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Abstract 
Background 

 It was not possible to detect the common problem of insincere grip effort in grip strength 

evaluation until now. The usually used JAMAR dynamometer has low sensitivity and speci-

ficity in distinguishing between maximal and submaximal effort. The manugraphy system 

may give additional information to the dynamometer measurements used to assess grip force, 

as it also measures the load distribution of the hand while it grips a cylinder. Until now, the 

data of load distribution evaluation were analyzed by comparing discrete variables (e.g., load 

values of a defined area). From another point of view, the results of manugraphy measure-

ments form a pattern. Analyzing patterns is a typical domain of machine learning.   

Methods 

We used data from several studies that assessed load distribution with maximal and submaxi-

mal effort. They consisted of 2016 total observations, including 324 patterns of submaximal 

effort. The rest were from grips with maximal effort. After preparation and feature selection, 

XGBoost machine learning was used for classification of the patterns.  

Findings 

After applying machine learning to the given data, we were able to predict submaximal grip 

effort based on the inherent pattern with a sensitivity of 94% and a specificity of 100%. 

Interpretation 

Using techniques from applied predictive modeling, submaximal effort in grip strength testing 

could be detected with high accuracy through load distribution analysis. Machine learning is a 

suitable method for recognizing altered grip patterns.  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Introduction 
Evaluation of grip strength is a common measurement in orthopedic and hand surgery for as-

sessing hand function disability (Mafi 2012). Besides, grip strength is a widely accepted pa-

rameter for general health issues (Chung et al. 2014). For various reasons, such as receiving 

financial benefits, avoiding return to work, or secondary gain from illness, patients may feign 

the loss of grip force. Exact numbers are not available, but experienced investigators estimate 

malingering or symptom exaggeration in up to 30% of cases (Mittenberg et al. 2002). The 

JAMAR dynamometer is the most frequently used tool for investigating grip force in clinical 

practice. There are several techniques for figuring out submaximal effort with the JAMAR, 

like the five-rung test, the rapid exchange grip test and the coefficient of variation. All of these 

tests have low sensitivity and low specificity (Sindhu et al. 2012). Other tests require special-

ized equipment or calculations (Shechtman, Hope, et al. 2007; Sindhu & Shechtman 2011) . 

They may give better results, but either their sensitivity or specificity is low in the end. Com-

bining the test with other measurements, such as muscle mass circumference and callusing of 

the hands, is highly dependent on subjective perception. An objective method with high sensi-

tivity and high specificity would be of great value.  

Measuring grip strength and grip pattern with a sensor system (manugraphy) provides a 

variety of data. In contrast to the JAMAR dynamometer, manugraphy measures the load app-

lied by the whole contact area of the hand using a sensor matrix, and it provides a high-resolu-

tion grip pattern for each measurement (Fig.1). A previous study, which tested 54 healthy vol-

unteers, compared both hands in terms of the load applied to each of seven anatomical areas 

using the Wilcoxon-test. The corresponding areas of both hands were the same or very similar 

if both hands performed maximum grip force. If one hand was used with submaximal force, 

there was a statistical significant difference in 5/7 areas (left hand submaximal) or 7/7 areas 

(right hand submaximal), respectively (unpublished). After analyzing the data through statisti-

cal methods, the study showed the difference between maximal and submaximal effort for the 

whole study group, though it was impossible to predict insincere effort for a single patient. 
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Principally, the results are pattern as shown in Fig 1. Analyzing such grip patterns using pat-

tern recognition methods may be suitable for predicting feigned effort.  

Machine learning (ML) is a field of computer science that evolved from artificial intelligence 

and pattern recognition. ML includes computer programs that are able to learn patterns by 

themselves and use them to make predictions. Nowadays, ML is widely used in, e.g., spam 

detection, word prediction on tablets, fraud detection in credit card transactions and weather 

prediction. In medical science, ML is used in genetic research, but is also rising in other fields, 

such as gait analysis (Christian et al. 2016). There are no studies on ML in grip pattern classi-

fication. Thus, the present study establishes machine learning as a tool for recognizing insin-

cere effort in measuring grip strength.  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Methods 

Participants and data acquisition 

As ML provides better results with a larger database, we used the data of several independent 

studies. All studies were supervised by the same researcher and used the same testing proto-

col. The grip force and load distribution were assessed using the novel (R) manugraphy sys-

tem (novel biomechanics laboratory), Munich, Germany). The participants gripped a 20 cm 

circumference (64 mm diameter) cylinder while sitting on a stool without a backrest with the 

shoulder in neutral rotation, the arm adducted and the elbow flexed 90°. The cylinder was held 

in an upright position. The participants gripped the cylinder with maximum force for 5 sec. 

three times with 10 sec. breaks in between. Details of the manugraphy testing protocol are de-

scribed here (Mühldorfer-Fodor et al. 2014). 

