicellular species, including most 45 

prokaryotes, face fairly strong selection to suppress gene expression noise, whereas larger 46 

unicells, including most eukaryotes, experience extremely weak selection. I suggest that 47 

this taxonomic discrepancy in selection efficacy contributed to the evolution of greater 48 

gene-regulatory complexity in eukaryotes.  49 

 50 
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ARTICLE SUMMARY 51 

Gene expression is a probabilistic process, resulting in random variation in mRNA and 52 

protein abundance among cells called “noise”. Understanding how noise affects cell 53 

function is a major problem in biology. Here I present theory demonstrating that gene 54 

expression noise slows the average rate of cell division. Furthermore, by modeling 55 

stochastic gene expression with non-linearity, I identify novel mechanisms of cellular 56 

robustness. However, I find that the cost of noise, and therefore the strength of selection 57 

favoring robustness, decays faster than linearly with increasing cell size. This may help 58 

explain the vast differences in gene-regulatory complexity between prokaryotes and 59 

eukaryotes.   60 

 61 

INTRODUCTION 62 

The probabilistic nature of chemical reactions, along with the small volumes of living 63 

cells, create substantial molecular randomness called “noise” (Berg 1978; McAdams and 64 

Arkin 1997). Gene expression noise, for example, is measured as variation in mRNA or 65 

protein abundance within a single cell over time (Taniguchi et al. 2010), or, equivalently, 66 

among cells in an isogenic cell population (Elowitz et al. 2002). Because the abundance 67 

of most mRNAs and proteins are on the order of 1 to 1000 copies per cell (Taniguchi et 68 

al. 2010), a random birth or death of a single copy can instantaneously change the cellular 69 

concentration by 0.1-100%. These random fluctuations are amplified by bursting, the 70 

synthesis of multiple mRNAs or proteins in brief pulses (Raser and O’Shea 2004; Raser 71 

and O’Shea 2005; Raj et al. 2006; Pedraza and Paulsson 2008; Thattai and van 72 

Oudenaarden 2001). Using fluorescent probes and fluorescently tagged proteins, 73 
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researchers have quantified the noise statistics of mRNA and/or proteins in E. coli, 74 

budding yeast, and mammalian cell lines, demonstrating the ubiquity of gene expression 75 

noise and its considerable variability across the genome and among taxa (Elowitz et al. 76 

2002; Blake et al. 2003; Golding et al. 2005; Raj et al. 2006; Zenklusen, Larson, and 77 

Singer 2008; Taniguchi et al. 2010; Newman et al. 2006; Balázsi, van Oudenaarden, and 78 

Collins 2011).  79 

A central question in cell biology and evolution is whether or not cellular noise 80 

has a functional consequence. Answering this question is necessary for establishing 81 

rational design criteria for synthetic genetic circuits and for providing evolutionary 82 

explanations for empirical patterns of noise among genes and taxa. For example, why 83 

does E. coli have an average mRNA Fano factor (variance/mean) of F = 1.6 (Taniguchi et 84 

al. 2010), which is just above the theoretical minimum of F = 1, whereas mammalian 85 

cells have 40-100 times stronger mRNA noise (Raj et al. 2006; Balázsi, 86 

van Oudenaarden, and Collins 2011; Dar et al. 2012)? While the mechanistic causes of 87 

this discrepancy are becoming clearer (Suter et al. 2011), the evolutionary forces 88 

permitting such a discrepancy remain murky.   89 

Mounting empirical evidence suggests that natural selection has acted to limit 90 

gene expression noise in many cases (Metzger et al. 2015; Newman et al. 2006; Alemu et 91 

al. 2014; Batada and Hurst 2007; Fraser et al. 2004; Lehner 2008), implying that noise is 92 

often costly to cells. Yet identifying and quantifying this cost remains a major challenge. 93 

Perhaps the most widely invoked cost of cellular noise is imprecision, the lack of fine 94 

control over cellular processes. Evolutionarily, this cost of noise is typically modeled as 95 

random phenotypic deviations from the adaptive optimum, which is opposed by 96 
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stabilizing selection (Wagner et al. 1997; Draghi and Whitlock 2015). Several molecular 97 

mechanisms linking imprecision to suboptimal fitness deviations have been proposed. 98 

The dosage-control hypothesis proposes that noise disrupts control over the 99 

stoichiometric balance of interacting proteins (Fraser et al. 2004; Lehner 2008). 100 

Consistent with this hypothesis, proteins that form complexes have lower average noise 101 

than other proteins (Fraser et al. 2004; Lehner 2008; Bar-Even et al. 2006), but models 102 

currently do not predict the magnitude of this effect so that quantitative correspondence 103 

between predictions and observations remain unknown. More commonly, researchers 104 

focus on how noise disrupts the fine control over cell states regulated by bistable 105 

(ON/OFF) switches (Balázsi, van Oudenaarden, and Collins 2011; Csete and Doyle 106 

2002). Noise in the input parameter can cause the cell to flip stochastically from the 107 

desired to undesired state, or to respond slowly to environmental cues, creating a 108 

maladaptive mismatch between the cell state and the selecting environment. However, 109 

the least noisy genes, those presumably experiencing the strongest selection to suppress 110 

noise, are constitutively expressed and involved in core cell functions, not control over 111 

bistability (Fraser et al. 2004; Lehner 2008; Bar-Even et al. 2006). This cost is also 112 

difficult to quantify in any general way because its effects are highly context dependent, 113 

to the extent that in some contexts the cost of imprecision can change signs, becoming 114 

evolutionarily beneficial (Acar, Mettetal, and van Oudenaarden 2008; Rao, Wolf, and 115 

Arkin 2002; Kussell and Leibler 2005; Eldar and Elowitz 2010; Kaern et al. 2005; Thattai 116 

and Van Oudenaarden 2004).  117 

As an alternative, here I demonstrate a general, readily quantifiable and consistent 118 

cost of cellular noise. I show that noise in substrate abundance slows the average rate of 119 
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product formation in Michaelis-Menten-type (i.e., non-cooperative bimolecular) chemical 120 

reactions, which constitute most reactions in the cell including those most closely tied to 121 

fitness: nutrient uptake and protein synthesis. This result is a straightforward consequence 122 

of the non-linearity of bimolecular reactions. While it is well known that noise alters the 123 

mean of nonlinear stochastic systems, this effect is typically ignored, giving rise to the 124 

widespread use of linear approximations (e.g., the “linear noise approximation” (LNA) 125 

(van Kampen 2007)), particularly in studies of gene expression noise (Thattai and van 126 

Oudenaarden 2001; Shahrezaei and Swain 2008; Paulsson 2004). The LNA is well-127 

justified when applied to investigating steady-state concentrations in noisy chemical 128 

networks, since the difference between linear and non-linear predictions at steady-state 129 

are on the order of a single molecule. However, fitness in living cells is determined by 130 

rates—not concentrations--integrated over an enormous number of reactions over the 131 

lifetime of a cell and its genetic lineage. For example, an E. coli cell must carry out a 132 

minimum of 2.5x106 translation reactions to produce a single daughter cell. A minor 133 

slowing of reaction rates within cells, if heritable, may pose a non-negligible selective 134 

cost. From this perspective, the effects of noise on fitness cannot be ignored, and indeed, 135 

I find that they can be substantial in small cells.  136 

 137 

RESULTS 138 

The goal of the paper is to quantify the strength of selection favoring the attenuation of 139 

gene expression noise, and to identify the targets of noise attenuation. The paper proceeds 140 

as follows. First, I show that noise slows the average rate of biochemical reactions that 141 

have non-linear, hyperbolic kinetics. Then, I extend this result to networks of coupled 142 
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non-linear reactions in order to determine how noise effects total flux through 143 

biochemical networks, as well as how the network architecture itself affects the 144 

propagation of noise. This enables us to quantify the cost of noise, measured as the loss in 145 

average rate of end-product formation, and to quantify the noise statistics of the system. I 146 

then apply the model to gene expression, focusing on the consequences of non-linear, 147 

hyperbolic translation kinetics on the propagation of mRNA noise to the protein level, 148 

and to the average rate of biomass synthesis. Finally, I investigate how the volume of 149 

reaction compartments and whole-cells influences the cost of noise, concluding that the 150 

cost of noise, and therefore the selection pressures favoring low gene expression noise, 151 

decays rapidly with increasing cell size, leading to a testable prediction about levels of 152 

gene expression noise across unicellular species.  153 

 154 

Noise-induced slowdown of Michaelis-Menten reactions. The purpose of this section is 155 

to begin building the theory from the simplest component of a network: a single isolated 156 

reaction. We will see that input noise slows the reaction rate of a single, isolated reaction 157 

obeying Michaelis-Menten type kinetics. In the following section, the analytical results 158 

from this section are put on a more rigorous theoretical footing and then extended to 159 

networks of coupled reactions in open systems.   160 

The cornerstone of biochemistry is the Michaelis-Menten (MM) reaction, which 161 

describes the enzyme catalyzed conversion of substrate, S, into product, P.  The rate of 162 

product formation is described by the hyperbolic MM equation (Michaelis and Menten 163 

