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GENETICS | INVESTIGATION

Dynamics and fate of beneficial mutations under
lineage contamination by linked deleterious mutations
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ABSTRACT Beneficial mutations drive adaptive evolution, yet their selective advantage does not ensure their fixation.
Haldane’s application of single-type branching process theory showed that genetic drift alone could cause the extinction
of newly-arising beneficial mutations with high probability. With linkage, deleterious mutations will affect the dynamics
of beneficial mutations and might further increase their extinction probability. Here, we model the lineage dynamics of a
newly-arising beneficial mutation as a multitype branching process; this approach allows us to account for the combined
effects of drift and the stochastic accumulation of linked deleterious mutations, which we call lineage contamination. We
first study the lineage contamination phenomenon in isolation, deriving extinction times and probabilities of beneficial
lineages. We then put the lineage contamination phenomenon into the context of an evolving population by incorporating
the effects of background selection. We find that the survival probability of beneficial mutations is simply Haldane’s
classical formula multiplied by the correction factor e

�kU/s̄

b , where U is deleterious mutation rate, s̄

b

is mean selective
advantage of beneficial mutations, k 2 (1, #], and # = 2 � e

�1. We also find there exists a genomic deleterious mutation
rate, Û, that maximizes the rate of production of surviving beneficial mutations, and that Û 2 [ 1

# s̄

b

, s̄

b

). Both of these
results, and others, are curiously independent of the fitness effects of deleterious mutations. We derive critical mutation
rates above which: 1) lineage contamination alleviates competition among beneficial mutations, and 2) the adaptive
substitution process all but shuts down.

KEYWORDS adaptation; mutation rates; fixation; multitype branching processes

Beneficial mutations are the ultimate source of the genetic
variation that fuels evolutionary adaptation, but deleteri-

ous mutations are likely to be far more abundant (Muller 1950;
Sturtevant 1937). Perhaps for the sake of simplicity, the evolu-
tionary effects of these two types of fitness-affecting mutations
were generally considered separately in early studies. For exam-
ple, Muller (1964) assumed that beneficial mutations were negli-
gible and reasoned verbally that deleterious mutations should
have disastrous consequences for populations in the absence of
recombination because of the recurrent, stochastic loss of geno-
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typic classes with the fewest deleterious mutations–Muller’s
ratchet (Felsenstein 1974). Haldane (1927), on the other hand, fo-
cused on the fate of single beneficial mutations in the absence of
other fitness-affecting mutations and used single-type branching
process theory to show that most such beneficial mutations are
lost to what is now called genetic drift: the fixation probability
of such a beneficial mutation is only about twice its selective
effect, s

b

, for small s

b

.

In reality, of course, multiple fitness-affecting mutations (both
beneficial and deleterious) can be present simultaneously in pop-
ulations, and these mutations can influence each others’ fates
and evolutionary effects as a consequence of linkage (reviewed
in Gordo and Charlesworth (2001); Charlesworth (2013, 2009);
Barton (2009)). Interactions between beneficial and deleterious
mutations are of particular interest in this regard, because such
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interactions–in contrast to interactions between beneficial muta-
tions alone–can determine whether a population will increase
or decrease in fitness. Indeed, recent studies (Bachtrog and
Gordo 2004a; Poon and Otto 2000; Goyal et al. 2012; Kaiser and
Charlesworth 2009; Silander et al. 2007) have indicated that ben-
eficial mutations (including reversions of deleterious mutations)
can impede or halt the fitness loss predicted in asexual popula-
tions under Muller’s ratchet, as originally suggested by Haigh
(1978a). Moreover, a number of theoretical studies (Johnson and
Barton 2002a; Jiang et al. 2011; McFarland et al. 2014; Bachtrog
and Gordo 2004a; Charlesworth 2013; Peck 1994) have shown
that Haldane’s classical fixation probability of 2s

b

for a benefi-
cial mutation can be reduced by the effects of selection against
linked deleterious mutations (Good and Desai 2014; Hartfield
et al. 2010; C W Birky and Walsh 1988): in principle, such effects
include both background selection against deleterious mutations
already present in the genome on which the beneficial mutation
appears, and selection against deleterious mutations that arise
and accumulate in genomes carrying the beneficial mutation.
The latter form of selective effect has not previously been ana-
lyzed in isolation; it is the primary focus of the current paper
and will be referred to as lineage contamination.

In preliminary computer simulations, we observed that the
fixation probability of a beneficial mutation appearing in an oth-
erwise initially homogeneous asexual population with a high
genomic mutation rate is considerably reduced below Haldane’s
classical 2s

b

expectation. We hypothesized that the lower proba-
bility of fixation of a beneficial mutation in this situation can be
attributed to lineage contamination: specifically, Muller’s ratchet
operates at a much faster rate in the small lineage founded by
the beneficial mutation than in the rest of the population. Here,
we present the results of analytical modeling and further com-
puter simulations that support this hypothesis and show how
lineage contamination affects fixation probabilities, dynamics of
differential load (relative fitness dynamics), sojourn dynamics,
and fitness effects of surviving beneficial mutations.

We model the influences of background selection and lineage
contamination, both singly and jointly, on the fate of beneficial
mutations. Under background selection alone, a beneficial mu-
tation that lands on the best genetic background (the one least
loaded with deleterious mutations) always has a non-zero proba-
bility of achieving fixation in an asexual population. In contrast,
under lineage contamination alone, a beneficial mutation can
have a probability of fixation that is zero if the mutation rate is
high enough. Our simulations and analytical results suggest that
when both background selection and lineage contamination are
operating – as they do in real populations – asexual populations
traverse a continuum of evolutionary regimes as the genomic
mutation rate increases: at low mutation rates, beneficial mu-
tations appear infrequently enough that they do not interfere
with each others’ progress to fixation (the “periodic selection”
regime; Sniegowski and Gerrish (2010)); as the mutation rate
increases, alternative beneficial mutations begin to compete with
each other (the “clonal interference” regime); as mutation rate in-
creases further, we find that lineage contamination can suppress
a fraction of beneficial mutations that is sufficient to cause a
population to revert to the periodic selection regime; ultimately,
at very high mutation rates, a regime can be reached in which
beneficial mutations are no longer substituting. Significantly,
these last two regimes would not obtain without the operation
of lineage contamination: at high mutation rates, background
selection alone cannot shut down clonal interference or the adap-

tive substitution process, but lineage contamination can. Our
results, therefore, indicate that the lineage contamination effect
is central to determining the adaptive fate of a population when
both beneficial and deleterious mutations are arising (Bull and
Wilke 2008; Bull et al. 2007; Springman et al. 2009).

Beneficial lineages in a homogeneous population

We model the random accumulation of deleterious mutations
within a growing lineage founded by the occurrence of a benefi-
cial mutation (henceforth, beneficial lineage). Our main objective
in this section is to study the effects of lineage contamination in
isolation, and to this end we model beneficial lineages arising
within initially homogeneous populations.

We are interested in how the accumulation of linked dele-
terious mutations affects the dynamics and fate of beneficial
mutations; as a first approximation, we assume complete asex-
uality. We assume that relative fitness effects of mutations do
not change over the relevant time span, i.e., the environment
remains constant over this time span, and there are no frequency-
dependent effects other than the one examined here (due to
differential rates of Muller’s ratchet). All models assume that
fitness effects of mutations are multiplicative, i.e., no epista-
sis. Finally, our multitype branching process model assumes
that reproduction is by binary fission (e.g., bacteria, cell lines):
thus, individuals can have a maximum of two offspring. Sim-
ulations that relax this assumption give qualitatively similar
results; quantitatively, however, fixation probabilities derived
from the binary fission model may be approximately halved
for the more general model in which numbers of offspring are
Poisson-distributed.

Finally, it will facilitate further reading to precisely define
three terms: extinction probability, p

b

ext

, is the probability that a
beneficial lineage, arising in an otherwise infinite population,
becomes extinct in finite time (the superscript b indicates that
this probability pertains to the beneficial lineage in question and
not the whole population); survival probability is the complement
of the extinction probability: p

svl

= 1 � p

b

ext

; finally, fixation

probability, p

f ix

, is the probability that a lineage will displace
the rest of a finite population (becomes fixed) in finite time. We
note that we have dropped the superscript in p

svl

and p

f ix

, as
reference to the beneficial lineage is implied. We further note
that it is possible for an ultimately doomed lineage to become
fixed in a finite population, implying p

f ix

> p

svl

.

Multitype branching process model
Our stochastic model is a discrete-time multitype branching
process, where a "type" i 2 N corresponds to the number of
acquired deleterious mutations. The model describes the evo-
lution of the composition of the population X

t

= (X

t,0, X

t,1, . . .),
X

t,i being the number of individuals carrying i deleterious mu-
tations at time t 2 N . We denote by U > 0 the deleterious
mutation rate and by 0 6 s

b

6 1 and 0 < s

d

< 1 the selective ad-
vantage of beneficial mutations and disadvantage of deleterious
mutations, respectively. The model can be described as follows:
at each time-step, each individual produces two descendants
carrying as many deleterious mutations as itself. Each descen-
dant might accumulate during this reproduction k additional
deleterious mutations, with probability e

�U

U

k/k!. If the parent
was of type i, the descendant is then of type i + k and is selected
according to its fitness, i.e. with probability proportional to
(1 + s

b

)(1 � s

d

)i+k. Therefore, an individual of type i produces
a total number of 0, 1 or 2 descendants, each of them being of
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a type greater than or equal to i. We refer to the Supporting
Information (SI) for a more detailed description of the model.

We consider a sub-population carrying a beneficial mutation
(i.e., a single beneficial lineage) arising in a large wild-type pop-
ulation. In order to study the lineage contamination effect in
isolation, we assume that both populations initially do not carry
any deleterious mutations. For this purpose we consider two
independent branching processes: (X

t

)
t2N describing the evolu-

tion of a wild-type population of initial size N, hence with s

b

= 0
and initial state X0 = (N, 0, 0, . . .), and

�

Xb

t

�

t2N
describing the

evolution of a single beneficial lineage, with s

b

> 0 and initial
state Xb

0 = (1, 0, 0, . . .).

Mean demographic dynamics of each sub-population
The mean wildtype population size (all types combined) at
time t is given by Ne

�Ut

e

U(1�(1�s

d

)t)(1�s

d

)/s

d (S4). A ben-
eficial mutation occurring within the wildtype population
founds a beneficial lineage whose mean size is given by
(1 + s

b

)t

e

�Ut

e

U(1�(1�s

d

)t)(1�s

d

)/s

d (S5). Note that as time tends
to infinity this quantity tends to +• if U < ln (1 + s

b

), to
e

U(1�s

d

)/s

d if U = ln (1 + s

b

), and to 0 if U > ln (1 + s

b

). The
latter convergence will typically not be monotonic (Figure S1).