Seventy-six healthy subjects performed grip force testing of both hands three times each on 

three independent testing days, which resulted in 1368 measurements. 

In addition, 54 healthy subjects did grip force testing of both hands on two different days. 

These subjects were instructed to use one hand with maximum force and the opposite hand 

with submaximal effort to pretend weakness. The side that had to perform submaximal effort 

on the first session was randomized. Sides changed on the second visit. This protocol resulted 

in 324 measurements each of maximal and submaximal effort. In summary, a total of 2016 

measurements could be used for further analysis, consisting of 1692 data records with maxi-

mal effort and 324 data records with submaximal effort (Fig. 2). 
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Technical setting 
The cylinder of the manugraphy system is covered with 896 capacitive sensors (28 x 32), with 

a spatial resolution of 2 sensors/cm2. Each sensor was individually calibrated to a maximum 

pressure of 600 kPa with an accuracy of < 5%.  The load distribution of the hand, not includ-

ing the grip force values, was used for further analysis. 

The average load applied to all the sensors in the sensor matrix was retrieved as a 2D raster 

diagram (Fig. 1). This shows the contact area of the hand gripping the cylinder in the form of a 

“load distribution map.” The contact area of the hand was sectioned by one investigator into 

20 areas of interest (AOI) corresponding to the contact surfaces of each phalanx of the fingers 

and thumb (14), the Metacarpo-phalangeal joints (MCP) of the fingers (4), the thenar and the 

hypothenar region (Fig. 3). The force applied across the whole contact area was set at 100%, 

and the percentages of each of the 20 sections’ contributions to the total load were calculated.  

Data analysis 

Preprocessing 
The data analysis was implemented in R (R Core Team 2013). All data were read from Excel 

files provided by the principal investigator of the different studies. Missing values were re-

moved and categorical variables containing text were changed to numeric ones, as most ML 

programs can only deal with numeric input.  

Statistical analysis 
As stated above, there is a difference between maximal and submaximal grip. However, due to 

distribution of the data, submaximal effort cannot be predicted based on the statistical analysis 

(Fig. 4). 
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Feature extraction and building 
The best results can be achieved by choosing good features to represent the data. This can of-

ten be achieved by having good knowledge of the underlying problem. We built seven fields 

of knowledge (FOK) representing the thumb, all fingers, the thenar and the hypothenar by 

summarizing the force of the respective AOI (Fig. 5). Due to skewness of the data, all FOK 

were converted to their logarithm. Additional features were built by combining existing fea-

tures. 

Finally, a data table consisting of 2016 measurements with 12 features (Table 1) was used 

for training and testing the model.  

Model validation 
Two subsets were built from the 2016 observations: 80% for training of the model and 20% 

for validation. Both data sets were chosen randomly. They were equally distributed in terms of 

maximal and submaximal observations.  

During model training, cross validation was performed to avoid overfitting of the model. 

Finally, each model was tested against the validation data (Fig. 6). Before testing, identifica-

tion of each effort was removed.  

Training 
After testing several machine learning models and determining their performance based on the 

area under curve (AUC) from a receiver operation characteristic (ROC), it was found that the 

best results could be obtained using XGBoost. XGBoost is a tree-based model and a variant of 

the gradient boosting machine (GBM) (Chen & Guestrin 2016).  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Results 
All results are based on the assumption that submaximal effort (0 = true positive) should be 

detected. 

The results were calculated as probabilities rather than binary decisions. The ROC of the 

test data was plotted, and sensitivity and specificity at different thresholds were calculated 

from the data of the ROC (Fig. 7).  

Three points of the ROC were of special interest: the point that closest to the top-left cor-

ner of the curve (100% sensitivity and 100% specificity), the point with maximum specificity 

and the corresponding sensitivity, and the point with maximum sensitivity and the correspond-

ing specificity. In our model, the first two points were the same.  