1913; Briggs and Haldane 1925; Ingalls 2013):  164 

𝑑𝑝
𝑑𝑡 = 𝑉 = 𝑉&'(

𝑠
𝐾& + 𝑠 																																																									1 165 
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s, e and p are reactant, enzyme and product concentration, respectively (following 166 

convention lowercase denotes concentration, which unless otherwise noted will take units 167 

of molecules per cell), 𝑉&'( = 𝑘/'0𝑒 is the asymptotic reaction rate (kcat is the number of 168 

substrate molecules converted to product per enzyme per unit time), and 𝐾&, the 169 

Michaelis or half-saturation constant, is the substrate concentration at V = Vmax/2. This 170 

equation is derived from a system of elementary reactions by applying the law of mass 171 

action and the quasi-steady state approximation (QSSA) (Briggs and Haldane 1925; 172 

Ingalls 2013) (Sup. Mat.). The QSSA is a separation of timescales approximation that 173 

eliminates fast variables by setting them to their steady-state. The law of mass action is 174 

valid in cases where the timescale of molecular diffusion is fast relative to the reaction 175 

rate, so that the system behaves as if it were well-mixed. The rate of enzymatic reactions 176 

in cells is far below the diffusion limit (Bar-Even et al 2006), so that mass action is a 177 

reasonable approximation in most cases. For stochastic reactions, wherein s, e, and p 178 

experience random number fluctuations, Eqn. 1 takes on a probabilistic interpretation as 179 

the “reaction propensity” (van Kampen 2007) giving the transition probability for nP à 180 

nP + 1 and nS à nS – 1, where n denotes particle number. In general, the QSSA is valid 181 

for stochastic systems under the same conditions for which it is valid in deterministic 182 

systems (Rao and Arkin 2003; Sanft, Gillespie, and Petzold 2011), notwithstanding 183 

finite-volume corrections (Grima 2009b; Grima 2009a; Grima 2010) (see below).  184 

Because Eqn. 1 is hyperbolic in s, Jensen’s inequality proves that, for random s, 185 

𝑉(𝑠) ≤ 𝑉( 𝑠 ) (angle brackets denote ensemble average). That is, the average reaction 186 

rate is less than or equal to a noise-free (i.e., deterministic) reaction with s = 𝑠  (Figs. 1, 187 

S1).  This is seen by expanding Eqn. 1 to second order in Taylor series about 𝑠  and 188 
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taking the expectation (see SI), 189 

𝑉(𝑠) = 𝑉&'(
𝑠

𝐾& + 𝑠
5( 6 )

−
𝜖9:

𝑠 : 𝑉&'(𝑎 1 − 𝑎 :

<=>6?@><AB/?A	6C=DA=D<

+ 𝑂 𝜖9F 																									2 190 

a = Km/(Km + 𝑠 ) is the “kinetic order” of the MM reaction evaluated at the average 191 

substrate concentration, and (𝜂: = 𝜖9: / 𝑠 :) the squared coefficient of variation, which 192 

is often simply called “the noise”. The leading order correction in Eqn. 2 takes the sign of 193 

the second derivative of Eqn. 1, which is everywhere negative for hyperbolic transition 194 

rates, thus demonstrating the noise-induced slowdown of MM type reactions. 195 

 The kinetic order parameter, a, is a key parameter that appears repeatedly below. 196 

a is identical to the steady-state fraction of unbound enzyme. In metabolic control 197 

analysis (MCA), a is equivalent to the “elasticity coefficient” (Kacser and Burns 1973). 198 

In general, a measures the nonlinearity of the reaction rate at a given mean substrate 199 

concentration. First and zeroth order reactions (a = 1 and 0, respectively) are both linear, 200 

and as a consequence there is no noise-induced slowdown, consistent with Jensen’s 201 

Inequality. The rate of a first order reaction is linearly dependent on the substrate 202 

concentration, whereas the rate of a zeroth order reaction is independent of substrate 203 

concentration. In a MM type reaction, the reaction is in its first order regime when 204 

substrate is scarce, and in the zeroth order regime when substrate is abundant (the flat 205 

part of the rate law curve in Fig. 1).  206 
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 207 

Figure 1: Noise-induced slowdown of hyperbolic reactions. Stochastic 208 
simulations employing Gillespie’s (Gillespie 1977) exact stochastic simulation algorithm 209 
(SSA) of the microscopic system of elementary reactions for the Michaelis-Menten 210 
reaction (see SI). Points represent the rate of product formation over time steps 100-800 211 
(providing a burn-in more than 10 times the half life of P or S) ensemble averaged over 212 
1000 realizations of the stochastic process. Results fit well with the QSSA model (Eqn. 3, 213 
solid lines in a, b and thin black line in c). The substrate burst input, b, is varied to alter 214 
the substrate noise level. Substrate input rate, kin is divided by b so that mean substrate is 215 
not affected by bursting, and is varied to generate different substrate concentrations. All 216 
other parameters are constant (e = 1, kON =1, kOFF = 19.5, kcat = 0.5, δS = 0.1, δP = 0.1). A) 217 
The rate law curve demonstrating that, for a given average substrate concentration, 218 
substrate noise slows the reaction, but only if the reaction is not in its first or zeroth order 219 
regime (low or high substrate, respectively). Note that the accuracy of the stochastic 220 
QSSA requires that s, Km <<F, which fails for the red points in a and b (where Km = 20 221 
and F = 20.5). Inset is a zoomed in view. B) A geometric illustration of noise-induced 222 
slowdown, showing that variance (noise) in a state variable reduces the average of a 223 
hyperbolic function (i.e., Jensen’s inequality).  C) 100 realizations of the stochastic 224 
process (gray) compared to the deterministic (thick black line) and stochastic (thin black 225 
line) predictions. Red traces in inset are example outputs from a single realization of the 226 
substrate dynamics for a short time window.  227 

 228 
A more rigorous and general expansion method is used in the following section 229 

(“Noisy Non-linear Reaction Networks in Finite Volumes”). For now, there are two main 230 

points: 1) reaction kinetics depend not only on average molecule concentrations, but on 231 

the mean and variance in molecule numbers, and 2) for a given average substrate 232 

concentration, substrate noise reduces the rate of biochemical reactions. The difference 233 
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between the average stochastic rate and deterministic rate grows monotonically with 234 

increasing noise, and equality occurs only with zero noise or zero curvature of V(s). 235 

Mechanistically, this can be understood as follows: positive fluctuations in substrate 236 

oversaturate available catalysts leaving many unbound S molecules that are not actively 237 

creating product, causing inefficiency. As a consequence, the same amount of substrate 238 

would produce a faster net reaction rate if spread out evenly over the same time interval 239 

(i.e., the same mean with zero noise).  240 

 If the substrate statistics are known, then the probability density of V with random 241 

s can be solved explicitly for a number of common probability distributions. mRNA and 242 

protein counts are typically gamma distributed within a cell over time or among cells in a 243 

clonal population (Taniguchi et al. 2010). The gamma distribution has shape parameter α 244 

= CV -2 and rate parameter β = F, where CV 2 = 𝜎(:/ 𝑥 : and F = 𝜎(:/ 𝑥 are the squared 245 

coefficient of variation (the noise) and the Fano factor (often called “the noise strength”), 246 

respectively (Taniguchi et al. 2010). F and CV 2 are common measures of noise intensity, 247 

with convenient mechanistic interpretations in gene expression: F is closely related to the 248 

burst size (e.g., number of proteins synthesized per mRNA lifetime) and CV -2 to the burst 249 

frequency (e.g., the number of mRNA’s synthesized per protein lifetime). F is 250 

independent of cell volume, whereas CV 2 decreases with cell volume (they are intensive 251 

and extensive variables, respectively). For gamma distributed s, the probability density 252 

function of the Michaelis-Menten reaction rate (for V < Vmax) is exactly, 253 

𝑃𝑟 𝑉 = 𝑣 =
𝑉&'(
𝑘&

𝑣O@P𝑒@Q/RS

𝑧 𝑧𝛽 OΓ 𝛼 ,											𝑧 =
𝑉&'( − 𝑣
𝑘&

																																				3 254 

Eqn. 3 is verified by Monte Carlo simulations implemented with Gillespie’s exact 255 

stochastic simulation algorithm (SSA) (Gillespie 1977) (Fig. 1). Eqn. 3 fits data from 256 
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stochastic simulations very well provided that 𝐹, 𝐾& ≪ 𝑠 . Equation 2 gives a very good 257 

approximation to 3 under this same restriction (Fig. S2), which provides an important 258 

benchmark for the accuracy of the more rigorous expansion approximations used below. 259 