Extinction and survival probabilities
The previous result concerning the evolution of the mean ben-
eficial lineage population size can be refined by looking at the
extinction probability of the beneficial lineage. By this we mean the
probability p

b

ext

that the process
�

Xb

t

�

t2N
does become extinct,

i.e. p

b

ext

= P
�

8i 2 N, lim
t!• X

b

t,i = 0
�

. We show (Proposition 1;
see SI) that although the number of types is infinite, this probabil-
ity also equals P

�

lim
t!• Â

i2N X

b

t,i = 0
�

. The beneficial lineage
almost surely becomes extinct if and only if U > U

c

, where the
critical deleterious mutation rate is given by

U

c

= ln (1 + s

b

) . (1)

Of course, this implies that if U < U

c

then p

b

ext

< 1, i.e. the
beneficial lineage can survive with positive probability. We find
that survival probability p

svl

= 1 � p

b

ext

is bounded by:
(

f

l

6 p

svl

< f

u

, U < ln(1 + s

b

)

p

svl

= 0 , U > ln(1 + s

b

)
(2)

where

f

l

= 4
e

U

1 + s

b

✓

1 � e

U

1 + s

b

◆

and f

u

= 4
1

1 + s

b

✓

1 � 1
1 + s

b

◆

Lower bound f

l

is achieved when s

d

> s

b

, and the upper bound
f

u

is achieved when s

d

! 0. Exact computation of p

svl

is
achieved numerically using algorithm (S11) derived in the SI.
Figure 1 plots examples of such computations (thin intermediate
curves) as well as limiting cases f

l

and f

u

(thick curves) as a func-
tion of the deleterious mutation rate U and selective advantage
s

b

, respectively.

Fixation probabilities
In this branching process model the fixation probability of the ben-
eficial lineage is the probability p

f ix

that at some point the whole
population carries the beneficial mutation. Note that because
we take into account stochastic variation in population size, the
beneficial mutation might not be permanently established even
after fixation, because the population might eventually become

extinct afterward. The fixation probability corresponds here ex-
actly to the probability that the wild-type population dies out
before the single beneficial lineage does: p

f ix

= P
�

T

ext

< T

b

ext

�

,
where T

ext

= inf{t 2 N : X
t

= 0} (alternatively, T

b

ext

) is the
extinction time of the wild-type population (alternatively, bene-
ficial lineage). From what precedes we know that T

ext

is almost
surely finite, whereas T

b

ext

is almost surely finite if and only if
U > U

c

. Note also that because of the strict inclusion of the
probability events {T

b

ext

= +•} ( {T

ext

< T

b

ext

}, we know that
1 � p

b

ext

< p

f ix

. This implies in particular that in this model the
fixation probability is never zero. Although we cannot provide a
closed-form expression for p

f ix

, this probability can be well ap-
proximated numerically by Equations (S12) - (S13). We illustrate
this result in Figure S5 where we plot p

f ix

as a function of the
deleterious mutation rate.
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Figure 1 Survival probabilities as functions of: (A) deleterious
mutation rate, and (B) selective advantage of the beneficial mu-
tation. Solid curves plot survival probabilities of a beneficial
mutation in an otherwise homogeneous population (lineage
contamination in isolation). Blue curves plot the case s

d

> s

b

,
red curves plot the limit s

d

! 0, and curves of intermediate
color plot survival probabilities for intermediate values of
s

d

(numerical solutions to the survival probability equations
given in the SI). Parameters are: s

b

= 0.1 (for A), and U = 0.1
(for B).

Fitness dynamics of a beneficial lineage within a population

The fitness of the beneficial lineage at time t is given by

W

�

Xb

t

�

= Â
i2N

(1 + s

b

) (1 � s

d

)i

X

b

t,i

Â
i2N X

b

t,i
.

Because of the potential extinction of the population, the ran-
dom variable W

�

Xb

t

�

is only defined for t < T

b

ext

. We simi-
larly define the fitness of the whole population W

�

X
t

+ Xb

t

�

,
and focus our study on the dynamics of the relative fitness
W

�

Xb

t

�

/W

�

X
t

+ Xb

t

�

. Because we assume in our model that
the wild-type population is initially large, we approximate the
relative fitness by its almost certain limit as N tends to infinity
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(S14), namely

e

U(1�s

d

)(1�(1�s

d

)t)
W

�

Xb

t

�

.

We also prove that the mean value of this relative fitness tends as
time tends to infinity to (1 + s

b

)
�

1 � p

ext

�

(S15)-(S16). A plot of
this long-term limit is given in Figure S6. In order to have a more
accurate description of the evolution over time of the relative
fitness, we provide in addition an upper and lower bound (S17)-
(S18) of its mean value for each t 2 N, as illustrated in Figure
2.

Figure 2 Evolution over time of the mean relative fitness of a
single beneficial lineage (s

b

= 0.1) in a large wild-type pop-
ulation, initially homogeneous, with s

d

= 0.03. Upper and
lower bounds were obtained as described in the SI. The de-
crease in relative fitness is caused by the comparatively rapid
accumulation of deleterious mutations owing to the small size
of emerging beneficial lineages, i.e., lineage contamination.

Figure 3 Mutational meltdown of beneficial lineages. Se-
quence En0 (T0) , En1 (T1) , . . . of the mean extinction times
of the least-loaded classes, for one single beneficial lineage.

Mutational meltdown of a beneficial lineage
Our goal here is to study the synergy between the loss of the
least-loaded classes and the potentially decreasing size of the
beneficial lineage. For technical reasons detailed in the SI, we
consider in this section the continuous-time analog

�

Xb

t

�

t>0 of
the branching processes

�

Xb

t

�

t2N
studied previously. Assuming

that at time t the least-loaded class in the beneficial lineage’s
population is of type i, the process at this time is of the form
Xb

t

= n
i

=
�

0, . . . , 0, n

ii

, n

i,i+1, . . .
�

. Conditionally on Xb

0 = n
i

,
we define the extinction time of the least-loaded class as T

i

=
inf{t > 0 : X

b

t,i = 0}. The mutational meltdown effect is then
fully described by the sequence of random variables T0, T1, . . .

Note that T1 strongly depends on the random value Xb

T0
taken

by the process at the beginning of the time interval [T0, T0 + T1].
Note also that assuming Xb

T0
= n1, the strong Markov property

enables study of the process on the latter interval to be reduced
to its study on [0, T1], conditionally on Xb

0 = n1. We thus provide
in Proposition 2 (SI) an explicit computation of the cumulative
distribution function Pn

i

(T
i

6 t) of the time to extinction of the
least-loaded class of type i, for any i and any initial condition
Xb

0 = n
i

. From this we deduce its mean value En
i

(T
i

). Again,
three different regimes appear depending on whether U < U

c

,
U = U

c

or U > U

c

. We illustrate this result in Figures S2 and S3,
where we plot the cumulative distribution function and mean
value of the extinction time T0 of the first least-loaded class, with
Xb

0 = n0 = (1, 0, 0, . . .).
Finally, in order to study not only the behavior of each ex-

tinction time separately but to take into account the stochastic
evolution of the process

�

Xb

t

�

t>0, we compute the sequence of
the mean extinction times En0 (T0), En1 (T1) , . . . , where the de-
terministic sequence (n

i

)
i2N is chosen to reflect as accurately

as possible the mean evolution of
�

Xb

t

�

t>0. We naturally choose
n0 = (1, 0, 0, . . .), and then define n1 as the mean value of
the process at the end of the first time interval [0, T0]. Be-
cause this mean value might not be integer-valued, we round
each of its coordinates to the closest integer. Hence we set
n1 = round

�

En0

�

Xb

T0

��

, and iteratively define in a similar man-
ner n2, n3, . . .. As proved in Proposition 2 (SI), we can explicitly
compute each En

i

�

Xb

T

i

�

, which combined with the previously
mentioned computation of En

i

(T
i

) for any initial condition n
i

,
enables us to obtain the desired sequence En0 (T0), En1 (T1) , . . ..
Figure 3 illustrates this result and provides a visualization of
the mutational meltdown effect in a single beneficial lineage for
different values of U, s

b

and s

d

.

Beneficial lineages in an evolving population

Until now, we have examined the process of lineage contamina-
tion in isolation; that is, the accumulation of deleterious muta-
tions occurring after the production of a beneficial mutation. In
addition, we have assumed that we know the selective advan-
tage of the focal mutation.

In real populations, however: 1) deleterious mutations can
occur both after and before the appearance of a beneficial muta-
tion, and 2) we generally will not know the selective advantages
of beneficial mutations. Deleterious mutations that appear be-
fore create a deleterious background upon which the beneficial
mutation arises; selection against this deleterious background
is background selection (Charlesworth et al. 1993; Stephan 2010).
Here, we model the growth and fate of beneficial mutations of
varying selective advantages arising in a population already
contaminated with deleterious mutations.

Angled-bracket notation in this section indicates average over
all possible trajectories, or “states”, (ensemble average) of a bene-
ficial lineage emerging in an otherwise heterogeneous (evolving)
population. (The absence of angled-brackets indicates that the
focal beneficial lineage arises in an otherwise homogeneous pop-
ulation, as in the previous section.)
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Incorporating background selection
If a beneficial mutation is produced on a background carrying
j deleterious mutations, the initial growth rate of the resulting
lineage is:

W

j

= (1 � s̄

d

)j(1 + S

b

) (3)

where S

b

is a random variable denoting the selective advantage
of the beneficial mutation, with mean s̄

b

= E(S
b

). Essentially, to
incorporate background selection, we simply replace 1 + s

b

in
the previous section with W

j

.
Of course, we do not know beforehand how many deleteri-

ous mutations will be present in the background upon which a
beneficial mutation arises. But we do have accurate predictions
for both the average number of deleterious mutations in the
population, as well as the probability that a beneficial mutation
will arise on a background with a given number of deleterious
mutations.

When mutation rates are low and population sizes are large,
classical theory (Haigh 1978a; Johnson 1999b) predicts that in-
dividuals in a population will acquire a Poisson-distributed
number of deleterious mutations with parameter q = U/s̄

d

. For
our purposes, the assumptions of low mutation rate and large
population size may be too restrictive, as we wish to explore
effects of high mutation rates in finite populations. For exact
computation of results, therefore, we will rely on the more en-
compassing results derived by Gessler (1995) that relax these
assumptions, giving the probability of a background having j

mutations (re-derived in SI):

P
k,b(j) =

lj�k

(j � k)!
e

�l
✓

1 � G(b � k, l)
G(b � k)

◆�1
8 j � b (4)

where l = q � k, and k and b are integers defined by k =
min{j|Ne

�qq j/j! > 1}, and b = min{j|NP
k,j(j) > 1}. To de-

rive approximate analytical expressions, where defensible, we
nevertheless resort to the straight Poisson distribution from clas-
sical theory, the rationale being that tail probabilities lower than
1/N will have negligible effects on the quantities being derived.

Survival probability
The ensemble-averaged probability of survival is bounded by:
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(5)

where K = 4 for binary fission, and K ⇡ 2 for Poisson-
distributed offspring; W

l

= (1 � s̄

d

)J

l (1 + S

b

) and J

l

⇠
P

k,b(j) 8 j 2 [b, ĵ

l

]; W

u

= (1 � s̄

d

)J

u (1 + S

b

) and J

u

⇠
P

k,b(j) 8 j 2 [b, ĵ

u

]; S

b

is also a random variable and, for each
value of S

b

, ĵ

l

= max{j|W
j

> e

U} and ĵ

u

= max{j|W
j

> 1}, and
W

j

is defined by Equation (3). Figure 4 plots exact calculations
of p

svl

and of hp

svl

i by fixing S

b

= s

b

. Monte Carlo integration
of (5), in which S

b

was drawn from an exponential distribution
with mean s̄

b

, gives probabilities that are indistinguishable from
the approximations we now derive.