The final model, which predicted submaximal effort, resulted in a sensitivity of 94.2% 

and a specificity of 100% with an accuracy of 95% (p < 0.0001) at a threshold of 0.890, corre-

sponding to points one and two mentioned above. Assuming a prevalence of 20% insincere 

effort in patients, the PPV and NPV were calculated as PPV = 80% and NPV =100%.  

Best sensitivity was calculated to be 100% at a specificity of 63.5%.  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Discussion 
This study introduces a new approach for detecting submaximal effort in grip strength. The 

two classes, maximal and submaximal effort, can be predicted with high accuracy.  

First, our results must be compared with the results of other studies. Dvir 1999 investigat-

ed isokinetic dynamometry and reported a sensitivity of 73.3% and a specificity of 97.05% at 

a confidence level of 95%. Shechtman, Sindhu, et al. 2007 evaluated the force-time curve of a 

special dynamometer and revealed a sensitivity and specificity of 0.93 vs 1.0 in males and 

0.83 vs 0.93 in females. Tests using the JAMAR dynamometer as the five-rung test or the 

variation of measurements have low accuracy (Sindhu & Shechtman 2011; Shechtman 2001) . 

Our study has the highest accuracy of all available studies in this field of knowledge. 

Based on the threshold, we can have either better sensitivity or better specificity (Fig. 7). 

If we pair high sensitivity with low specificity, we might be able to identify all patients who 

made insincere efforts, but we would also accuse some patients who made sincere efforts of 

being insincere, which could result in serious problems such as decreased financial compensa-

tion or incorrect treatment. In our opinion, high specificity and lower sensitivity better fits the 

goals of healthcare. We will miss some patients who feigned effort, but we will not accuse pa-

tients who made sincere efforts of being insincere. 

The value of a prediction model highly depends on the prevalence of the observed entity. 

If we assume a prevalence of 20% in a patient population, our prediction will miss approxi-

mately 20% of patients who made an insincere effort (PPV = 80%), but we will not falsely 

accuse anyone of feigning effort (100%). As mentioned above, this should be the viewpoint of 

physicians and therapists. The views and interpretations of insurance companies may be dif-

ferent.  

Our study has several shortcomings. First of all, this method depends on load distribution 

assessment by the manugraphy system, which is not widely available. The measurements and 

data analysis are still time consuming. The analysis of the AOIs is difficult and can be biased 

if more investigators or less experienced investigators are involved. In a next step, we will 
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simplify analysis of the manugraphy data. Finally, we want to analyze all of the raw data using 

ML.  

For this study, the data only included healthy people. Further investigations are necessary 

that include patients with different pathologies of the hands, wrists or upper extremities.  

!11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 23, 2016. ; https://doi.org/10.1101/068494doi: bioRxiv preprint 

https://doi.org/10.1101/068494


Conclusion 
The present study showed the potential for machine learning to recognize grip patterns of sin-

cere and insincere effort. The evaluation of the model revealed good performance on the test 

data. Even though there were some limits because only healthy adults were investigated, the 

large sample size enhanced the informative value. This approach could become a new method 

in clinical settings as well as scientific research. Further research is needed to refine data ana-

lysis and usefulness in patients with different pathologies.  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Tables 

Table 1: 

Tab 1: Features used for training. Features 4 to 10 are the fields of 
knowledge (FOK) explained in the text.  

Feature
1 Age
2 Sex
3 max force at 3 sec
4 FOK thumb
5 FOK index
6 FOK middle
7 FOK ring
8 FOK small
9 FOK hypothenar
10 FOX thenar
11 variance(feature 4:10)
12 log(sum(feature 4:10))
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Figures 

Fig 1: Grip pattern. Left side, maximal grip; right side, submaximal grip. 

Fig 2: Flow diagram of measurements. 
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Fig 3: Representation of the 20 contact surfaces (Areas of Interest [AOI]) 

that are used for further analysis. 

!17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 23, 2016. ; https://doi.org/10.1101/068494doi: bioRxiv preprint 

https://doi.org/10.1101/068494


Fig 4: Boxplots (median, 25th and 75th percentile and outliers) of the indi-

vidual areas of interest (AOI); x-axis effort, y-axis load 

Fig 5: Graphical representation of fields of knowledge (FOK) calculated 

from the AIO. 
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Fig 6: Evaluation of model validity 
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Fig 7: Receiver operation characteristic (ROC) for test data. Left point 

(specificity = 100%, sensitivity = 94.2 %, threshold: 0.89) and right point 

(sensitivity = 100%, specificity = 63.5%, threshold: 0.104)  
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