Figure 1 shows that the effect of noise on MM-type reactions is to increase the 260 

observed Michaelis constant. Therefore, a stochastic formulation of Eqn. 1 that accounts 261 

for noisy substrate while retaining the classical form is obtained simply by substituting 262 

into Eqn. 1 an “effective”, stochastic Michaelis constant, 𝐾&, where 𝐾& ≥ 𝐾& with 263 

equality occurring only with zero noise, zero curvature of the rate law, and macroscopic 264 

reaction volume (S6).  265 

 266 

Noisy Non-linear Reaction Networks in Finite Volumes. In the previous section, we 267 

showed that substrate noise slows the rate of product formation in a single hyperbolic 268 

reaction in a closed system. To apply this result, the statistics of the substrate species are 269 

required. We now take a more rigorous approach and generalize the noise-induced 270 

slowdown phenomenon to reaction networks in open systems. Further, the model allows 271 

one to predict the noise statistics of the system solely with knowledge of the network 272 

structure and reaction kinetics. Of particular interest is how network architectures may 273 

create feedbacks that buffer the system flux against noise-induced slowdown. The 274 

following theory builds on the work of van Kampen (van Kampen 2007) and Elf and 275 

Erhenberg (Elf and Ehrenberg 2003) (see also  Grima (Grima 2010)).  276 

The time evolution of the joint probability density of all N nodes in a chemical 277 

reaction network with R edges is given by the following “system-size expansion” (van 278 

Kampen 2007) of the multidimensional chemical master equation (derived in the SI):    279 
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𝜕Π 𝜖, 𝑡
𝜕𝑡 = − 𝐽>`

𝜕 𝜖`Π
𝜕𝜖>

a

>,`

+
1
2 𝐷>`

𝜕:Π
𝜕𝜖>𝜕𝜖`

a

>,`cP

C><?'d	e=``?d@fC'</`	?gB'0>=<

280 

+
Ω@P/:

2 −
𝜕𝐽>`
𝜕𝑥C

𝜕 𝜖C𝜖`Π
𝜕𝜖>

a

>,`,CcP

+
𝜕𝐷>`
𝜕𝑥C

𝜕: 𝜖CΠ
𝜕𝜖>𝜕𝜖`

a

>,`,CcP
/=dd?/0>=<	i=d	<=<@C><?'d>0j	'<A	i><>0?	Q=CB&?

+ 	𝑂 Ω@P 																																		4		 281 

Π = Π 𝜖, 𝑡  is the joint probability density of all reacting species, Ω is the reaction 282 

volume, 𝜖> is the random perturbation of the ith species from 𝑥l , its macroscopic steady-283 

state (overbars will denote the macroscopic steady-state value of a variable throughout), 284 

𝑆>n is the stoichiometric coefficient of species i in the jth reaction, and 285 

𝐽>` = 𝑆>n
oip (
o(q

r
ncP ,    𝐷>` = 𝑆>n𝑆`nr

ncP 𝑓n 𝑥  286 

are entries of the Jacobian and diffusion matrices, respectively, of the continuous 287 

deterministic system of equations. Equation 4 is a linearization of the chemical master 288 

equation obtained by applying the ansatz that concentrations fluctuate about their 289 

macroscopic steady-state value, with fluctuation size scaling inversely with the square 290 

root of the reaction volume, Ω (van Kampen 2007). This inverse square-root dependence 291 

of noise on volume is a formal statement of the Law of Large Numbers, and is formally 292 

equivalent to the relationship between sample size and the standard deviation of a 293 

sampling distribution. One thus substitutes, 𝑥> = 𝑥l + Ω@P/:𝜖>, for each species i in the 294 

deterministic system of equations, and then expands each transition rate, Vj(x), in powers 295 

of Ω-1/2 about 𝑥l, truncating the series at the desired order (van Kampen 2007). The terms 296 

of order O(Ω0) in (4) give the “linear noise approximation” (LNA) (van Kampen 2007), 297 

which is equivalent to the standard linear Fokker-Planck equation, while the terms in Ω-298 
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1/2 account for noise-induced deviations caused by non-linear rate laws in finite volumes, 299 

which we show cannot be ignored in living cells.  300 

To apply 4, one begins by writing a macroscopic description of a reaction network 301 

in QSSA reduced form. Here we analyze a generalized MM scheme (S17) in an open 302 

system obeying the following macroscopic system of ODEs (Sup. Mat.): 303 

A6
A0
= 𝑏9𝑘><,9 − ℎ𝑉 − 𝛿9𝑠,       A?

A0
= 𝑏w𝑘><,w − 𝛿w𝑒,           Ax

A0
= 𝑉 − 𝛿f𝑝																5 304 

𝛿> and 𝑘><,> are the decay and input rates, respectively, of i, and V= kcates/(Km+s). 305 

Substrate (S) and enzyme (E) are fed into the system via a burst process with burst size 𝑏9 306 

and 𝑏w, respectively (nS à nS +𝑏9  ; nE à nE + 𝑏w ). h = {0,1} is an indicator variable 307 

that toggles between reactions where S is consumed (h = 1), as in most metabolic 308 

reactions, and reactions where S is not consumed (h  = 0), as with template-mediated 309 

reactions such as translation where E denotes ribosomes and S mRNA, which is not 310 

consumed in translation.  311 

From System 5 and Eqn 4, we obtain the following steady-state average 312 

concentrations of each species in a generalized, open MM reaction network (Sup. Mat.): 313 

𝑠 = 𝑠+ℎ 𝑎 z{
|

6
− 𝐾&

z{z}
?6

𝐴Ω@P

60=/�'60>/		'&xC>i>/'0>=<

,              𝑒 = 𝑒 ,        314 

𝑝 = 𝑝 − �{
��

𝑎 z{
|

6
− 𝐾&

z{z}
?6

𝐴Ω@P,                  6 315 

𝑉 = 𝑉−𝛿9 𝑎
𝜖9:

𝑠 − 𝐾&
𝜖9𝜖w
𝑒𝑠 𝐴Ω@P

<=>6?@><AB/?A	6C=DA=D<

 316 

Where 𝐴 = 𝑘/'0𝑒𝑠/(ℎ𝑘/'0𝑒𝐾& + 𝛿9 𝐾& + 𝑠 :)  and a =Km/(Km + 𝑠) is the MM 317 

reaction order. Note that in the general case, 𝑠  is increased and 𝑝  is decreased by 318 

noise compared to the macroscopic system. The non-linear mesoscopic correction terms 319 
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vanish when sà0 (first order kinetics), sàInfinity (zeroth order kinetics) or when 320 

ΩàInfinity (macroscopic volume). Two of the second moments (Sup. Mat.) for the 321 

general MM case can be written compactly:  322 

𝜖w: = P
:
𝑒 𝑏w + 1 ,    𝜖9𝜖w = −ℎ 𝜖w:

`���6
�'`���?� �}��� ���6

																										7 323 

While the present approach builds on that derived by Grima (Grima 2010) the 324 

results and conclusions differ: Grima (Grima 2010) found that noise had no effect on 325 

product concentration in MM reactions. There are two reasons for this discrepancy. First, 326 

Grima assumed no dilution of the substrate (𝛿9 = 0). As can be seen from equation 6, this 327 

causes the finite volume correction term for 𝑝  to vanish. Thus, Grima’s results are in 328 

agreement with the present results for this special case, and all of the results in his papers 329 

are correct. However, following (Grima 2010) exactly for 𝛿9 > 0 also gives zero 330 

stochastic deviation of the product concentration (see SI), which is incorrect. Here is 331 

why: when the system-size expansion of the chemical master equation is applied to a 332 

system of elementary reactions, as in (Grima 2010) and most other methods, the rate of 333 

product formation, V, is proportional to the intermediate complex concentration, c. 334 

Because c is unimolecular, the method reads this rate as linear (its second derivative is 335 

zero), and so the mean cannot be affected by noise (as proven by Jensen’s inequality). 336 

However, in MM reactions V is decidedly non-linear. Indeed, it is hyperbolic. Thus, the 337 

elementary reaction conceals an essential non-linearity of the system, and will give 338 

incorrect results in the general case. To rectify this, one must apply Eqn. 4 to a QSSA 339 

reduced system of biochemical equations as shown in the SI. Note that the use of 340 

elementary or QSSA reactions is not up to choice: the elementary reaction scheme will 341 
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give the wrong answer.  Note also that applying the method of (Grima 2010) to a QSSA 342 

reduced system also gives incorrect results, for reasons discussed in the SI.  343 

 344 

Noise propagation in gene expression with hyperbolic filtering. Because gene  345 

expression noise is costly, there will ostensibly be selection pressure for noise control. 346 

But how can a cell suppress gene expression noise? That is, what are the evolutionary 347 

targets of noise-control? To answer these questions, we must model the process of gene 348 

expression, form transcription through translation, to identify how noise is generated and 349 

filtered.  350 

We deviate from previous models of gene expression noise by assuming that 351 

translation obeys non-linear reaction kinetics. Previous models of gene expression noise 352 

have considered translation as a first-order process (Thattai and van Oudenaarden 2001; 353 

Shahrezaei and Swain 2008; Paulsson 2004; Bar-Even et al. 2006; Pedraza and Paulsson 354 