Approximate survival probability
This approximation is suggested by the observation (Figure 4)
that fixation probability increases sharply at the critical selective
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Figure 4 Survival probabilities, computed exactly from (5) by
fixing S

b

= s

b

, plotted as functions of: (A) deleterious mu-
tation rate, and (B) and selective advantage of the focal ben-
eficial mutation. Solid curves plot survival probabilities of a
beneficial mutation in a heterogeneous (evolving) population.
Dashed curves plot survival probabilities in an otherwise ho-
mogeneous population (lineage contamination in isolation).
Blue curves plot the case s̄

d

> s

b

, and red curves plot the limit
s̄

d

! 0. Parameters are: N = 50000, s

b

= 0.05 (for A), and
U = 0.1 (for B).

advantage, s

⇤
b

, above which fixation probability becomes posi-
tive. We thus explored the possibility that fixation probability
might be approximated as simply the probability that S

b

> s

⇤
b

times the probability that the beneficial mutation survives. If
the beneficial mutation in question arises on a background with
j deleterious mutations, then s

⇤
b

= s

⇤
b

(j) = c0(1 � s̄

d

)�j � 1,
where c0 = 1 for s̄

d

! 0 and c0 = e

U for s̄

d

� s̄

b

, and
P{S

b

> s

⇤
b

} = e

�s

⇤
b

(j)/s̄

b . Taking the logarithm of this proba-
bility, multiplying by the corresponding Poisson probabilities
and summing over j, we employ Jensen’s inequality to derive ex-
pressions providing exact minimums on both upper and lower
bounds for the ensemble survival probability:
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where ŝ

b

= s̄

b

/(1 + s̄

b

)2. This expression is a bound-of-bounds
and thus of questionable utility. Comparison with simulations
reveals the upper bound (for s̄

d

! 0) to be quite accurate but
the lower bound (for s̄

d

� s̄

b

) to be overly conservative.
Employing a different approach that does not rely on Jensen’s

inequality (SI), we find that, to a very good approximation:
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(7)

From this, it is apparent that the smallest value of hp

svl

i is
achieved when s̄

d

= s̄

b

, so that survival probability is bounded
as:

Kŝ

b

e

�#U/s̄
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b , (8)
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where # = 2 � e

�1 ⇡ 1.63. Remarkably, the foregoing bounds
on survival probability are independent of s̄

d

. Comparison with
simulations (Figure 5) reveals that the bounds given by Equa-
tions (7) and (8) are very accurate. From (7), we can see that the
upper bound in (8) is approximated under the wider range of
circumstances, because: 1) when s̄

d

is small the upper bound is
approximated, and 2) when s̄

d

� s̄

b

the lower bound obtains,
but as s̄

d

becomes increasingly larger than s̄

b

, hp

svl

i moves away
from the lower bound and back towards the upper bound. There
is nevertheless a restricted range of values for s̄

d

– namely when
s̄

d

is close to s̄

b

– over which the lower bound obtains.

0.005 0.05 0.5
0.0

0.1

0.2

0.3

0.4

0.5

mean selective advantage, sb

su
rv
iv
al
pr
ob
ab
ilit
y

0.001 0.01 0.1 1
0.00

0.02

0.04

0.06

0.08

0.10

mutation rate, U

su
rv
iv
al
pr
ob
ab
ilit
y

A

B

!" > !$

!" → 0

!" > !$

!" → 0

Figure 5 Ensemble survival probabilities. Solid curves plot
Equation (7); dotted curves plot Equation (8). Red dotted
curves are not visible because they are indistinguishable from
solid red curves; blue dotted curves are very close to solid
blue curves. Points each plot the fraction of 15, 000 individual-
based stochastic simulations in which the focal beneficial
mutation survived. Lineage survival was defined as either
achieving a size of 5000 or lasting for 5000 generations. Solid
points plot simulation results for which no further beneficial
mutation occurred (c = 0); open circles plot simulations that
allowed further beneficial mutations to occur at rate c = 0.001
times the deleterious rate U; open squares plot simulations
for which c = 0.01. For panel A, beneficial mutations have
mean selective advantage s̄

b

= 0.05; for panel B deleterious
mutation rate is U = 0.05. When s̄

d

is small, the upper bound
obtains (red curve); when s̄

d

> s̄

b

, the lower bound obtains
(blue curve). In simulations, red points plot the case s̄

d

= 0.001
and blue points plot the case s̄

d

= 0.1.

Selective advantages of surviving beneficial mutations
Because of lineage contamination, beneficial mutations of small
effect will have a very small or zero chance of survival; beneficial
mutations that do survive, therefore, will tend to be of larger
selective advantage. Following logic similar to that of the previ-
ous subsection, we derive the ensemble survival probability for
a beneficial mutation of given selective advantage s

b

. Given this
survival probability, expected selective advantages of surviving
beneficial mutation rates, as well as approximate bounds, are

plotted in Figure 6 as a function of deleterious mutation rate.
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Figure 6 Expected selective advantage of surviving beneficial
mutations as a function of deleterious mutation rate. Survival
probabilities are computed in the same way as in Figure 4, em-
ploying Equation (5) and fixing S

b

= s

b

. Survival probability
at each s

b

was multiplied by (1/s̄

b

)e�s

b

/s̄

b , the probability that
a mutation of selective advantage s

b

is produced. This product
resulted in a unimodal curve, which we then normalized to
create a probability density; from this, the expected selective
advantage was computed. The thick solid curve has a color
gradient indicating log probability of occurrence of beneficial
mutations with the plotted selective advantage E

s

(S
b

) (red
high, blue low). Expected selective advantages are approxi-
mated (dashed lines) as the expected value of a Gamma distri-
bution with shape parameter 2 (Rozen et al. 2002; Gerrish and
Lenski 1998) and truncated from below at e

U � 1; this expected
value is es

b

⇡ s̄

b

+ U + s̄

2
b

/(s̄
b

+ U). Parameters are: s̄

b

= 0.05,
and s̄

d

= 0.03. Employing the same parameters, each blue dot
plots the average selective advantage of surviving beneficial
mutations from 15,000 simulations. We note the absence of
blue dots above U ⇡ 0.3, owing to the fact that none of the
15,000 beneficial mutations survived above this mutation rate
(alluding to the “fixation threshold” derived below).

Mutation rate that maximizes production of surviving benefi-
cial mutations
The recruitment rate of beneficial mutations increases with ge-
nomic mutation rate, but because of lineage contamination, the
survival probability of beneficial mutations decreases with ge-
nomic mutation rate. Therefore, there must exist a genomic
mutation rate that maximizes the rate of production of surviving
beneficial mutations. Setting ∂

U

U hp

svl

i = 0 and solving for U,
we find this maximum production rate occurs at mutation rate
Û, bounded as:

Û =

(

[1/s̄

b

+ (# � 1)/s̄

d

]�1 , s̄

d

� s̄

b

s̄

b

, s̄

d

! 0 .
(9)

Figure 7 compares the foregoing predictions to simulation results
and shows them to be quite accurate. The smallest value of Û is
achieved when s̄

d

= s̄

b

, resulting in the bounds:

1
#

s̄

b

 Û < s̄

b

, (10)

again displaying a curious independence of s̄

d

. For reasoning
similar to that given after Equation (8), the upper bound on Û is
approximated under the wider range of circumstances.

Effects of excessive mutation

The lineage contamination effect we describe will increase with
increasing deleterious mutation rate. When the mutation rate
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Figure 7 Theory accurately predicts mutation rate Û that max-
imizes production rate of surviving beneficial mutations (9).
Beneficial mutations have mean selective advantage s̄

b

= 0.05.
Each point represents 15, 000 stochastic, individual-based sim-
ulations. (A) The weak-deleterious case (s̄

d

= 0.001) for which
Û = s̄

b

(vertical dashed line). (B) The strong-deleterious case
(s̄

d

= 0.06) for which Û = [1/s̄

b

+ (# � 1)/s̄

d

]�1 (vertical
dashed line).

is high enough, this effect can cause the within-population mu-
tational meltdown of many newly-arising beneficial lineages
causing a reduction in competition and clonal interference. At
even higher mutation rates, this effect can suppress most or
all newly-arising beneficial lineages, resulting in the partial or
complete cessation of adaptive evolution.

Clonal interference threshold

Evolutionary dynamics may be naturally partitioned into dif-
ferent regimes, depending on the recruitment rate of beneficial
mutations. At very low rates of recruitment of beneficial mu-
tations, adaptive evolution proceeds through isolated selective
sweeps – a regime that has been dubbed the “periodic selection”
regime (Sniegowski and Gerrish 2010). As the recruitment rate
of beneficial mutations increases, a point is reached at which
two or more alternative beneficial mutations may coexist and
compete for fixation (the “clonal interference” regime; Gerrish
and Lenski (1998)). As recruitment rate of beneficials continues
to increase, it may become likely that competition occurs not
among single beneficial mutations but among genotypes car-
rying multiple beneficial mutations (the “multiple-mutations
clonal interference” regime; Desai and Fisher (2007); Desai et al.

(2007)).
What much of this previous work failed to account for (c.f.

Orr (2000); Bachtrog and Gordo (2004b)) was the fact that, as
beneficial recruitment rate increases via an increase in overall ge-
nomic mutation rate, the rate of deleterious mutation increases
in parallel. The findings we have presented so far suggest an
intriguing implication of this parallel increase: whereas benefi-
cial recruitment rate increases linearly with genomic mutation
rate, survival probability of beneficial mutations decreases ex-
ponentially with genomic mutation rate. This fact suggests that,
at high genomic mutation rates, the effects of lineage contam-
ination can overwhelm the increased production of beneficial
mutations, such that the effective recruitment rate of beneficials

(i.e., the rate of production of surviving beneficial mutations) can
decrease as mutation rate increases further. As mutation rate
increases, therefore, adaptive evolution may eventually revert
to a regime in which it proceeds only through isolated selective
sweeps; put differently, the population may revert from one of
the clonal interference regimes back to the periodic selection
regime at high mutation rates.

As delineated in Sniegowski and Gerrish (2010), the clonal in-
terference regime is entered when a second, alternative beneficial
mutation is likely to be produced on the ancestral background be-
fore the first, or focal, beneficial mutation becomes fixed. Mathe-
matically, this transition occurs when Nµ hp

svl

i ln(Ns

b

/2)/s

b

=
1 (SI), where µ = cU is the beneficial mutation rate and c is thus
the ratio of beneficial to deleterious rates. In previous work, the
transition considered was that which occurs as very low mu-
tation rates increase, and hp

svl

i was taken to be some function
(2s̄

b

or some variant thereof) that was independent of U. Here,
we have shown that, at high mutation rates, hp

svl

i can depend
strongly on U. We define the “clonal interference threshold” to
be the critical mutation rate above which adaptive evolution
reverts from a clonal interference regime back to the periodic
selection regime. This threshold is defined as:

U

ci

= max{U | NUc hp

svl

i ln(N

e

s

b

/2)/es
b

= 1} , (11)

where hp

svl

i is defined by (8), c is the ratio of numbers of po-
tential beneficial to deleterious mutations, i.e., c = µ/U, and
e

s

b

= s̄

b

+ U + s̄

2
b

/(s̄
b

+ U), the expected selective advantage of
beneficial mutations that survive (SI).

Fixation threshold
The critical selective advantage below which a beneficial mu-
tation does not survive increases approximately linearly with
mutation rate when lineage contamination is considered in iso-
lation, and faster than linearly when background selection is
also accounted for. In contrast, the fittest mutation produced by
a population has a selective advantage that increases approxi-
mately linearly with the log of the mutation rate. This necessarily
implies that, as mutation rate increases, eventually a point will
be reached at which even the selective advantage of the fittest
beneficial mutation will not be sufficient to overcome the ef-
fects of lineage contamination. This point defines the “fixation
threshold”, and its existence follows from the fact that the crit-
ical selective advantage required and the maximum selective
advantage produced by a population have qualitatively different
relationships with mutation rate.

The fixation threshold is exceeded when no beneficial muta-
tion produced by a population has a selective advantage strong
enough to survive the effects of lineage contamination. Con-
cretely, in a given interval of time t, we suppose a population
produces a total of n beneficial mutations; then, the fixation
threshold is defined as the mutation rate that ensures extinction
of even the fittest of these mutations. This critical mutation rate,
which defines the fixation threshold and which we will denote
by U

f

, thus ensures the extinction of all n beneficial mutations
produced with specified probability p

c

; it is given by:

U

f

= max{U | U = �Û ln
✓

� ln p

c

n(U)

◆

} , (12)

where Û is given by (9) and bounded by (10), n(U) = NUcKŝ

b

t,
and t denotes the relevant time period; for example, to compute
the mutation rate at which, over a time period of 5000 genera-
tions, all fixations will be suppressed with probability 95%, we
set t = 5000 and p

c

= 0.95.
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Figure 8 Clonal interference threshold. Mutation rates U

ci

that define boundaries between clonal interference and peri-
odic selection regimes: U

ci

= {U | NUc hp

svl

i ln(N

e

s

b

/2)/es
b

=
1}. The greater of the two solutions (upper green solid curves,
given by Equation (11)), represents the transition, as high mu-
tation rate increases, from a clonal interference regime back
to a periodic selection regime (the clonal interference threshold);
the lesser of the two solutions (lower green solid curves) repre-
sents the first transition, as low mutation rate increases, from
a periodic selection regime into the clonal interference regime.
The dashed green curve plots the lower bound (for the case
s̄

d

� s̄

b

) on the threshold. (A) Parameters are: s̄

b

= 0.05 (upper
solid curve); s̄

b

= 0.05 and s̄

d

= 0.06 (lower dashed curve). (B)
Parameters are: N = 500, 000 (upper solid curve); N = 500, 000
and s̄

d

= 1.1 ⇥ s̄

b

(lower dashed curve).
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Figure 9 Fixation threshold. Green solid and dashed curves
plot upper and lower bounds of U

f

, as given by (12). (A)
Parameters are: s̄

b

= 0.05 (upper solid curve); s̄

b

= 0.05
and s̄

d

= 0.06 (lower dashed curve). (B) Parameters are:
N = 500, 000 (upper solid curve); N = 500, 000 and
s̄

d

= 1.1 ⇥ s̄

b

(lower dashed curve).
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Figure 10 Total numbers of fixations in simulations of pop-
ulation size 50000 over the course of 2000 generations, as a
function of genomic mutation rate (green dots), with error bars
of 1.96 standard deviations. Deleterious and beneficial muta-
tion rates were fixed fractions 0.5 and 0.0005 of the genomic
mutation rate, respectively. Blue horizontal dashed line indi-
cates the number of fixations above which is the clonal inter-
ference regime; light-blue shaded area delineates the mutation
rates for which the population is predicted to be in the clonal
interference regime. Red vertical dashed line plots the upper-
bound mutation rate at which the production rate of surviving
beneficial mutations is maximized (closely corresponding the
maximum number of fixations), given by Equation (9). Gray
vertical bar plots the mutation-rate interval bounded by the
predicted “fixation threshold” bounds (12), predicting sup-
pression of all fixations with probability p

c

= 0.95. Red solid
curve plots the theoretical neutral expectation: numbers of
neutral fixations expected to occur in the same time period;
red points plot numbers of neutral fixations in separate simu-
lations. Above the predicted “fixation threshold” (gray bar),
numbers of fixations are not statistically distinguishable from
the neutral expectation (green bars overlap with red curve).
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Discussion

Summary
Evolutionary interactions between linked deleterious and benefi-
cial mutations have received increasing attention in recent years.
It is now well accepted, for example, that background selection
caused by the continual rain of deleterious mutations into re-
gions of low recombination decreases the fixation probability of
beneficial mutations (Charlesworth et al. 1993; Peck 1994) and
decreases nucleotide diversity (Stephan 2010; Kim and Stephan
2000; Birky 1988; Keightley and Otto 2006); moreover, theoret-
ical and empirical studies have shown that selective sweeps
of beneficial mutations can cause the fixation of linked dele-
terious mutations (McDonald et al. 2011; Bachtrog and Gordo
2004b; Good and Desai 2014; Hartfield et al. 2010; C W Birky
and Walsh 1988). To date, work in this area has been focused on
populations with relatively low genomic mutation rates. In such
populations, the key consideration in analyzing the interaction
between beneficial and deleterious mutations is the number of
deleterious mutations already present in the linked genomic back-
ground on which a new beneficial mutation arises. In the current
paper, we have focused, in contrast, on populations in which ge-
nomic mutation rates may be very high: We have examined the
possibility that the genomic background on which a beneficial
mutation arises can become progressively contaminated with
newly arising deleterious mutations even as the beneficial muta-
tion spreads into the larger population. Our work is motivated
in part by numerous studies indicating that adapting asexual
populations tend to evolve high mutation rates through genetic
hitchhiking (Sniegowski et al. 1997, 2000; Johnson 1999a; Elena
and Sanjuán 2005; Gentile et al. 2011; Söderberg and Berg 2011;
M’Gonigle et al. 2009; Raynes et al. 2011) and by the substantial
literature that has been devoted to the question of when the
genomic mutation rate will be sufficiently high to cause popula-
tion extinction (Gerrish et al. 2007, 2013; Gerrish and Sniegowski
2012; Bull and Wilke 2008; Bull et al. 2007; Springman et al. 2009;
Biebricher and Eigen 2005; Eigen 2002, 2000, 1971; Eigen and
Schuster 1977).

Multiple beneficial mutations
Our multitype branching process model assumes that beneficial
mutations occur infrequently enough that acquiring a second
beneficial mutation in linkage with the focal beneficial mutation
is improbable in the time required for the focal mutation to either
survive or go extinct. In reality, it might be the case that multiple
beneficial mutations arise on the same background and sweep
to fixation, collectively overcoming the lineage contamination
effect.

To assess the strength of our assumption, we studied the
effects of allowing additional beneficial mutations to arise at
different rates within the lineage founded by the focal beneficial
mutation. To this end we varied the parameter c, introduced
above and defined as: c = µ/U, or the ratio of numbers of
potential beneficial to deleterious mutations. We assessed the
effects of doing so in both an extension of our analytical model
and in simulations.

To assess the effects of additional within-lineage beneficial
mutations on lineage contamination in isolation, we extended
our multitype branching process model so as to allow a bene-
ficial lineage to acquire a second beneficial mutation with the
same selective advantage s

b

as the first. This additional ben-
eficial mutation could be acquired during reproduction with
probability 1 � e

�cU . Figure S7 compares, for different values of

c, survival probabilities of a single beneficial lineage in an oth-
erwise homogeneous population (lineage contamination only)
as a function of the deleterious mutation rate. It is apparent
from this figure that, for reasonable values of c, there is minimal
quantitative difference in survival probabilities and only a slight
increase in the apparent threshold. This indicates that our as-
sumption of no additional within-lineage beneficial mutations
is a weak assumption. Mathematically, there is a qualitative
difference in that, for c > 0, the critical deleterious mutation rate
above which a beneficial lineage becomes extinct almost surely
(the “hard” threshold) is twice what it is without the additional
beneficial mutation (i.e., 2 ln (1 + s

b

)). Practically, this is of little
consequence, however, because the survival probabilities are
typically minuscule for mutation rates in the region between the
hard threshold for which no additional beneficial mutation is
allowed (ln (1 + s

b

)) and the hard threshold for which one addi-
tional beneficial mutation is allowed (2 ln (1 + s

b

)). And, while
not shown here, survival probabilities become even smaller in
regions between higher thresholds that allow more beneficial
mutations.

To assess the effects of additional within-lineage beneficial
mutations arising in evolving populations, where both back-
ground selection and lineage contamination are operating, we
performed simulations in which there was technically no limit
on the number of additional beneficial mutations. Figure 5 plots
survival probabilities computed from simulations, for the cases
c = 0, 0.001, and 0.01, and would seem to indicate, again, that
our original assumption of no additional within-lineage benefi-
cial mutation is a very weak assumption. Survival probabilities
such as those plotted in Fig. 5 were computed for a range of
different parameters and in all cases, for what we considered to
be reasonable beneficial-to-deleterious ratios (c  0.01), survival
probabilities were essentially unaffected by the incorporation of
additional beneficial mutations.

Independence of our results from the selective effects of dele-
terious mutations

The critical mutation rate above which lineage contamination
in isolation ensures extinction of a beneficial mutation, derived
in the first section (1), depends only on the selective advantage
of the focal beneficial mutation; it does not depend on the selec-
tive disadvantages of deleterious mutations. In the next section,
when we incorporate background selection, most of the solution
bounds we derive are also independent of the selective disadvan-
tages of deleterious mutations. These results stand in contrast to
some previously published results that have focused primarily
on the effects of background selection. Particularly striking is the
contrast between our results, which find a surprising lack of de-
pendence on s̄

d

, and the results of Orr (2000), which instead find
a surprising lack of dependence on s̄

b

. For example, we find that
Û ⇡ s̄

b

, whereas Orr finds that Û = s̄

d

. A thorough exploration
of the relevant parameter space and assessment of Orr’s result
is found in Johnson and Barton (2002b). The single factor that
accounts for the qualitative discrepancy between our results and
Orr’s is lineage contamination: when only background selection
is accounted for, Û = s̄

d

, yet when lineage contamination is also
accounted for, Û ⇡ s̄

b

. These “opposite” results shine a light on
the impact of lineage contamination generally.

Lineage contamination in nature

The effects of lineage contamination only become significant un-
der linkage and relatively high mutation rates. While we have
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focused exclusively on the case of asexuality, lineage contamina-
tion should also operate in organisms that undergo some form of
genetic exchange as well: the fitness of a newly-arising beneficial
mutation will be eroded at a faster rate than the same linkage re-
gion in the rest of the population – on principles similar to those
studied here. The requirement of high mutation rates would
seem to restrict the relevance of our findings to organisms like
RNA viruses, although the evolution of high mutation rates has
been predicted (Gerrish et al. 2007) and increasingly reported in
natural (Matic et al. 1997) and laboratory (Sniegowski et al. 1997;
Shaver et al. 2002; Denver et al. 2009; Wichman 2005; Pal et al.

2007; Gentile et al. 2011; Chao and Cox 2008; Cox and Gibson
1974) populations of RNA and clonal DNA organisms and in
somatic (esp. cancerous) cells. Indeed, the process we have
analyzed has been implied in conjunction with background se-
lection as a mechanism that can slow the evolution of tumors
(McFarland et al. 2013; Solé 2004).

Lineage contamination, mutational meltdown, and lethal mu-
tagenesis

As alluded to in the presentation of our branching process model,
lineage contamination may be thought of as within-population
mutational meltdown. If this meltdown is induced by treatment
of a population with a mutagenic agent, then it may be thought
of as within-population lethal mutagenesis. Put differently, our
findings may be thought of as the population-genetic analogues
of these processes. Indeed, one of the processes we model –
Muller’s ratchet in a growing beneficial lineage – is similar to
previous models of Muller’s ratchet in freely-growing popula-
tions (Fontanari et al. 2003; Bull et al. 2007; Bull and Wilke 2008).
Our work differs from these previous studies, however, in that
we model the fitness erosion of a growing lineage within the
context of a larger population.