2008; McAdams and Arkin 1997). However, translation in living cells may actually be 355 

closer to zeroth-order than first-order, with a reaction order of a = 0.1-0.2 in log-phase 356 

growth in E. coli and budding yeast, based on the fraction of unoccupied ribosomes 357 

(Arava et al. 2003; Zenklusen, Larson, and Singer 2008; Ingolia 2014). We now 358 

investigate the effects of hyperbolic translation kinetics on gene expression noise.  359 

Following previous models of gene expression noise (Thattai and van 360 

Oudenaarden 2001; Shahrezaei and Swain 2008; Paulsson 2004; Bar-Even et al. 2006; 361 

Pedraza and Paulsson 2008; McAdams and Arkin 1997), we assume for now that 362 

translation is initiation limited (see “Cell fitness” section below for generalization), such 363 

that it relies only on the concentrations of ribosomes, r, and mRNA, m. If mRNA is 364 
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transcribed in bursts of size 𝑏0, then the steady-state variance and Fano factor of mRNA 365 

are (Sup. Mat.), 366 

𝜎&ra�: =
P
:
𝑚 𝑏0 + 1 ,         𝐹&ra� =

P
:
𝑏0 + 1 																																					8 367 

which is a special case of (Elf and Ehrenberg 2003) and which is in excellent agreement 368 

with simulations (Figs 2, 3).  369 

 370 

Figure 2: Protein noise with hyperbolic filtering. Translation propagates mRNA noise 371 
to the protein level, but hyperbolic reaction kinetics (0<a<1) can substantially ameliorate 372 
this noise and cause highly non-linear relationships between noise and underlying 373 
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parameters. Points represent ensemble variance of protein number from the last of 110 374 
time steps over 10,000 realizations of the SSA (see SI), lines represent theoretical 375 
prediction (from Eqns 9 and S21). A, C) Increasing ribosomal binding affinity (i.e., 376 
reducing Km) has two opposing effects on protein noise: it reduces reaction order but 377 
increases translational bursting. Which effect dominates depends on the population’s 378 
starting point relative to the protein noise peak at a* = 2/3. Most species have 379 
translational a < 2/3, suggesting that increasing ribosomal binding affinity will actually 380 
reduce protein noise, even though it increases bursting. B, D) Increasing mRNA 381 
abundance, holding mRNA noise constant, monotonically decreases protein noise for all 382 
parameter values, as both the reaction order and translational burst parameters decrease 383 
with increasing mRNA (Sup. Mat. for theoretical derivation of this result). Parameters: e 384 
= 5, kON =1, kOFF = 19.5 (varied in A), kcat = 0.5, δS = 0.1, δP = 0.1, kin = 4/b (varied in B). 385 
Km was tuned by varying kOFF, s was tuned by varying kin, while mRNA noise was held 386 
constant with a burst input of either b =10 or 15.387 

 388 
 389 

Figure 3: Effect of network architecture on the cost of noise. Theoretical predictions 390 
(Eqns. 6-8, S20, S21) for metabolic reactions (dashed lines; h = 1, δS = 0) and translation 391 
(solid lines; h =0, δS = 0.1) compared to ensemble average (blue) and variance (red) of 392 
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1,000-5,000 SSA realizations (points). A) Noise-induced slowdown causes an 393 
accumulation of substrate (“stochastic amplification”) which completely buffers reaction 394 
flux for metabolic reactions when substrate dilution/degradation is zero (δS = 0) (B). 395 
Because mRNA is not consumed in translation (h = 0), its concentration is independent of 396 
reaction rate so does not experience stochastic amplification. Thus, translation is not 397 
buffered by network feedback. C,D) The effect of network architecture on substrate (C) 398 
and product (D) noise. e = 1, kON =1, kOFF = 19.5, kcat = 0.5, , δP = 0.01, and kin = 5/b 399 
(solid lines) or 0.357/b (dashed lines).  400 
 401 

The variance in protein numbers at steady-state is, 𝜖xd=0?><: ≅ 𝑝(1 +402 

𝑎:𝑏�𝐹&ra� + 𝐶𝑉r:𝑝 2), where the parameter a2 = [Km/(Km + m)]2 is the squared reaction 403 

order and , 𝐶𝑉d>�=: = 𝜎d>�=: /𝑟: is the ribosomal noise (Sup. Mat.). The translational burst 404 

parameter, 𝑏�, is the number of proteins synthesized by a single mRNA molecule over its 405 

lifetime, which with hyperbolic translation kinetics is, 𝑏� = 𝑘�𝑟/((𝐾& +𝑚)𝛿9). 406 

Previous work assumed first-order translation, such that 𝑏� = 𝑘�𝑟/(𝐾&𝛿9) (Thattai and 407 

van Oudenaarden 2001; Shahrezaei and Swain 2008). Introducing non-linearity causes 408 

the translational burst size to become a non-linear, decreasing function of mRNA 409 

abundance: all else equal, an mRNA molecule competing with fewer other mRNA’s will 410 

be translated more often in its lifetime, increasing its burst size. Alternatively, in the 411 

zeroth order regime (m >> 𝐾&), translational bursting goes to zero because ribosomes are 412 

so oversaturated with mRNA’s that any given mRNA is more likely to be degraded than 413 

translated. The protein noise strength and noise, then, are, respectively, 414 

𝐹xd=0?>< ≅ 1 + 𝑎:𝑏�𝐹&ra� + 𝐶𝑉d>�=: 𝑝 2 415 
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𝐶𝑉xd=0?><: ≅
1
𝑝 +

𝑎:𝑏�𝐹&ra�
𝑝

><0d><6>/
<=>6?

+
𝐶𝑉d>�=:

2
?(0d><6>/
<=>6?

																																												9 416 

Eqn. 9 agrees well with simulation results (Figs. 2, 3) and retrieves the result of 417 

Thattai and van Oudenaarden (Thattai and van Oudenaarden 2001) (𝐹xd=0?>< ≅ 1 + 𝑏�) 418 

as a special case when there is no transcriptional bursting (𝑏0 = 1 ⇒ 𝐹&ra� = 1), no 419 

ribosome fluctuations (𝐶𝑉d>�=:  = 0), and translation is first order (i.e., linear) in mRNA 420 

abundance (a = 1). The first terms in 𝐹xd=0?>< and 𝐶𝑉xd=0?><:  (1 and 1/𝑝, respectively) are 421 

simply Poisson terms reflecting low copy number fluctuations (Paulsson 2004; Pedraza 422 

and Paulsson 2008), while the second and third terms introduce factors that increase noise 423 

above Poisson levels. The second terms (𝑎:𝑏�𝐹&ra� and 𝑎:𝑏�𝐹&ra�/𝑝, respectively) 424 

incorporate the consequences of translational and transcriptional bursting. These terms 425 

propagate mRNA fluctuations, 𝐹&ra�,  to the protein level. Importantly, hyperbolic 426 

translation kinetics (0< a < 1) dampen the effect of mRNA fluctuations on protein noise, 427 

thus attenuating the propagation of mRNA noise via a process that might be called 428 

“hyperbolic filtering”. Together the first and second terms are considered “intrinsic 429 

noise” (Swain, Elowitz, and Siggia 2002; Raser and O’Shea 2005; Paulsson 2004; Bar-430 

Even et al. 2006; Sanchez and Golding 2013). The last term (𝐶𝑉d>�=: 𝑝 2 and 𝐶𝑉d>�=: 2) 431 

accounts for fluctuations in ribosome numbers, which create positively correlated 432 

fluctuations among protein species called “extrinsic noise” (Swain, Elowitz, and Siggia 433 

2002; Raser and O’Shea 2005; Paulsson 2004; Bar-Even et al. 2006; Sanchez and 434 

Golding 2013). This extrinsic noise term dominates for abundant proteins (large p), 435 

consistent with the observation that protein noise scales inversely with protein abundance 436 
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for low copy number proteins, but is independent of abundance for high copy number 437 

proteins (Blake et al. 2003; Raser and O’Shea 2004; Bar-Even et al. 2006).  438 

Translation initiation in E. coli and yeast has a reaction order of a ~ 0.1-0.2 (3, 439 

49), which is comfortably to the left of the protein noise peak at a* = 2/3 (see Sup. Mat.; 440 

Fig 2a). This implies that, contrary to predictions based on first-order translation 441 

initiation models (Thattai and van Oudenaarden 2001; Raser and O’Shea 2005), evolving 442 

or engineering increased binding affinity of mRNA to ribosomes (i.e., reduced 443 

translational Km) will actually lower protein noise, not increase it. This occurs because 444 

reducing Km has two complementary effects on protein noise: it increases translational 445 

bursting, 𝑏�, but reduces reaction order, a, which attenuates noise via a phenomenon we 446 

term “zeroth-order insensitivity”. The latter effect is not accounted for in previous gene 447 

expression models, but has implications for the evolutionary and synthetic targets of 448 

noise-amelioration (see Discussion). Hyperbolic filtering also has practical implications 449 

when making inferences from data. For example, translational burst size, 𝑏�, can be 450 

estimated from Eqn 9 with knowledge of the mRNA and protein statistics; however, 451 

assuming first order reaction kinetics (a = 1) can lead to large underestimates of this 452 

parameter from data. For example, for a ~ 1/5, assuming first order translation kinetics 453 

can lead to a 25-fold underestimate of translational burst size.  454 

 455 

Correlation between mRNA and protein noise with hyperbolic translational 456 

filtering: We now quantify the effect of hyperbolic translation kinetics on the correlation 457 

between mRNA and protein noise. Emprical work in yeast, E. coli and human cell lines 458 

have found that there is no correlation between mRNA and protein levels in the cell, or 459 
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between mRNA and protein noise (Chen et al. 2002; Ghaemmaghami et al. 2003; 460 

Taniguchi et al. 2010; Gygi et al. 1999). Here I show that this lack of correlation can be 461 

explained, in part, by modeling translation as a hyperbolic reaction.  462 

Assuming as before that mRNA lifetimes are much shorter than protein lifetimes 463 

(δmRNA >> δprotein), the covariance between mRNA and protein noise, , is found to be, 464 

𝜎&x ≅ 𝑎𝑏�𝜎&ra�: . The linear regression coefficient, 𝛽&x ≡ 𝜎&x/𝜎&ra�:  is then, 465 

𝛽&x ≅ 𝑎𝑏�. Both of these show that hyperbolic translation kinetics (a < 1) diminish the 466 

statistical association between mRNA and proteins. This is most usefully illustrated by 467 

the Pearson correlation coefficient, 𝜌 ≡ 𝜎&x/𝜎&ra�𝜎xd=0?><, which is approximately 468 

equal to, 469 

𝜌 ≅ 𝑎
𝛿xd=0?><
𝛿&ra�

𝑏�𝐹&ra�
1 + 𝑎:𝑏�𝐹&ra� + 𝐶𝑉d>�=: 𝑝 2

																											10 470 

Consistent with the theoretical predictions of Tanaguchi et al (3), Eqn. 10 shows that the 471 

mRNA-protein correlation is increased with increasing transcriptional noise strength, 472 

FmRNA, is diminished with larger differences in lifetimes of mRNA and protein 473 

(𝛿xd=0?></𝛿&ra� < 1), and is diminished by extrinsic noise (𝐶𝑉d>�=: 𝑝 2). In addition, the 474 

covariance, linear regression coefficient, and correlation between mRNA and protein 475 

fluctuations all increase with increasing translational bursting, bT. The most important 476 

novel result here is that the correlation between mRNA noise and protein noise is 477 

diminished by the hyperbolic filtering of translation (that is, when a < 1). 478 

 479 

Network architecture, feedback, and buffering: While noise slows a reaction for a 480 

given substrate concentration, network feedbacks cause adjustment to substrate levels 481 



 23 

that may in turn alter reaction rates. Specifically, if a reaction proceeds more slowly, then 482 

substrate levels accumulate, which then cause the reaction to speed up again. Accounting 483 

for this feedback is crucial in quantifying the costs of noise. We now ask: How exactly 484 

does this feedback influence the total flux through noisey reaction networks? To address 485 

this problem, we now analyze how network architecture creates feedbacks that alter 486 

chemical flux, potentially compensating for noise-induced slowdown. We treat three 487 

limiting cases: 1) h = 1, δS = 0; 2) h = 1, δS > 0; and 3) h = 0.  488 

Cases 1 (h = 1, δS = 0): Stochastic substrate amplification and buffering: One 489 

important feedback in noisy networks is the amplification of substrate concentration by 490 

noise (Eqn. 6), which has been studied in a process called “stochastic focusing” 491 

(Paulsson, Berg, and Ehrenberg 2000). Eqn. 6 shows that stochastic amplification will 492 

occur whenever substrate is consumed by the reaction (h = 1), as in metabolic reactions. 493 

Consequently, this steady-state adjustment of substrate creates intrinsic buffering of 494 

reaction flux that ameliorates noise-induced slowdown: the reaction is slowed by noise, 495 

allowing substrate to accumulate, which then speeds up the reaction. The extent of 496 

buffering depends on the substrate dilution parameter, δS. In the MM network studied by 497 

Grima (Grima 2010; Grima 2009b), for example, the substrate entered the reaction 498 

volume at rate kin and exited only once consumed by the focal reaction at rate V. Flux 499 

balance requires that V = kin in such a system, so that the reaction rate in steady-state is 500 

unaffected by noise, as found by Grima (Grima 2010; Grima 2009b). Thus, under the flux 501 

constraint V = kin, stochastic amplification completely buffers the system against noise-502 

induced slowdown (Fig 3).  503 



 24 

Case 2 (h = 1, δS > 0): Incomplete amplification and buffering. However, the 504 

precise balancing of V with kin does not apply in living cells, where substrate exits the 505 

system via multiple alternative channels (δS > 0), primarily dilution by cell division, but 506 

also through excretion, titration by other reactions and enzymatic degradation. 507 

Extracellular substrate also experiences non-zero δS, as it is diluted by bulk flow (such as 508 

in a chemostat) or by uptake from neighboring cells. Accounting for these effects 509 

modifies the flux constraint to: kin = V + δSs. With this network architecture, stochastic 510 

amplification compensates for some of the diminution of V by noise, but not all. 511 

Consequently, stochastic amplification fails to completely buffer metabolic reactions in 512 

living cells against noise-induced slowdown.  513 

Case 3 (h = 0, δS > 0): Gene expression is especially sensitive to noise-induced 514 

slow-down; no stochastic amplification, no buffering. The V = kin flux constraint is 515 

entirely abolished in template-mediated reactions (h = 0), such as protein synthesis via 516 

translation of mRNA. Because mRNA is not consumed by translation, steady-state 517 

mRNA concentration is set by the flux constraint kin = δSs, which is independent of 518 

translation rate, V. Thus, stochastic amplification does not occur in translation and so 519 

cannot buffer translation from mRNA noise (Fig. 3). As a consequence, gene expression 520 

is unusually sensitive to noise.  521 

 522 

Cell fitness. Noise slows biochemical reactions, but how does it affect fitness? We now 523 

consider a reaction network representing a coarse-grained model of cell growth. We then 524 

analyze this reaction network in the stochastic case using the method developed above in 525 

order to quantify the effects of gene expression noise on the average rate of cell division.   526 
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During balanced exponential growth, it has been shown empirically that fitness, 527 

here defined as the division rate of a cell, is equivalent to the total rate of protein 528 

synthesis by translation in a cell (Shahrezaei and Marguerat 2015; Scott et al. 2010; Scott 529 

et al. 2014). We denote the rate of cell division by the parameter 𝜆 . In general, biomass 530 

synthesis involves the import of extracellular nutrients followed, ultimately, by their 531 

conversion into new biomass via translation. Translation initiation involves the binding of 532 

mRNA, in abundance m, to a ribosome, in abundance r, followed by elongation via the 533 

polymerization addition of amino acids (aa) to a growing protein chain. Elongation rate is 534 

limited by the intracellular nutrient, in abundance sI, in scarcest supply (i.e., von Leibig’s 535 

Law of the Minimum (Droop 1974; De Baar 1994; Tilman 1982)), which is typically 536 

either ATP or aa-charged tRNA’s. In eutrophic conditions, where nutrients are saturating, 537 

translation is initiation-limited (Shah et al. 2013), whereas in oligotrophic conditions, 538 

where nutrients are scarce, translation is elongation-limited (Tuller et al. 2010).  539 

This coarse-grained cell model follows a QSSA system of ODE’s (S22) with 540 

growth rate,  541 

𝑑𝑝
𝑑𝑡 = 𝑘�𝑟

𝑠�𝑚
𝐾P + 𝐾:𝑠� + 𝐾F𝑚 + 𝑠�𝑚

− 𝜆𝑝																																											11 542 

which is equivalent to a compulsory-order two-substrate enzymatic reaction with 543 

independent (i.e., non-cooperative) binding events (Ingalls 2013). 𝑘� is the translation 544 

elongation rate per mRNA per ribosome (which absorbs the number of SI per protein), 545 

K1/ K2/ K3 are affinity constants, and λ is the protein dilution rate, which during steady-546 

state growth is equivalent to the rate of cell division. Eutrophic and oligotrophic regimes, 547 

corresponding to initiation- and elongation-limited translation, respectively, are found 548 

from this equation in the limit as sI or m, respectively, goes to infinity. Eqn. 11 can be 549 
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rearranged to form a Monod equation, which maps growth rate to extracellular nutrient 550 

supply with a number of practical and conceptual benefits (S24). 551 

The expected steady-state rate of cell division (cells/time) is found by setting Eqn. 552 

11 to zero and solving for 𝜆,  553 

𝜆 =
𝑉
𝑝66

																																																																										12 554 

𝑝66 is defined as the species-specific total protein content of a cell (protein/cell), which is 555 

assumed constant for a given species, V is the synthesis rate of proteins (protein/time).  556 

 557 

Fitness with noise. Following the method above, we write down a QSSA reduced system 558 

of equations for growth rate according to our coarse-grained cell model (S22), giving a 559 

system in five equations describing the time evolution of mRNA, uptake proteins, 560 

extracellular substrate, intracellular substrate and protein biomass. We assume that 561 

mRNA and extracellular nutrients undergo a linear birth-death process, supplied with 562 

burst inputs of size 𝑏0 and 𝑏9w respectively, and ignore ribosome fluctuations. 563 

Intracellular nutrients are consumed by protein synthesis, but mRNA is not. Expected 564 

fitness, then, is (Sup. Mat.): 565 

𝜆 ≅
𝑉
𝑝66

1 −
𝜖&:

𝑚
𝐴P
Ω

&ra�	<=>6?	