In a recent experiment, lethal mutagenesis failed to cause
extinction in a laboratory population of the bacteriophage T7
(Springman et al. 2009) because the accumulation of deleterious
mutations opened up new genetic pathways that could increase
fitness, i.e., it increased the number of available beneficial muta-
tions. The theory we present here may offer insight into what
would be required to thwart the evolutionary rescue afforded
by these newly-available beneficial mutations. In particular,
our “fixation threshold” might offer an appropriate quantitative
guideline for the mutation rate required.

Lineage contamination and the error threshold

There is an intriguing relationship between our findings and
predictions of “error threshold” models (Eigen 2002, 1971; Eigen
and Schuster 1977; Biebricher and Eigen 2005; Bagnoli and Bezzi
1998; Nowak and Schuster 1989; Bonhoeffer and Stadler 1993).
Generally and somewhat loosely speaking, an error threshold is
a critical mutation rate, U

et

, above which all genotypes determin-
istically converge to the same equilibrium frequency, independent
of their fitness (in the absence of mutational biases).

Single-peak model. The simplest model of the error threshold –
the so-called “single peak” model – assumes that there is a single
fittest genotype of fitness 1 + s

b

(the beneficial mutant) and all
other (mutationally accessible) genotypes have fitness equal to
one (Wiehe 1997; Tejero et al. 2011), i.e., the fitness landscape has
a set of two possible fitness classes {1, 1 + s

b

}. This fitness land-
scape is obviously unrealistic; its original conjecture may have
been based on the fact that many other such “phase transition”
phenomena are robust to severe model simplification. When the

number of possible genotypes may be assumed to be infinite,
the error threshold is U

et

= ln(1 + s

b

) (Wiehe 1997). Curiously,
while the assumed fitness landscapes are very different, this
critical mutation rate is identical to the one we derive for lineage
contamination in isolation (1).

Multiplicative model. The set of possible fitness classes on the
“multiplicative” fitness landscape is {(1 + s

b

)(1 � s

d

)i 8 i 2
[0, D]}, where D is the maximum number of deleterious mu-
tations allowed. Curiously, for the case D < • and s

b

= s

d

,
the error threshold is U

et

= s

b

(we note that for small s

b

,
U

et

⇡ ln(1 + s

b

), in agreement with the “single-peak” model),
whereas when D = •, there is no error threshold: U

et

= •
(Wiehe 1997). Oddly, our lineage contamination model corre-
sponds most closely to the case D = •, for which there is no
error threshold, but there is a lineage contamination threshold.

Concluding remarks
Wittingly or not, the presence of lineage contamination has been
implicit in many previous models of mutation-induced fitness
erosion. To our knowledge, however, it has not previously been
modeled in isolation, as a process separate from background
selection. Our theoretical framework partitions these two pro-
cesses, and allows lineage contamination to be scrutinized sepa-
rately from other processes. We find, for example, that newly-
arising beneficial mutations can be driven extinct almost surely
by lineage contamination whereas background selection alone
cannot ensure their extinction.
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Supporting Information
Beneficial lineages in an initially homogeneous population: multitype branching process model.

Our stochastic model is a discrete-time multi-type branching process with infinite set of types N, where a type i 2 N corresponds
to the number of acquired deleterious mutations. Since we do not assume back mutations, the branching process is irreducible. We
recall that the vector X

t

= (X

t,0, X

t,1, . . .) 2 NN describes the composition of the population at time t 2 N, X

t,i being the number
of individuals in the population at time t carrying i deleterious mutations. This branching process can be entirely described by its
offspring generating function f = ( f0, f1, . . .), defined for each r = (r0, r1, . . .) 2 [0, 1]N by f

i
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j2N 2 NN and d stands for the Kronecker delta. By construction, for each i 2 N and each r 2 [0, 1]N, f
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Mean demographic dynamics of each sub-population

The mean matrix M =
⇥

m

i,j
⇤

i,j2N
of the branching process, defined such that m
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(mean number of individuals of
type j produced by one individual of type i) is upper triangular with, for each i, k 2 N,
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Moreover, for each t 2 N, the mean matrix of the process at time t corresponds to the t-th power of M. We denote Mt =
⇥

m

i,j (t)
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ij2N
.

It satisfies m

ij
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(mean number of individuals of type j at time t produced by one individual of type i). The
matrix is upper triangular and is such that for each i, k 2 N,
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From this we deduce that the mean size of each sub-population at time t 2 N is given by
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Figure S1 Evolution over time of the mean population size stemming from one single beneficial lineage, with s

d

= 0.03, s

b

= 0.5,
and U = 0.4 (resp. U = ln (1 + 0.5), U = 0.5). We use a large value for s

b

to show that a beneficial lineage can grow to a large size
before being driven extinct by lineage contamination (red curve).
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Figure S2 Cumulative distribution function of the first least-loaded class extinction time T0 , for one single beneficial lineage, with
s

b

= 0.1, s

d

= 0.03, and U = 0.001 (resp. U = ln (1 + 0.1), U = 10).

Figure S3 Mean value of the first least-loaded class extinction time T0, for one single beneficial lineage, with s

d

= 0.03. For U 6
ln (1 + s

b

), this mean value is infinit. ()
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Figure S4 Survival probability 1 � p

b

ext

of a single beneficial lineage, with s

d

= 0.03, as a function of the deleterious mutation rate.

Figure S5 Fixation probability p

f ix

of a single beneficial lineage in a wild-type population of initial size N, with s

d

= 0.03. Here
N

⇤ = N + 1 corresponds to the initial size of the total population.

Figure S6 Long-term limit of the mean relative fitness of a single beneficial lineage in a large wild-type population, with s

d

= 0.03.
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Extinction probabilities
Proposition 1.

• For any U > 0 and 0 < s

b

, s

d

< 1, the two following extinction probabilities of a single beneficial lineage

�

Xb

t

�

t2N
are equal:

p

b

ext

= P
⇣

8i 2 N, lim
t!+•

X

b

t,i = 0
⌘

= P
⇣

lim
t!+• Â

i2N

X

b

t,i = 0
⌘

. (S6)

Moreover,

p

b

ext

= 1 () U > ln (1 + s

b

) . (S7)

• For any U > 0, 0 < s

d

< 1 and N 2 N, a neutral population (X
t

)
t2N of initial size N becomes almost surely (a.s.) extinct:

P

✓

8i 2 N, lim
t!+•

X

t,i = 0
◆

= P
⇣

lim
t!+• Â

i2N

X

t,i = 0
⌘

= 1. (S8)

Proof. The following proof holds for any initial population size and any s

b

> 0. In what follows the notation (X
t

)
t2N consequently

stands indifferently for a neutral population of initial size N > 1 with s

b

= 0, or for a single beneficial lineage with s

b

> 0. If not
mentioned otherwise, the probabilities in this proof are computed conditionally on the event {X0 = Ne0}.

The extinction of the whole population implies the extinction of every type, hence the obvious inclusion B := {lim
t!+• Â

i2N X

t,i =
0} ✓ {8i 2 N, lim

t!+• X

t,i = 0} =: A. However, the simultaneous survival of the whole population and extinction of all the types
imply the existence of at least one infinite line of descent with one descendant whose type is indefinitely increasing. We thus obtain by
the Markov property that

P (A \ B) 6 N Â
0=i0<i1<i2<...

i

j

2N

P
�

X1,i1 > 0 | X0 = e
i0

�

P
�

X1,i2 > 0 | X0 = e
i1

�

. . . 6 N Â
0=i0<i1<i2<...

’
k2N

m

i

k

,i
k+1 .

Since for each strictly increasing sequence (i
k

)
k2N with i0 = 0 we have i

k

> k, it comes by (S2) that

lim
n!+•

n

’
k=0

m

i

k

,i
k+1 6 lim

n!+•
e

�nUs

d (1 + s

b

)n (1 � s

d

)Ân

k=0 i

k 6 lim
n!+•

e

�nUs

d (1 + s

b

)n (1 � s

d

)
n(n+1)

2 = 0.

Hence P(A) = P(B), which in turn implies (S6) and the first equality in (S8).
Moreover, P(A) < 1 if and only if there exists some i 2 N such that P

�

lim sup
t2N X

t,i > 0
�

> 0. For each i 2 N, let us denote
t

i

:= inf{t 2 N : X

t,i > 0}. By the Markov property and thanks to the independence of the initial lineages we can write

P
�

lim sup
t2N

X

t,i > 0
�

= Â
k2N

P
�

Xt
i

,i = k

�

✓

1 �
⇣

1 � P
�

lim sup
t2N

X

t,i > 0 | X0 = e
i

�

⌘

k

◆

. (S9)

Since a mutant of type 0 can produce one mutant of type i 2 N with positive probability, one can find for each k, i 2 N an event of the
form {X0 = Ne0, . . . , X

t�1 = ke0, X
t

= ke
i

} ✓ {Xt
i

,i = k} occurring with positive probability, hence implying that P
�

Xt
i

,i = k

�

> 0.
Consequently, (S9) implies that P(A) < 1 if and only if there exists some i 2 N such that P

�

lim sup
t2N X

t,i > 0 | X0 = e
i

�

> 0. Seeing
the infinite-type branching process (X

t

)
t2N as a branching random walk on N as in Zucca (2011), the last assertion means that there

exists i 2 N such that so-called local survival of the branching walk at i occurs with positive probability, starting with one individual
at i. By Theorem 4.1 in Zucca (2011), local survival at i occurs with positive probability if and only if lim sup

t2N m

i,i (t)
1/t > 1, which

by (S3) is equivalent to e

�U (1 + s

b

) (1 � s

d

)i > 1. Hence P(A) < 1 if and only if e

�U (1 + s

b

) > 1, which proves (S7) and the second
equality in (S8).

Numerical computation of the extinction probability. We use here the fact that the extinction probability p

ext

can be obtained as the limit
of the extinction probability of a multi-type branching process with a finite number of types, when the number of types tends to
infinity. We show moreover that this limit value is actually reached for a finite number of types, which consequently leads to an exact
computation (see (S11)) rather than an numerical approximation.

First note that if U > ln (1 + s

b

), then p

ext

= 1 by Proposition 1. We thus assume from now on that U < ln (1 + s

b

). For each D 2 N,
we shall associate with (Xb

t

)
t2N the process (Xb,(D)

t

)
t2N in which none of the individuals with more than D acquired deleterious

mutations are counted. Then (Xb,(D)
t

)
t2N is a multi-type branching process with finite set of types {0, . . . , D} and with offspring

generating function f(D) given for each r 2 [0, 1]D+1 and i 2 {0, . . . , D} by

f

(D)
i

(r) := f

i

(r0, . . . , r

D

, 1, 1, . . .) . (S10)

Let us define its extinction probability vector q(D) =
�

q

(D)
0 , . . . , q

(D)
D

�

2 [0, 1]D+1 where for each i 2 {0, . . . , D},

q

(D)
i

:= P

✓

8j 2 {0, . . . , D}, lim
t!+•

X

b,(D)
t,j = 0 | Xb,(D)

0 = e
i

◆

.
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Let us moreover define D0 := max{i 2 N : e

�U (1 + s

b

) (1 � s

d

)i > 1}. We then have

p

ext

= q

(D0)
0 . (S11)

Indeed, we know from Hautphenne et al. (2013) that q(D) converges as D ! +• to the "partial" extinction probability of (Xb

t

)
t2N,

which by (S6) is equal to its "global" extinction probability. Hence in particular p

b

ext

= lim
D!+• q

(D)
0 . Moreover, since for each i > D0

we have m

ii

< 1, a process starting from one mutant of type i almost surely becomes extinct, which implies that for each D > D0,
q(D) =

�

q

(D)
0 , . . . , q

(D)
D0

, 1, . . . , 1
�

. Moreover, it is known (see e.g. Satz V.1.4 in Sewastjanow (1975)) that for each D 2 N, q(D) is the

smallest non-negative fixed point of f(D). From what precedes this implies that for each D > D0,
�

q

(D)
0 , . . . , q

(D)
D0

�

is the smallest
non-negative solution of the system

r

i

= f

(D)
i

(r0, . . . , r

D0 , 1, . . . , 1) = f

(D0)
i

(r0, . . . , r

D0 ) , 0 6 i 6 D0,

which is known to be q(D0). Consequently, for each D > D0, q(D) =
�

q

(D0)
0 , . . . , q

(D0)
D0

, 1, . . . , 1
�

, leading to the desired result (S11).