−
𝜖f�:

𝑝�
𝐴:
Ω

xd=0?><	<=>6?

−

/=60	=i	�?<?	?(xd?66>=<	<=>6?

𝜖9w:

𝑠w
𝐴F
Ω

	
?(0d'/?CCBC'd	<=>6?

																						13 566 

Where the Ai’s are positive constants given in the SI. In reality, the protein noise term 567 

will contain contributions from all proteins involved in the pathway importing and 568 

processing nutrients to their final form utilized in translation. The MCA model of Wang 569 

and Zhang (Wang and Zhang 2011) then fits within this term. The extracellular noise 570 
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term quantifies the strength of selection favoring phenotypic “bet hedging” (Starrfelt and 571 

Kokko 2012) strategies in response to environmental unpredictability.  572 

Surprisingly, transcriptional noise directly reduces fitness. This occurs because 573 

fluctuations in mRNA levels reduce the average translation rate. This is counter to the 574 

typical view, which holds that transcriptional noise impinges on cell function only to the 575 

extent that it propagates to generate protein noise. Unlike the cost of protein or 576 

extracellular nutrient noise, which require a number of parameter estimates that are 577 

highly context-dependent, the cost of mRNA noise is easily estimated from available data 578 

if we assume that cells are growing in their eutrophic regime  (sI à infinity), where 579 

growth rate is limited by translation initiation. Taking the eutrophic limit of Eqn 11 580 

gives,	𝑑𝑝/𝑑𝑡 ≅ 𝑘�𝑟𝑚/(𝐾& +𝑚) − 𝜆𝑝, which is simply a MM reaction with mRNA 581 

serving as the substrate and ribosomes as the catalyst. Noting that fluctuations in total 582 

ribosome number and mRNA number are uncorrelated, we find from equations 4, 7 and 583 

9,  584 

𝜆 ≅ 5
x��

1 − 𝑏𝑡�P
:&

𝑎 1 − 𝑎 Ω@P

/=60	=i	0d'</d>x0>=<'C	�Bd60><�

																																			14  585 

Where 𝑉 = 𝑘�𝑟𝑚/(𝐾& +𝑚). The cost of transcriptional bursting vanishes with zeroth- 586 

or first-order translation (a = 0 and 1, respectively) and/or as cell volume and/or mRNA 587 

abundance become large.  588 

During balanced exponential growth of E. coli in rich medium: m ~ 1400 589 

molecules, r ~ 21,000 molecules, and 𝑘� ~ 21aa/s ~ 4.6 proteins/min (given a mean 590 

protein length of 275aa). The total protein count of a cell is 𝑝66 = 2.4x10� molecules. 591 

During growth in nutrient rich medium, (1 – a)  ~ 0.85 (Arava et al. 2003; Ingolia 2014; 592 
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Zenklusen, Larson, and Singer 2008). Applying these parameter estimates to 𝑉/𝑝66  gives 593 

a doubling time for E. coli of ~30 minutes. Similar calculations with parameters for the 594 

budding yeast Saccharomyces cerevisiae (m ~ 15,000-60,000, r ~ 243,000, 𝑘� ~ 15aa/s ~ 595 

2 proteins/min (average protein length 450aa), 𝑝66 = 5𝑥10�, a = .85)  gives a doubling 596 

time of ~120 minutes. Both values are in close agreement with experiments in nutrient 597 

rich media, providing an important benchmark.  598 

In an E. coli cell, according to Eqn. 14, a mutation causing one unit increase in the 599 

total mRNA Fano factor results in an average loss of 7.5 proteins/min, 223 proteins/cell 600 

division, and 1.5x10@� cells/generation, such that selection against mRNA noise is more 601 

than 10,000 times stronger than random drift in this species (the effective population size 602 

determines the strength of random allele frequency fluctuations and is 𝑁? = 2𝑥10  in E. 603 

coli). In contrast, the same mutation in yeast, which has 40-fold higher m, has a cost of 604 

2.1x10@� cells/generation, which is only about 20 times stronger than random drift (𝑁? =605 

1𝑥10� in S. cerevisiae). This illustrates how fitness magnifies small differences in 606 

reaction rates by integrating over the whole cell and cell lifetime, and highlights the 607 

importance of cell volume (or more directly, molecule number) in influencing the 608 

efficacy of selection against noise.   609 

 610 

Rapid decay of selection efficacy with cell volume. As we just showed, the cost of 611 

noise depends on reaction volume. Because unicellular species differ over several orders 612 

of magnitude in their cell volumes, it may be possible to use these two facts in order to 613 

make predictions about taxonomic patterns of gene expression noise.  614 
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The fate of a mutation that modifies cellular noise depends on the relative 615 

magnitude of selection and random genetic drift. Selection efficiently overcomes random 616 

drift provided that 2Ne|s| > 1 (Kimura 1957; Kimura 1962). The boundary at 2Ne|s| = 1 617 

defines the” drift barrier” separating efficient and inefficient selection regimes (Sung et 618 

al. 2012; Lynch 2007b). The drift barrier acts as a kind of evolutionary attractor 619 

preventing organismal perfection: recurrent deleterious mutations with effects smaller 620 

than 2Ne|s|  push species away from their adaptive optima, and selection is too weak to 621 

push them back. Thus, the balance between recurrent mutation, drift and selection 622 

establishes a suboptimal phenotypic steady-state. We now derive a scaling relationship 623 

between cell volume and selection efficacy demonstrating that the drift boundary for 624 

noise attenuation scales superlinearly with cell volume. 625 

 626 

Selection strength scales inversely with cell size. Selection strength, s, is defined as the 627 

difference in absolute fitness of mutant (m) and resident (r) alleles scaled by the mean 628 

fitness of the population. For a rare mutant we have: 𝑠 = (𝜆& − 𝜆d)/𝜆d . This is simply 629 

the difference in the absolute number of daughter cells produced by the mutant per 630 

resident doubling. For simplicity, we assume a haploid population and that the mutant 631 

and resident genotypes differ only in transcriptional noise. When the only source of noise 632 

is intrinsic mRNA fluctuations, the selection coefficient is approximately (see SI for 633 

derivation), 634 

s ≅ ∆𝐹&ra�
𝐾&

𝐾& +𝑚 : Ω/
@P = ∆𝐶𝑉&ra�: 𝑎 1 − 𝑎 Ω/@P																											15 635 

Ω/ denotes the volume of the reaction compartment. The sign of selection is determined 636 

by ∆𝐹 = 	 𝐹d − 𝐹&  or  ∆𝐶𝑉: = (𝐶𝑉d: − 𝐶𝑉&:), the difference in Fano factors (noise 637 
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strength) or squared coefficients of variation (noise), respectively, between resident and 638 

mutant alleles. A mutation that increases transcriptional noise will be deleterious (s < 0), 639 

while a decrease in noise is advantageous (s>0). More generally, s ≅ ∆𝐹>𝐴><
> Ω/>@P, 640 

where the sum is over all n sources of noise affected by the mutation, the Ai are constants, 641 

and Ω/> is the reaction volume of the ith noise source. Note that selection cannot act on 642 

noise levels in first or zeroth order reactions (a = 1 or 0, respectively), since noise does 643 

not alter the mean in these cases. Noise will, however, alter the heritability (e.g., 644 

penetrance) of a trait (Wang and Zhang 2011), which will reduce the response to 645 

selection, but we do not consider this effect here. Importantly, the strength of selection 646 

against noise explicitly depends on reaction volume. 647 

 648 

Drift strength scales positively with cell size. A species population size tends to scale 649 

inversely with its body size: a species must divide a limited resource pool amongst its 650 

members, resulting either in a large number of small individuals or a small number of 651 

large ones (Damuth 1981; Damuth 1987). For multicellular species the empirical scaling 652 

relationship between body mass and population size, known as “Damuth’s Law”, follows 653 

a power law with a scaling exponent of -¾, likely reflecting the ¾ power scaling of body 654 

size with energetic demands (Damuth 1981; Damuth 1987). However, in unicellular 655 

species’ metabolic rate scales either linearly (eukaryotes) or superlinearly (prokaryotes) 656 

with cell mass (DeLong et al. 2010). Assuming that Ne scales linearly with N, that mass 657 

scales linearly with cell volume (i.e., cells have constant density), then 𝑁? = 𝐵ΩD@�¤¥¦§�, 658 

where the subscript on ΩD denotes whole cell volume and gdrift = [3/4, 5/4] is the scaling 659 

exponent. The constant, B, is proportional to the population size of a species with unit 660 
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volume, and absorbs cell density as the proportionality constant between mass and 661 

volume.  662 

 663 

Combining forces: Selection efficacy scales superlinearly with cell size. Combining 664 

these results implies that the efficacy of selection against noise is proportional to 665 

(ΩD@�¤¥¦§�Ω/@P). For translation, it is possible to establish a relationship between Ω/ and 666 

ΩD, allowing us to reduce the number of independent variables.  667 

Protein synthesis occurs in the cytoplasm/cytosol, suggesting that reaction-668 

compartment volume may simply equal whole-cell volume (Ω/~ΩD) for translation. This 669 

relationship appears to hold between E. coli and yeast (m = 1500 and 60,000, 670 

respectively, with a 40 fold difference in cell volume) and within mammalian cells as 671 

they change volume throughout the cell cycle (Kempe et al. 2015; Padovan-Merhar et al. 672 

2015). However, Gillooly et al (Gillooly et al. 2005) found that RNA concentration scales 673 

as body mass to the -1/4 power over a broad range of eukaryotes, corresponding to RNA 674 

number scaling with mass to the ¾ power. Although unicells were underrepresented in 675 

their sample, this agrees well with the scaling of mRNA between E. coli and the amoeba 676 

Dictyostelium discoideum where m = 155,000 and cell size is approximately 500-1000 677 

fold larger than E. coli, such that Ω/~ΩD
:/F	𝑡𝑜	ΩD

F/�.  678 

Thus, for translation, we assume that reaction volume scales with whole cell 679 

volume according to, Ω/ = ΩD
@��ª«., where gsel = [3/4, 1]. Therefore, the efficacy of 680 

selection against mRNA noise can be written as an allometric scaling law:  681 

𝑁? s ≅ ∆𝐶𝑉&ra�: 𝑎 1 − 𝑎 𝐵ΩD@�																																																16 682 
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The superlinear scaling exponent, g = gsel + gdrift  = [3/2, 2¼], makes selection against 683 

noise extremely weak in large cells. For example, all else equal, selection against a 684 

mutation that increases expression noise is thirty thousand to one million times stronger 685 

in E. coli than in a species, such as the amoeba Dictyostelium discoideum, which is about 686 

1000 times larger (Fig. 4). 687 

 688 

Figure 4: Power-law scaling of selection efficacy with cell volume. A,B) The predicted 689 
efficacy of selection, Ne|s|, for E. coli, S. cerevisae and Dictyostelium disoicdeum, as a 690 
function of the jump size in noise caused by a mutation, |∆𝐹|, for mutations acting at a 691 
single locus (left-hand column) and mutations acting on the noise of the global 692 
transcriptome (right-hand column). The mRNA concentrations and effective population 693 
size (Ne) estimates used for the figure are found in Table S1 (m = 1500, 60,000 and 694 
155,000, respectively, and ploidy-adjusted Ne = 2x108, 1x107 and 1.1x105, respectively).  695 
Reaction order was assumed to be a = 0.8 for all three species. The “drift boundary” is 696 
2Ne|s| =1. C,D) The predicted noise jump size at the drift boundary as a function of cell 697 
volume. The green region represents a range of values for the scaling exponent (-2 to -698 
3/2), reaction order (0.75-0.9), and in C) the gene number (3250-12,500). Above the 699 
green region (or individual points) selection is strong, below mutations are effectively 700 
neutral. 701 
 702 
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Solving for |∆𝐹| at the drift boundary (2𝑁?|s| = 1), gives the jump size in noise 703 

strength “visible” to natural selection. If the only cost of transcriptional noise is reduced 704 

translation, then the selectively impermissible jump sizes in transcriptional noise follows 705 

the scaling relationship, 706 

∆𝐹&ra�∗ > bΩD�																																																														17 707 

where 𝑏 = 𝐾& +𝑚 :/𝐵𝐾&. Mutations causing jumps smaller than this critical size are 708 

“effectively neutral”, and thus invisible to selection acting on translation rate. Adaptive 709 

mutations that decrease noise by an amount less than this jump size cannot efficiently 710 

spread, while deleterious mutations with effect size below this threshold cannot be 711 

efficiently purged by selection.  712 

Parameterizing our model with literature estimates of cell volume, effective 713 

population size, genome size, ribosomal occupancy, and translation kinetics, we predict 714 

that E. coli should be strongly selected to minimize intrinsic transcriptional noise simply 715 

because this noise slows translation. Whereas the cost of transcriptional noise is too weak 716 

per gene (on average) in S. cerevisiae or Dictyostelium for selection to maintain intrinsic 717 

noise at the Poisson minimum if noise-induced slowdown of translation is the only cost 718 

of mRNA noise. Fig 4 shows that in cells below about 5fL (most prokaryotes), selection 719 

favors suppression of intrinsic transcriptional noise to its theoretical minimum defined by 720 

Poisson statistics, even if the only cost of transcription noise is reduced translation rate. 721 

But because of the superlinear scaling of selection efficacy, cells only 100 times larger 722 

(most eukaryotes) cannot efficiently oppose intrinsic noise jumps even as large as ∆𝐹 = 723 

1000 (again, if this is the only selection pressure for noise-minimization acting). 724 

Alternatively, jumps in global transcriptional noise (i.e., extrinsic noise) have a much 725 
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greater selective effect, meaning that traits affecting extrinsic noise, such as ribosome 726 

fluctuations (Eqn 9), should be under strong selection for noise-amelioration even in 727 

moderately sized species. 728 

 729 

DISCUSSION 730 

Biochemical reactions are non-linear, but are typically modeled as linear in stochastic 731 

models of gene expression due to technical limitations (van Kampen 2007). Here we have 732 

introduced a novel procedure for easily and more accurately incorporating non-linearity 733 

into models of coupled stochastic chemical reactions. We have found that hyperbolic 734 

reaction kinetics filter input noise in such a way that the average reaction rate is slowed 735 

by noise, while attenuating noise propagation. These results have a number of 736 

implications. 737 

 738 

A drift barrier hypothesis for gene expression noise and robustness. Cell size places 739 

severe constraints on the evolution of noise suppression. The magnitude of noise-induced 740 

slowdown of Michaelis-Menten reactions is inversely proportional to the reaction 741 

volume, which follows intuitively from the fact that, for a given molecular density, 742 

greater volumes contain more molecules and thus generate less noise. Lynch (Lynch 743 

2007b) has previously noted the “genomic perils of evolving large body size”. Large 744 

bodied species tend to be less efficient at purging deleterious mutations due to the 745 

positive scaling of genetic drift strength with body size, leading to a number of broad 746 

taxonomic patterns including greater genomic mutation rate, transposon abundance and 747 

intron number in unicellular eukaryotes and metazoans relative to prokaryotes and 748 
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viruses (Lynch 2007b; Lynch 2007a; Sung et al. 2012). Unique to gene expression noise, 749 

cell size affects not only drift but also fitness, resulting in a negative superlinear scaling 750 

of selection efficacy with cell size (Eqns. 15-17). Unicellular species span more than four 751 

orders of magnitude in cell volume (~0.1 µm3 Mycoplasma to more than 1000 µm3 in 752 

amoebazoans and other protists), with a sharp taxonomic divide separating prokaryotes 753 

and eukaryotes. “Typical” cell diameters are 0.5-5um for prokaryotes and 10-100um for 754 

unicellular eukaryotes. Taking a conservative value of a 100-fold average volume 755 

difference between prokaryotes and eukaryotes, this translates to a 1000-10,000-fold 756 

difference in the average efficacy of selection against noise for non-compartmentalized 757 

processes (Eqn. 16).  758 

Of course, numerous other fitness effects of gene expression noise occur (Eqn. 13 759 

and (Fraser et al. 2004; Wang and Zhang 2011; Lehner 2008; Raj and van Oudenaarden 760 

2008; Balázsi, van Oudenaarden, and Collins 2011; Raser and O’Shea 2005)), but these 761 

must all scale with cell (or compartment) volume, such that selection for noise-762 

amelioration will often be weaker in eukaryotes than prokaryotes. It is possible that the 763 

greater transcriptional complexity in eukaryotic cells, which employ multisubunit 764 

regulatory complexes, enhancer regions, heterochromatic gene silencing, nuclear 765 

localization into “transcription factories” and other features that greatly increase the 766 

burstiness of transcription, evolved only once greater cell size freed populations from the 767 

selective constraint of noise minimization. The cause of the size disparity between 768 

prokaryotes and eukaryotes is thought to be due to differences in cellular respiration: 769 

prokaryotes synthesize ATP via the electron transport chain embedded in the cell’s 770 

plasma membrane, which requires a high surface area to volume ratio for the whole cell 771 
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in order to balance energy production and demand. Respiration via mitochondria free 772 

eukaryotes from this constraint, allowing them to achieve large cell sizes without 773 

bankrupting the cell’s energy budget. Thus, the evolution of mitochondria may have 774 

paved the way for the greater transcriptional sophistication of eukaryotes.   775 