Fixation probabilities
Similarly as for the extinction probability we approximate p

f ix

by the fixation probability of one single beneficial lineage in a neutral
population of initial size N, when none of the individuals carrying more than D deleterious mutations are counted. For this purpose
we consider for each D 2 N, (Xb,(D)

t

)
t2N and (X(D)

t

)
t2N the multi-type branching processes with offspring generating function (S10)

(with s

b

= 0 for the process (X(D)
t

)
t2N), and such that Xb,(D)

0 = e0, X(D)
0 = Ne0. Let T

b,(D)
ext

and T

(D)
ext

their respective extinction times.

Then, according to Hautphenne et al. (2013), for t 2 N fixed and D ! +•, Xb,(D)
t

(resp. X(D)
t

) almost surely monotonically converges
to Xb

t

(resp. X
t

). Hence lim
D!+•(Tb,(D)

ext

, T

(D)
ext

)
a.s.
= (Tb

ext

, T

ext

) and in particular

p

f ix

= lim
D!+•

P
⇣

T

b,(D)
ext

> T

(D)
ext

⌘

. (S12)

Let us describe how to compute the probability P(Tb,(D)
ext

> T

(D)
ext

) for any fixed D 2 N. First, it can be shown by standard arguments

that the multi-type branching process with finite number of types (X(D)
t

)
t2N almost surely becomes extinct, i.e. T

(D)
ext

a.s.
< +•.

Consequently,

P
⇣

T

b,(D)
ext

> T

(D)
ext

⌘

= Â
t2N⇤

P
⇣

T

(D)
ext

= t

⌘

P
⇣

T

b,(D)
ext

> t

⌘

.

Note for instance that for each t 2 N, P(T(D)
ext

6 t) = P(|X(D)
t

| = 0) = E(0|X
(D)
t

|), and that by independence of the N lineages,

P(T(D)
ext

6 t) = E(0|X
(D)
t

| | X(D)
0 = e0)N . Furthermore (see e.g. Athreya and Ney (2004) Section V.1), the generating function

r 7! E(r
X

(D)
t,0

0 . . . r

X

(D)
t,D

D

| X(D)
0 = e0) of the branching process at time t 2 N is given by the t-th iterate of f(D) defined by (S10), with

s

b

= 0. We denote f(D),0 = id and for each t 2 N, f(D),t+1 = f(D) � f(D),t. Therefore, P(T(D)
ext

6 t | X(D)
0 = e0) = f

(D),t
0 (0, . . . , 0) := a

D,t,

where s

b

= 0 in (S1). Similarly, taking s

b

> 0 in (S10), P(Tb,(D)
ext

6 t) = f

(D),t
0 (0, . . . , 0) := b

D,t . Hence we finally obtain that

P
⇣

T

b,(D)
ext

> T

(D)
ext

⌘

= Â
t2N⇤

⇣

a

N

D,t � a

N

D,t�1

⌘

(1 � b

D,t) . (S13)

Fitness dynamics of the beneficial lineages within a population
Large population approximation. By construction, the population (X

t

)
t2N can be written as the sum of N independent and identically

distributed copies of a branching process with offspring generating function (S1) (with s

b

= 0), and initial state e0, which we write
X

t

= ÂN

j=1 Y(j)
t

. The strong law of large numbers combined with (S3) then implies that for each t 2 N, t < T

ext

,

lim
N!+•

W (X
t

) = lim
N!+•

Â
i2N (1 � s

d

)i ÂN

j=1 Y

(j)
t,i

Â
i2N ÂN

j=1 Y

(j)
t,i

a.s.
=

Â
i2N (1 � s

d

)i E
⇣

Y

(1)
t,i

⌘

Â
i2N E

⇣

Y

(1)
t,i

⌘

=
Â

i2N (1 � s

d

)i

m0i

(t)

Â
i2N m0i

(t)
= e

�U(1�s

d

)(1�(1�s

d

)t).

The same limit would be obtained for W

�

X
t

+ Xb

t

�

, hence the approximation

lim
N!+•

W

�

Xb

t

�

W

�

X
t

+ Xb

t

�

a.s.
= e

U(1�s

d

)(1�(1�s

d

)t)
W

�

Xb

t

�

. (S14)
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Long-time limit of the mean relative-fitness. Let us first assume that U > ln (1 + s

b

). By Proposition 1, T

b

ext

a.s.
< +•, which approximating

the relative fitness by its almost sure limit (S14) leads to

lim
t!+•

E

"

W

�

Xb

t

�

W

�

X
t

+ Xb

t

� 1
t<T

b

ext

#

= lim
t!+•

e

U(1�s

d

)(1�(1�s

d

)t)E
h

W

�

Xb

t

�

1
t<T

b

ext

i

6 lim
t!+•

e

U(1�s

d

)(1�(1�s

d

)t) 1 + s

b

s

d

P
⇣

t < T

b

ext

⌘

= 0,

Since p

b

ext

= 1, we have proven the desired result

lim
t!+•

E

"

W

�

Xb

t

�

W

�

X
t

+ Xb

t

� 1
t<T

b

ext

#

= (1 + s

b

)
�

1 � p

b

ext

�

. (S15)

Let us now assume that U < ln (1 + s

b

). In this part of the proof we approximate (Xb

t

)
t2N by the multi-type branching process

(Xb,(D)
t

)
t2N with finite set of types {0, . . . , D}, D 2 N, introduced previously (see (S10)). We assume Xb,(D)

0 = e0. Note that its mean
matrix corresponds to the truncated matrix

⇥

m

i,j
⇤

06i,j6D

, with largest eigenvalue m00 > 1. Hence (Xb

t

)
t2N is not irreducible, and we

thus make use of Theorem 2.1 in Kesten and Stigum (1967) for reducible branching processes with largest eigenvalue greater than 1 to
deduce the existence of some one-dimensional random variable Z

(D) with P
⇣

Z

(D) = 0
⌘

= q

(D)
0 such that for each i 2 {0, . . . , D},

lim
t!+•

X

b,(D)
t,i

e

�tU (1 + s

b

)t

a.s.
=

1
i!

✓

U (1 � s

d

)
s

d

◆

i

Z

(D).

Defining the absolute fitness W(Xb,(D)
t

) and the extinction time T

b,(D)
ext

similarly as before we thus obtain that

lim
t!+•

W

�

Xb,(D)
t

�

1
t<T

b,(D)
ext

a.s.
= (1 + s

b

)
ÂD

i=0
1
i!

✓

U(1�s

d

)2

s

d

◆

i

ÂD

i=0
1
i!

⇣

U(1�s

d

)
s

d

⌘

i

1
Z

(D)>0.

By the dominated convergence theorem, the previous convergence also holds in L

1. Consequently, using the fact that p

b

ext

=

lim
D!+• q

(D)
0 ,

lim
D!+•

lim
t!+•

E
h

W

�

Xb,(D)
t

�

1
t<T

b,(D)
ext

i

= lim
D!+•

(1 + s

b

)
ÂD

i=0
1
i!

✓

U(1�s

d

)2

s

d

◆

i

ÂD

i=0
1
i!

⇣

U(1�s

d

)
s

d

⌘

i

⇣

1 � q

(D)
0

⌘

= (1 + s

b

) e

�U(1�s

d

)
⇣

1 � p

b

ext

⌘

.

Using again the approximation (S14), we finally obtain

lim
D!+•

lim
t!+•

E

2

4

W

⇣

Xb,(D)
t

⌘

W

⇣

Xb,(D)
t

+ X
t

⌘ 1
t<T

b,(D)
ext

3

5 = lim
D!+•

lim
t!+•

e

U(1�s

d

)(1�(1�s

d

)t)E
h

W

⇣

Xb,(D)
t

⌘

1
t<T

b,(D)
ext

i

= (1 + s

b

)
⇣

1 � p

b

ext

⌘

. (S16)

Upper and lower bounds of the mean relative fitness. Our goal is to provide upper and lower bounds of the mean relative fitness for each
t 2 N, which as detailed below are both numerically computable by iteration of suitable generating functions. Defining |u| := Â

i2N u

i

for any u 2 RN we have for each t 2 N, using (S14),

E

"

W

�

Xb

t

�

W

�

X
t

+ Xb

t

� 1
t<T

b

ext

#

= E

"

e

U(1�s

d

)(1�(1�s

d

)t) Â
i2N (1 + s

b

) (1 � s

d

)i

X

b

t,i

Â
i2N X

b

t,i
1|Xb

t

|>0

#

6 e

U(1�s

d

)(1�(1�s

d

)t) (1 + s

b

)P
⇣

|Xb

t

| > 0
⌘

, (S17)

and, by Cauchy-Schwarz inequality,

E

"

W

�

Xb

t

�

W

�

X
t

+ Xb

t

� 1
t<T

b

ext

#

= e

U(1�s

d

)(1�(1�s

d

)t) (1 + s

b

)

 

P
⇣

|Xb

t

| > 0
⌘

� Â
i2N

⇣

1 � (1 � s

d

)i

⌘

E

"

X

b

t,i

|Xb

t

|
1|Xb

t

|>0

#!

> e

U(1�s

d

)(1�(1�s

d

)t) (1 + s

b

)

0

@P
⇣

|Xb

t

| > 0
⌘

� E

 

1
|Xb

t

|2
1|Xb

t

|>0

!

1
2

Â
i2N

⇣

1 � (1 � s

d

)i

⌘

E

✓

⇣

X

b

t,i

⌘2
◆

1
2

1

A .

(S18)
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Numerical approximation of the mean relative fitness bounds. Similarly as before, let us for each D 2 N consider the branching process
(Xb,(D)

t

)
t2N with offspring generating function f(D) defined by (S10) (where s

b

> 0), and let us denote by f(D),t its t-th iterate. Then the
almost sure monotonous non-decreasing convergence of Xb,(D)

t

to Xb

t

, for t 2 N fixed, entails that the terms appearing in (S17)-(S18)
can be for each t 2 N obtained as follows. First,

P
⇣

|Xb

t

| > 0
⌘

= lim
D!+•

P
⇣

|Xb,(D)
t

| > 0
⌘

= lim
D!+•

⇣

1 � f

(D),t
0 (0, . . . , 0)

⌘

.

Second,

Â
i2N

⇣

1 � (1 � s

d

)i

⌘

E
⇣

�

X

b

t,i
�2
⌘

= lim
D!+•

D

Â
i=0

⇣

1 � (1 � s

d

)i

⌘

E

✓

⇣

X

b

t,i

⌘2
◆

.