 776 

Translation attenuates the propagation of transcriptional noise: Gene expression 777 

noise is generated at two levels: transcription and translation. While the molecular 778 

mechanisms controlling noise at each of these levels are becoming increasingly well 779 

understood, much remains unclear about the propagation of noise between levels. I have 780 

shown here that hyperbolic translation kinetics greatly attenuate the propagation of 781 

mRNA noise to the protein level. Given parameter estimates of translation kinetics in E. 782 

coli and yeast, the results here imply that hyberbolic translation will reduce mRNA noise 783 

by between 25 and 100 fold, substantially attenuating the propagation of mRNA noise to 784 

the protein level. The hyperbolic filtering of mRNA noise by translation also manifests as 785 

a substantial reduction in the correlation between mRNA and protein abundance (Eqn. 786 

10). This result is consistent with data from E. coli showing that there is zero correlation 787 

between a gene’s mRNA noise and its protein noise (Tanaguchi et al 2010). We have 788 

shown that hyperbolic translation kinetics can help explain this lack of correlation, since 789 

the correlation coefficient between mRNA and protein noise is proportional to the 790 

reaction order parameter, a, which is between 0.1 and 0.2 in E. coli, implying a large 791 

reduction in the correlation. Geometrically, one can visualize this diminution of 792 

correlation by observing the Michaelis-Menten rate curve: on the flat part of the curve, all 793 
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mRNA concentrations lead to the same rate of protein synthesis, thus creating a zero 794 

correlation between mRNA and protein.   795 

A major implication of these results is that the vast majority of all intrinsic protein 796 

noise comes from translation, not transcription. Consequently, if protein noise, rather 797 

than mRNA noise, determines the functional consequences of gene expression noise, then 798 

natural selection on transcriptional noise will be extremely weak, and synthetic systems 799 

desiring control of protein noise should target translation, not transcription. We have thus 800 

come to two conclusions about transcriptional noise: 1) mRNA noise directly inhibits 801 

growth by slowing translation and 2) very little mRNA noise propagates to the protein 802 

level. These two predictions cast new light on the functional consequences of 803 

transcriptional noise in living cells.  804 

   805 

Survival of the flattest. We have shown that hyperbolic reactions, by filtering out high-806 

amplitude input fluctuations, cause a reduction in both signal (average output) and noise 807 

(relative output variance) compared to first-order reactions. The strength of selection 808 

favoring organismal robustness is determined by the former, while the target of selection 809 

for increased robustness is determined by the latter. Both the strength of noise and its cost 810 

are mediated by the reaction order, a = Km/( Km + s) (Eqns. 6, 9), making this the obvious 811 

target for noise-attenuation. Noise-induced slowdown is minimal for first and zeroth 812 

order reactions (a =1, 0, respectively), while noise itself is minimal only in zeroth order 813 

(a = 0). Indeed, zeroth order kinetics completely filter out super-Poisson intrinsic input 814 

noise (Eqn. 9; Fig. 2), making the output entirely insensitive to input noise. We might call 815 

this phenomenon “zeroth order insensitivity”. Selection for robustness, then, should push 816 



 38 

reactions towards their zeroth order regime. Geometrically, the zeroth order regime 817 

corresponds to the flat part of the rate curve, such that adaptive robustness by this 818 

mechanism promotes “survival of flattest”, a term previously invoked to describe 819 

selection for robustness via very different mechanisms (Wilke et al. 2001; Codoñer et al. 820 

2006).  821 

There are two targets of modification for reaction order minimization: increasing 822 

substrate abundance, s, which moves the substrate distribution to the flatter part of the 823 

rate curve, or reducing Km, which shifts the rate curve itself. Importantly, these strategies 824 

are not equivalent (Fig. 2). Decreasing Km (while holding s constant) causes a unimodal 825 

change in product noise because Km has two complementary effects: it reduces reaction 826 

order, a, which filters noise, but it also increases product burst size, bT (Fig. 2). 827 

Alternatively, increasing mRNA concentration (with Km held constant) monotonically 828 

decreases protein noise because both reaction order, a, and translational bursting, bT, 829 

decline. This strategy increases fitness monotonically, thus avoiding the mRNA/protein 830 

noise trade-off. Importantly, increasing robustness by increasing substrate concentration 831 

is different from increasing robustness by decreasing substrate noise. To highlight this, 832 

one could force noise strength to stay constant while increasing mean substrate. The 833 

result would be increased robustness without a decrease in noise strength. This strategy 834 

undoubtedly generates other costs not accounted for in the current model, such as the 835 

energetic cost of increased mRNA synthesis. Future work should explicitly examine the 836 

evolutionary feasibility of cellular robustness via this mechanism in light of its potential 837 

trade-offs. 838 

 839 
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Robustness via compartmentalization: The present theory provides new insight into the 840 

recent argument that compartmentalization of reactions in eukaryotic cells is a strategy 841 

for noise control (Stoeger, Battich, and Pelkmans 2016). If cell compartments are filled 842 

with reactants via active transport by membrane transporters, then the resulting 843 

hyperbolic filtering (described above) will attenuate copy number fluctuations of 844 

reactants potentially down to the Poisson minimum, though not lower (e.g., Eqns 9 and 845 

S21). But hyperbolic filtering also slows the average rate of transport, creating 846 

inefficiency. In addition, reducing the reaction volume increases the relative size of 847 

fluctuations (the noise), which slows the absolute average rate of reactions within the 848 

compartment. Future work is necessary to determine exactly when the conflicting costs 849 

and benefits of hyperbolic filtering favor reaction compartmentalization as a strategy for 850 

cellular robustness. In eukaryotes, this takes on another dimension, because mRNA is 851 

actively transported out of the nucleus and into the cytoplasm before translation. The 852 

hyperbolic filtering of transcriptional noise at this level will greatly ameliorate 853 

transcriptional noise even before mRNA is filtered by translation. Future work should 854 

model the consequences of this serial transcriptional noise filtering in eukaryotes. 855 

 856 

Metabolic flux. Wang and Zhang (Wang and Zhang 2011) used metabolic control 857 

analysis (MCA) to study the effect of enzyme fluctuations on metabolic flux, concluding 858 

that enzyme noise diminishes fitness in pathways with more than one enzyme. This result 859 

arises from the hyperbolic relationship between enzyme concentration and steady state 860 

flux in multi-enzyme metabolic pathways (Kacser and Burns 1973), and so, like the 861 

present paper, is a straightforward consequence of nonlinear averaging. However, MCA 862 
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models assume first-order enzyme kinetics (Kacser and Burns 1973). In light of the 863 

present results, it is not immediately clear if this assumption makes the results of (Wang 864 

and Zhang 2011) an underestimate of the true cost of gene expression noise, because 865 

hyperbolic rate laws cause noise-induced slowdown at each pathway step, or an 866 

overestimate of cost, because hyperbolic rate laws attenuate noise at each step, thus 867 

damping noise propagation through the pathway. Future work should distinguish between 868 

these two possibilities.  869 

 870 

The crucial assumption: All of the major results of this paper rely on the validity of 871 

hyperbolic reaction kinetics as an accurate description of in vivo biochemical reactions. 872 

This assumption is not guaranteed, especially for translation. Translation is a unique 873 

biochemical reaction because a single substrate molecule (mRNA) is simultaneously 874 

bound to multiple enzymes (ribosomes), and it is therefore easy to imagine that 875 

translation kinetics may not be well-described by Michaelis-Menten reaction kinetics. 876 

Therefore, the present theoretical results must remain in question until future empirical 877 

work carefully measures the in vivo rate law of protein translation.  878 

 879 

METHODS 880 

All Monte Carlo simulations were run on the elementary (microscopic) system of 881 

reactions (S17) using Gillespie’s Exact Stochastic Simulation Algorithm (SSA) (Gillespie 882 

1977)  implemented in Mathematica v10.3.0.0 with the open source xSSAlite package, 883 

freely available from the xCellerator project (http://www.xlr8r.info/SSA/). Each 884 

realization of the simulation is a Markov Chain with irregular (exponentially distributed) 885 

time intervals. For statistical analysis, each realization was regularized using the 886 
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TimeSeriesAggregate[] command. Mean[] and Variance[] commands of the regularized 887 

time series were used to compute the moments of the Markov Chain. Data points in 888 

figures 1,2 and 3 are ensemble averages or variances over 1000-10,000 simulated 889 

realizations of the stochastic process; each realization was run for at least 10 times the 890 

half life of S or P (half-life = ln(2)/	𝛿), whichever was longer, and the value for that 891 

realization was s or p during the final second of the simulation run.  892 

 893 
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