By construction, for each D 2 N and each 0 6 i 6 D, X

b,(D)
t,i = X

b

t,i. Hence, denoting for each r 2 [0, 1]

g

D,t
i

(r) := E

✓

r

X

b,(D)
t,i

◆

= f

(D),t
0 (1, . . . , r, . . . , 1) ,

we obtain that

Â
i2N

⇣

1 � (1 � s

d

)i

⌘

E
⇣

�

X

b

t,i
�2
⌘

= lim
D!+•

D

Â
i=0

⇣

1 � (1 � s

d

)i

⌘

"

d

2
g

D,t
i

dr

2 (1) +
dg

D,t
i

dr

(1)

#

.

Finally, the dominated convergence theorem implies that

E

 

1
|Xb

t

|2
1|Xb

t

|>0

!

= lim
D!+•

E
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where for each k 2 N, P(|Xb,(D)
t

| = k) is the coefficient of r

k in the polynomial function
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|
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of degree 2t. This coefficient can be for instance obtained with a software such as Scilab via the tools pol and coef.

Mutational meltdown of a beneficial lineage

We recall that in this section we model the random accumulation of deleterious mutations via the continuous-time analog
�

Xb

t

�

t>0 of
the branching process

�

Xb

t

�

t2N
used until now. In this setting, each individual has a random lifespan which is exponentially distributed

with parameter 1 (instead of a deterministic lifespan of one time-unit), and produces offspring at the end of the lifespan as previously.
This modification allows us to benefit from the fact that the generating functions of continuous-time branching processes are solutions
of differential equations, which will in our model lead to a computation of the cumulative distribution function of the fittest class
extinction time. The following proposition provides the sequence En0 (T0), En1 (T1) , . . . of the mean extinction times of the least
loaded-classes, where (n

i

)
i2N reflects the mean evolution of

�
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t>0, that is to say n0 = (1, 0, 0, . . .), and n
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Proposition 2.

• If U < ln (1 + s

b

),
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<

>
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,
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(S19)

• If U = ln (1 + s

b

),
8

<

:

Pn0 (T0 6 t) = 1 � 4
4 + t

,

En0 (T0) = +•.
(S20)
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More generally, for each i 2 N and j > i,
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(S22)

Note that this prove in particular that lim
U!+• En0 (T0) = 1, as we can see in Figure S3.

Proof. Let i 2 N and n
i

=
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0, . . . , 0, n

ii

, n

i,i+1, . . .
�

2 NN. Note that under Pn
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, the law of the extinction time T
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does not depend on
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ij

, j > i, since none of the individuals of type j can produce individuals of type i. Under Pn
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, the extinction time T
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actually has
the same distribution as the extinction time of a single-type branching process (Y
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)
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in which only the individuals of type i are
counted, conditionally on {Y0 = n
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}. By construction, the offspring generating function of (Y
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Moreover (see for instance III.3. in Athreya and Ney (2004)), p

i

(t) = P
�

0Y

t | Y0 = 1
�

is solution of the differential equation
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2, (S24)

with the boundary condition p

i

(0) = 0. Note that (S24) is a Riccati equation for which one solution (y (t) = 1) is known.
If U < ln (1 + s

b

) then 2a0 > 1 and solving (S24) leads to

p0 (t) = 1 � (2a0 � 1) e

(2a0�1)t

a

2
0e

�(2a0�1)t � (1 � a0)
2 ,

which combined with (S23) entails (S19). In particular, Pn0 (T0 < +•) = 1 � 2a0�1
a

2
0

< 1 and thus En0 (T0) = +•.
If U = ln (1 + s

b

) then 2a0 = 1 and (S24) leads to

p0 (t) = 1 � 4
4 + t

,

leading to (S20) and immediately implying that En0 (T0) = +•.
Finally, if U > ln (1 + s

b

) then for each i 2 N, 2a
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< 1, and solving (S24) leads to
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hence the first equality in (S21) and (S22). Since T

i

is a positive random variable, its first moment is given by En
i

(T
i

) =
R
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6 t)) dt. Integrating by substitution we obtain the second equality in (S21) and (S22). Note that a more explicit
but rather bulky formula could be found for En

i

(T
i

), but for the sake of simplicity we choose to keep the definite integral form which
is directly computable with a software such as Scilab. We moreover deduce from the first equality in (S22) that for each j > i,
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In the continuous-time setting, the mean composition E
x0 (Xt

) of the multi-type branching process at time t 2 R+, conditionally
on {X0 = x0}, x0 2 NN, is given by the vector x0e

(M�I)t (see for instance Athreya and Ney (2004)), where e denotes the matrix
exponential. Hence by (S3) we obtain that for each t 2 R+,
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Integrating by part (S25) next leads to
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Finally, an integration by substitution entails the third equality in (S22), which is a definite integral easily computable with any suitable
software.

Beneficial lineages in an evolving population

Incorporating background selection
In the absence of beneficial mutations, an idealized (Wright-Fisher) population will over time reach a state in which individuals within
the population carry a Poisson-distributed number of deleterious mutations with mean q = U/s̄, where U is deleterious mutation rate
and s̄ is geometric mean effect of deleterious mutations (Orr 2000; Haigh 1978b; Johnson 1999b). This now classical result breaks down,
however, at sufficiently high mutation rate, U. Gessler (1995) points out that Poisson classes with frequency less than 1/N, where N

is population size, (i.e., fitness classes in the tails of the Poisson distribution) will not exist: their frequency will be zero. While this
observation is of little consequence where the right tail of the distribution is concerned, it is nevertheless quite consequential to the
evolution of the population where the left (high fitness) tail of the distribution is concerned.

In fact the fittest k classes may disappear deterministically (left tail may be truncated) if their expected frequency is less than 1/N.
Intuitively, this number may be computed as:

k = min
n

x|Ne

�qqx/x! > 1, x 2 {0, 1, 2, ..., n}
o

As the k fittest classes disappear due to mutation pressure, the evolving distribution of numbers of deleterious mutations tends toward
a shifted Poisson:

P(X = x) =
lx�k

(x � k)!
e

�l, x 2 {k, k + 1, k + 2, ...}

where l = q � k. Notably, this distribution has mean q and variance q � k, meaning that it is “under-dispersed” relative to the Poisson
distribution: V(X) < E(X), where X is a random variable denoting number of deleterious mutations.

Gessler’s key insight was the perhaps counterintuitive subtlety that there is no guarantee, from the above derivations, that the zero
class of the shifted Poisson distribution exists, i.e., that e

�l > 1/N. The condition used to find k is that it be the smallest class in the
Poisson distribution with parameter q whose expected frequency exceeds 1/N. This condition, however, does not guarantee that this
same class exists (has frequency greater than 1/N) in the new shifted-Poisson distribution with parameter l = q � k. Put differently,
the fittest class in the new shifted distribution is not necessarily the class that carries k deleterious mutations.

Instead, to find the fittest, or ‘best’, class in the new distribution, we must find the smallest class whose expected frequency is
greater than 1/N in a new truncated Poisson:

b = min {x|N f

k

(x) > 1, x 2 {k, k + 1, k + 2, ..., q}}

where f

k

(x) is a shifted Poisson truncated on the left at k:
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.

(The final expression is our own simplification of Gessler.)

Survival probabilities
In direct analogue to (2), we can immediately write down the survival probability of a beneficial mutation arising in a heterogeneous
population. If the beneficial mutation in question has selective s

b

and it arises on a genetic background carrying j deleterious mutations,
then the initial growth rate of the beneficial lineage formed by this beneficial mutation will be:

w
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The survival probability of this beneficial mutation is bounded by:
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If we do not know the selective advantage of the beneficial mutation in question, and we do not know how many deleterious mutations
are in the background upon which the beneficial mutation arises, we can employ the distributions of these quantities to compute
ensemble survival probabilities of beneficial mutations as:
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(S27)

where K = 4 for binary fission, and K ⇡ 2 for Poisson-distributed offspring; W

l

= (1 � s̄
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)J

l (1 + S
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) and J
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is also a random variable and, for each value of S
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> 1}, and W

j

is defined as W

j

= (1 + S

b
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d

)j.

Monte Carlo integration Monte Carlo integration of (S27) was achieved by first drawing S

b

from an exponential distribution with
mean s̄

b

, then computing ĵ

u

and ĵ

l

, and finally computing a value for p

svl

, and repeating. The average of the values computed for p

svl

in this way was then taken to be the ensemble average hp

svl

i.

Distribution of beneficial mutational effects We will rely on statistical arguments put forth by Gillespie (1991), after Smid and Stam
(1975), that selection coefficients of beneficial mutations are exponentially distributed. While this assumption, and the statistical
arguments upon which it is based, have been questioned and in some cases rejected based on different data analyses (Rokyta et al.

2008), we employ it here because of its far-reaching basin of attraction, for its simplicity, and because it is likely to hold approximately
in the short term even if it does not ultimately hold exactly in the long term.

Refining the Haldane survival probability Haldane derived what he called the “fixation probability” of a beneficial mutation of
selective advantage s

b

to be approximately 2s

b

. In our terminology, this quantity is more accurately called the “survival probability”,
as it does not take into account finite population size. Because we will be comparing our results to very large numbers of simulations,
we would like to refine Haldane’s result a bit.

General expression. Haldane’s derivation starts with a result from single-type branching process theory, namely, that extinction
probability of a Galton-Watson process is the smallest positive x that satisfies x = h(x), where h(x) denotes the probability generating
function associated with the distribution of numbers of offspring produced by individuals in the population. To compute survival
probability – the complement of extinction probability – we simply replace x with y = 1 � x. Survival probability is thus the largest
y 2 [0, 1] satisfying 1 � y = h(1 � y). Expansion yields

1 � y ⇡ h(1)� yh

0(1) +
1
2

y

2
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2
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) ,

where m

h

= h

0(1) is the mean number of offspring, and s2
h

= h

00(1) � [h0(1)]2 + h

0(1) is the variance in number of offspring.
Rearranging thus yields a general approximation for survival probability in the single-type case:
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(S28)

In this single-type case the mean number of offspring does not change over time and is given by m

h

= 1 + s

b

, resulting in:
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.

If it is the case that the quantity s2
h

+ (1 + s

b

)2 � (1 + s

b

) is close to one, then the survival probability may be approximated as
p

svl

⇡ 2s

b

, recovering Haldane’s classical result.

Poisson-distributed offspring. When numbers of offspring have a Poisson distribution, then we have s2
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= m

h

, and (S28) becomes:
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)2 . (S29)

Bacteria (binary fission). After reproduction and subsequent population culling, or sampling, the number of offspring a bacterium
produces has a Binomial distribution with parameters n = 2 and p = m

h

/2, i.e., h(x) = [(1 � m

h

/2) + (m
h

/2)x]2. For this particular
case, no approximation is necessary: 1 � y = [(1 � m
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/2) + (m
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/2)(1 � y)]2 may be solved exactly for y, yielding:
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Expression used in main text. Results in the main text are presented in a way that can accommodate either of the foregoing two cases by
implementing the following expression for single-type survival probability:

p

svl

=
Ks

b

(1 + s

b

)2 ,

where K = 2 for Poisson-distributed offspring and K = 4 for bacteria (binary fission). When s

b

is replace with average selective
advantage, s̄

b

, we introduce a new variable ŝ

b

= s̄

b

/(1 + s̄

b

)2, so that single-type survival probability may be written as:
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= Kŝ

b

.

Approximation

Strategy and rationale. Rationale for our approximation strategy is based on the observation that, as s

b

increases, survival probability
jumps from zero to something close to Haldane’s classical survival probability at U = ln W, where W is the relative fitness of the
beneficial lineage; this is especially true for small s̄

d

.

Thus, we approximate survival probabilities as the product of the probabilities that, for a randomly chosen beneficial mutation: 1) the
mutation has a selective advantage large enough to overcome the effects of lineage contamination, and 2) the mutation survives. For
such beneficial mutations, the probability of 1) is the probability that U < ln W; and, the probability of 2) is our refined Haldane
survival probability Kŝ

b

.

Framework. To facilitate the following developments, we introduce a new function, s

⇤
b

(j), defined as follows. If a beneficial mutation
arises on a background that contains j deleterious mutations, it has zero probability of survival unless its selective advantage exceeds a
critical value, which is given by the function s

⇤
b

(j), defined as:
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This function comes from the observation that zero probability of survival in (S26) is achieved when 1� e
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Based on the rationale outlined above for our approximation strategy, survival probability is thus:
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where ŝ
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)2, as derived above. Ensemble survival probability is thus:
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Lower bounds on ensemble survival probability. To derive lower bounds on survival probability, we take the logarithm of (S31):
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Jensen’s inequality provides:
hp

svl

i � e

hln p

svl

i

and thus yields exact minimums on both upper and lower bounds for the ensemble survival probability:
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(S33)
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This expression is a bound-of-bounds and thus of questionable utility. Comparison with simulations, however, reveals the upper
bound (for s̄

d

! 0) to be quite accurate; nevertheless, the lower bound (for s̄

d

� s̄

b

) appears to be overly conservative.

Approximate ensemble survival probability. We now employ a different approach that avoids the use of Jensen’s inequality by making
approximations that, at first blush, may appear somewhat crude; nevertheless, comparison with simulations shows this approach to
work spectacularly well. We first note that typical values of s̄

d

(even when larger than s̄

b

) are likely to be small enough to permit the
following approximations:

s

⇤
b

(j) =

(

e

U(1 � s̄

d

)�j � 1 ⇡ U + js̄

d

, s̄

d

� s̄

b

(1 � s̄

d

)�j � 1 ⇡ js̄

d

, s̄

d

! 0 .

(S32) now becomes:
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d , (S34)

where c1 = U when s̄

d

� s̄

b

, and c1 = 0 when s̄

d

is small. This gives rise to approximate survival probabilities:
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From here, it is apparent that the smallest value of hp

svl

i is achieved when s̄

d

= s̄

b

, so that survival probability is bounded as:
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b . hp

svl

i . Kŝ

b

e

�U/s̄

b , (S36)

where # = 2 � e

�1 ⇡ 1.63. Remarkably, the foregoing bounds on survival probability are independent of s̄

d

.

Mutation rate that maximizes production of surviving beneficial mutations We first note that the rate of production of surviving
beneficial mutations will be proportional to Uhp

svl

i. This is the only information we need. The genomic mutation rate that maximizes
this rate of production is found by setting ∂

U

U hp

svl

i = 0 and solving for U, we find this maximum production rate occurs at mutation
rate Û, given by:
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(S37)

The smallest value of Û is achieved when s̄

d

= s̄

b

, resulting in the bounds:

1
#

s̄

b

 Û < s̄

b

. (S38)

Clonal interference threshold As delineated in Sniegowski and Gerrish (2010), the clonal interference regime is entered when a second,
alternative beneficial mutation is likely to be produced on the ancestral background before the first, or focal, beneficial mutation
becomes fixed. If the focal mutation has selective advantage s

b

then, given that it survives stochastic sampling in the first few
generations (genetic drift), the dynamics of its frequency, x(t), is described by the differential equation,

x

0(t) = s

b

x(t)(1 � x(t)) .

Conditioning on surviving drift (Barton 1995), the initial condition is:

x(0) =
1

Ns

b

,

yielding solution:
x(t) = [e�s

b

t(Ns

b

� 1) + 1]�1 .

At this point, we refine our definition of “fixation” of the focal beneficial mutation as being the point at which half of the population
carries the mutation. The rationale for this refinement is that beyond this point, when more than half of the population carry the
mutation, it becomes more likely that the next beneficial mutation to arise will appear not on the wildtype background but on the
background carrying the focal beneficial mutation. Fixation, defined in this way, will occur t generations after the appearance of the
focal mutations, where x(t) = 1/2. Thus,

t =
ln(Ns

b

� 1)
s

b

.

We are interested in knowing whether an alternative beneficial mutation will arise in the interval (0, t) on the wildtype background.
Letting y(t) denote wildtype frequency at time t, we have that

y(t) = 1 � x(t) .
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The expected number of alternative beneficial mutations produced in the wildtype subpopulation is:

µN

Z t

0
y(t)dt ,

where µ = cU is beneficial mutation rate, and:
Z t

0
y(t)dt =

1
s

b

[ln(Ns

b

) + ln(Ns

b

� 1)� ln(2(Ns

b

� 1))]

⇡ ln(Ns

b

/2)
s

b

.

The expected number of alternative beneficial mutations produced on the wildtype background is thus:

µN

ln(Ns

b

/2)
s

b

.

The expected number of alternative beneficial mutations produced, however, is different from the number of competing beneficial
mutations, because many of those produced will not survive the effects of genetic drift and the accelerated accumulation of deleterious
mutations (lineage contamination). Letting random variable M denote the number of competing beneficial mutations, then M has a
Poisson distribution with expectation:

E(M) = µN

ln(Ns

b

/2)
s

b

hp

svl

i .

A population is in the clonal interference regime when at least one competing beneficial will arise on average; this criterion is thus met
when:

E(M) � 1 .

The only remaining issue is to determine the value of s

b

to be used in the foregoing expressions. We will use es
b

denote this value. To
let es

b

= s̄

b

would be erroneous, because beneficial mutations that fix will typically have higher-that-average selective advantages. And
to survive the effects of lineage contamination, we have established that the selective advantage must be at least e

U � 1. In previous
work (Rozen et al. 2002; Gerrish and Lenski 1998), we find that selective advantages of beneficial mutations that survive drift will be
Gamma distributed with shape parameter 2. Fortunately, on the border between clonal interference and periodic selection regimes, we
expect only a single competing beneficial mutation, and we therefore do not have to account for the effects of clonal interference on
selective advantages of beneficial mutations that fix. In light of the foregoing observations, we have:
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e
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R •
e
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b

s̄

b

+ U

.

It is readily verified that, as U ! 0, es
b

! 2s̄

b

, as expected.

Finally, we note that there will typically be two solutions to the equation E(M) = 1, which defines the borders between clonal
interference and periodic selection regimes. The smaller of these two solutions defines the border, as low mutation rate increases, from
a periodic selection regime into a clonal interference regime. The larger of these two solutions defines the border, as already high
mutation rate increase further, from a clonal interference regime back into a periodic selection regime. This second transition is the
direct result of lineage contamination and is what we have called the “clonal interference threshold”.

Fixation threshold The probability that a randomly chosen beneficial mutation does not survive is:
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where k 2 (1, #]. The probability that n beneficial mutations do not survive is thus:
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ext
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i]n ,

which may be approximated by:
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The fixation threshold is obtained by finding the maximum U that satisfies:

hp

svl

in = p

c

where p

c

is the probability with which one wishes to ensure that no fixations occur. The “fixation threshold” is exceeded when no
beneficial mutation produced by a population has a selective advantage strong enough to survive the effects of lineage contamination.
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Concretely, in a given interval of time t, we suppose a population produces a total of n beneficial mutations; then, the fixation
threshold is defined as the mutation rate that ensures extinction of even the fittest of these mutations. This critical mutation rate, which
defines the fixation threshold and which we will denote by U

f

, thus ensures the extinction of all n beneficial mutations produced with
specified probability p

c

; it is given by:

U

f

=
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:
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(S39)

More compactly, this may be rewritten as:

U

f

= max{U | U = �Û ln
✓

� ln p

c

n(U)

◆

} ,

where Û is defined and derived above, and n(U) = NUcKŝ

b

t, and t denotes the relevant time period; for example, to compute the
mutation rate at which, over a time period of 5000 generations, all fixations will be suppressed with probability 95%, we set t = 5000
and p

c

= 0.95.

Multiple beneficial mutations Our multitype branching process model assumes that beneficial mutations occur infrequently enough
that acquiring a second beneficial mutation in linkage with the focal beneficial mutation is improbable in the time required for the focal
mutation to either survive or go extinct. In reality, it might be the case that multiple beneficial mutations arise on the same background
and sweep to fixation, collectively overcoming the lineage contamination effect. Figure S7 plots survival probabilities computed from
an extension of our multitype branching process model that allows for the occurrence of a second beneficial mutation within the
lineage formed by the first, or focal, beneficial mutation.

Figure S7 Survival probability of a single beneficial lineage, potentially acquiring a second beneficial mutation with probability
1 � e

�cU . Here s

b

= 0.1 and s

d

= 0.03.

Simulations Our simulations describe the evolution of a population whose size at time t is N

t

. At time t, the i

th individual in the
population has fitness W

t,i, so simulations model the evolution of the vector W
t

= (W
t,1, W

t,2, . . . , W

t,N
t

). To compute vector W
t+1, the

first step is replication: each individual is granted a number of offspring, Y

t,i, proportional to that individual’s fitness: Y

t,i is a Poisson
random variable with mean W

t,i/W̄

t

, where W̄

t

= 1
N

t

ÂN

t

j=1 W

t,j. If individual j in the population at time t + 1 is an offspring of individ-

ual i in the parent population (at time t), then its fitness is computed by applying W

t+1,j = W

t,i ’M

k=1(1 � S

d

(k)), where i = 1, 2, . . . , N

t

,
each S

d

(k) is an exponentially-distributed random variable with mean s

d

, and M is a Poisson-distributed random variable with mean U.

Single beneficial lineage in an otherwise homogeneous population. To study the effects of lineage contamination in isolation, we simulate the
growth of a beneficial lineage in an initially homogeneous population by imposing the initial conditions: W0,1 = (1 + s

b

) and W0,i = 1
for i = 2, 3, . . . , N0. These simulations closely approximate the process modeled by our branching process approach described above,
but they allow us to study the effects of relaxing certain assumptions.
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Single beneficial lineage in a heterogeneous population initially at mutation-selection balance. In other simulations, we analyze the growth of
a single beneficial lineage occurring at random (on any background) in a population initially at mutation-selection balance. Here,
initial conditions are: W0,i = ’X

j=1 (1 � S

d

(j)), where X is a Poisson-distributed random variate with mean U/s

d

, and the S

d

(j) are
exponential random variates with mean s

d

, and W0,K = W0,K(1 + s

b

) where K is an integer randomly chosen in the interval [1, N0].

Multiple beneficial mutations in a heterogeneous population. These simulations assume a deleterious genome of infinite length and a binary
(bit-string) beneficial genome of length 96 (three binary “genes” each of length 32). Each of the 96 positions on the beneficial genome
was assigned a fixed fitness effect of mutation at that position. Initially, this set of selection coefficients was created by drawing at
random from an exponential distribution with mean 0.03. For purposes of consistent comparison, we used the same set of available
beneficial mutations for all such simulations.

Isolating lineage contamination and background selection processes. In simulations, we isolated the effects of the lineage contamination
and background selection processes by allowing one of these processes to operate while suppressing the other. To examine the
effects of lineage contamination alone, we suppressed background selection by not allowing deleterious mutations to arise during
the replication of an individual with zero beneficial mutations. To examine the effects of background selection alone, we suppressed
lineage contamination by not allowing deleterious mutations to arise during the early growth of beneficial lineages. And of course, to
examine the combined effects of lineage contamination and background selection, we allowed equally indiscriminate mutation (we
suppressed neither process).
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